""" Decorator module by Michele Simionato <michelesimionato@libero.it> Copyright Michele Simionato, distributed under the terms of the BSD License (see below). http://www.phyast.pitt.edu/~micheles/python/documentation.html Included in NLTK for its support of a nice memoization decorator. """ from __future__ import print_function __docformat__ = 'restructuredtext en' ## The basic trick is to generate the source code for the decorated function ## with the right signature and to evaluate it. ## Uncomment the statement 'print >> sys.stderr, func_src' in _decorator ## to understand what is going on. __all__ = ["decorator", "new_wrapper", "getinfo"] import sys # Hack to keep NLTK's "tokenize" module from colliding with the "tokenize" in # the Python standard library. old_sys_path = sys.path[:] sys.path = [p for p in sys.path if "nltk" not in p] import inspect sys.path = old_sys_path try: set except NameError: from sets import Set as set def getinfo(func): """ Returns an info dictionary containing: - name (the name of the function : str) - argnames (the names of the arguments : list) - defaults (the values of the default arguments : tuple) - signature (the signature : str) - doc (the docstring : str) - module (the module name : str) - dict (the function __dict__ : str) >>> def f(self, x=1, y=2, *args, **kw): pass >>> info = getinfo(f) >>> info["name"] 'f' >>> info["argnames"] ['self', 'x', 'y', 'args', 'kw'] >>> info["defaults"] (1, 2) >>> info["signature"] 'self, x, y, *args, **kw' """ assert inspect.ismethod(func) or inspect.isfunction(func) if sys.version_info[0] >= 3: argspec = inspect.getfullargspec(func) else: argspec = inspect.getargspec(func) regargs, varargs, varkwargs, defaults = argspec[:4] argnames = list(regargs) if varargs: argnames.append(varargs) if varkwargs: argnames.append(varkwargs) signature = inspect.formatargspec(regargs, varargs, varkwargs, defaults, formatvalue=lambda value: "")[1:-1] # pypy compatibility if hasattr(func, '__closure__'): _closure = func.__closure__ _globals = func.__globals__ else: _closure = func.func_closure _globals = func.func_globals return dict(name=func.__name__, argnames=argnames, signature=signature, defaults = func.__defaults__, doc=func.__doc__, module=func.__module__, dict=func.__dict__, globals=_globals, closure=_closure) # akin to functools.update_wrapper def update_wrapper(wrapper, model, infodict=None): infodict = infodict or getinfo(model) wrapper.__name__ = infodict['name'] wrapper.__doc__ = infodict['doc'] wrapper.__module__ = infodict['module'] wrapper.__dict__.update(infodict['dict']) wrapper.__defaults__ = infodict['defaults'] wrapper.undecorated = model return wrapper def new_wrapper(wrapper, model): """ An improvement over functools.update_wrapper. The wrapper is a generic callable object. It works by generating a copy of the wrapper with the right signature and by updating the copy, not the original. Moreovoer, 'model' can be a dictionary with keys 'name', 'doc', 'module', 'dict', 'defaults'. """ if isinstance(model, dict): infodict = model else: # assume model is a function infodict = getinfo(model) assert not '_wrapper_' in infodict["argnames"], ( '"_wrapper_" is a reserved argument name!') src = "lambda %(signature)s: _wrapper_(%(signature)s)" % infodict funcopy = eval(src, dict(_wrapper_=wrapper)) return update_wrapper(funcopy, model, infodict) # helper used in decorator_factory def __call__(self, func): return new_wrapper(lambda *a, **k : self.call(func, *a, **k), func) def decorator_factory(cls): """ Take a class with a ``.caller`` method and return a callable decorator object. It works by adding a suitable __call__ method to the class; it raises a TypeError if the class already has a nontrivial __call__ method. """ attrs = set(dir(cls)) if '__call__' in attrs: raise TypeError('You cannot decorate a class with a nontrivial ' '__call__ method') if 'call' not in attrs: raise TypeError('You cannot decorate a class without a ' '.call method') cls.__call__ = __call__ return cls def decorator(caller): """ General purpose decorator factory: takes a caller function as input and returns a decorator with the same attributes. A caller function is any function like this:: def caller(func, *args, **kw): # do something return func(*args, **kw) Here is an example of usage: >>> @decorator ... def chatty(f, *args, **kw): ... print("Calling %r" % f.__name__) ... return f(*args, **kw) >>> chatty.__name__ 'chatty' >>> @chatty ... def f(): pass ... >>> f() Calling 'f' decorator can also take in input a class with a .caller method; in this case it converts the class into a factory of callable decorator objects. See the documentation for an example. """ if inspect.isclass(caller): return decorator_factory(caller) def _decorator(func): # the real meat is here infodict = getinfo(func) argnames = infodict['argnames'] assert not ('_call_' in argnames or '_func_' in argnames), ( 'You cannot use _call_ or _func_ as argument names!') src = "lambda %(signature)s: _call_(_func_, %(signature)s)" % infodict # import sys; print >> sys.stderr, src # for debugging purposes dec_func = eval(src, dict(_func_=func, _call_=caller)) return update_wrapper(dec_func, func, infodict) return update_wrapper(_decorator, caller) def getattr_(obj, name, default_thunk): "Similar to .setdefault in dictionaries." try: return getattr(obj, name) except AttributeError: default = default_thunk() setattr(obj, name, default) return default @decorator def memoize(func, *args): dic = getattr_(func, "memoize_dic", dict) # memoize_dic is created at the first call if args in dic: return dic[args] else: result = func(*args) dic[args] = result return result ########################## LEGALESE ############################### ## Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## Redistributions in bytecode form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in ## the documentation and/or other materials provided with the ## distribution. ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ## HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ## INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ## BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ## OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ## TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ## USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ## DAMAGE.