# This file is part of h5py, a Python interface to the HDF5 library. # # http://www.h5py.org # # Copyright 2008-2013 Andrew Collette and contributors # # License: Standard 3-clause BSD; see "license.txt" for full license terms # and contributor agreement. # We use __getitem__ side effects, which pylint doesn't like. # pylint: disable=pointless-statement """ High-level access to HDF5 dataspace selections """ from __future__ import absolute_import import six from six.moves import xrange # pylint: disable=redefined-builtin import numpy as np from .. import h5s, h5r def select(shape, args, dsid): """ High-level routine to generate a selection from arbitrary arguments to __getitem__. The arguments should be the following: shape Shape of the "source" dataspace. args Either a single argument or a tuple of arguments. See below for supported classes of argument. dsid A h5py.h5d.DatasetID instance representing the source dataset. Argument classes: Single Selection instance Returns the argument. numpy.ndarray Must be a boolean mask. Returns a PointSelection instance. RegionReference Returns a Selection instance. Indices, slices, ellipses only Returns a SimpleSelection instance Indices, slices, ellipses, lists or boolean index arrays Returns a FancySelection instance. """ if not isinstance(args, tuple): args = (args,) # "Special" indexing objects if len(args) == 1: arg = args[0] if isinstance(arg, Selection): if arg.shape != shape: raise TypeError("Mismatched selection shape") return arg elif isinstance(arg, np.ndarray): sel = PointSelection(shape) sel[arg] return sel elif isinstance(arg, h5r.RegionReference): sid = h5r.get_region(arg, dsid) if shape != sid.shape: raise TypeError("Reference shape does not match dataset shape") return Selection(shape, spaceid=sid) for a in args: if not isinstance(a, slice) and a is not Ellipsis: try: int(a) if isinstance(a, np.ndarray) and a.shape == (1,): raise Exception() except Exception: sel = FancySelection(shape) sel[args] return sel sel = SimpleSelection(shape) sel[args] return sel class _RegionProxy(object): """ Thin proxy object which takes __getitem__-style index arguments and produces RegionReference objects. Example: >>> dset = myfile['dataset'] >>> myref = dset.regionref[0:100,20:30] >>> data = dset[myref] """ def __init__(self, dsid): """ Supply a h5py.h5d.DatasetID instance """ self.id = dsid def __getitem__(self, args): """ Takes arbitrary selection terms and produces a RegionReference object. Selection must be compatible with the dataset. """ selection = select(self.id.shape, args, self.id) return h5r.create(self.id, '.', h5r.DATASET_REGION, selection.id) class Selection(object): """ Base class for HDF5 dataspace selections. Subclasses support the "selection protocol", which means they have at least the following members: __init__(shape) => Create a new selection on "shape"-tuple __getitem__(args) => Perform a selection with the range specified. What args are allowed depends on the particular subclass in use. id (read-only) => h5py.h5s.SpaceID instance shape (read-only) => The shape of the dataspace. mshape (read-only) => The shape of the selection region. Not guaranteed to fit within "shape", although the total number of points is less than product(shape). nselect (read-only) => Number of selected points. Always equal to product(mshape). broadcast(target_shape) => Return an iterable which yields dataspaces for read, based on target_shape. The base class represents "unshaped" selections (1-D). """ def __init__(self, shape, spaceid=None): """ Create a selection. Shape may be None if spaceid is given. """ if spaceid is not None: self._id = spaceid self._shape = spaceid.shape else: shape = tuple(shape) self._shape = shape self._id = h5s.create_simple(shape, (h5s.UNLIMITED,)*len(shape)) self._id.select_all() @property def id(self): """ SpaceID instance """ return self._id @property def shape(self): """ Shape of whole dataspace """ return self._shape @property def nselect(self): """ Number of elements currently selected """ return self._id.get_select_npoints() @property def mshape(self): """ Shape of selection (always 1-D for this class) """ return (self.nselect,) def broadcast(self, target_shape): """ Get an iterable for broadcasting """ if np.product(target_shape) != self.nselect: raise TypeError("Broadcasting is not supported for point-wise selections") yield self._id def __getitem__(self, args): raise NotImplementedError("This class does not support indexing") class PointSelection(Selection): """ Represents a point-wise selection. You can supply sequences of points to the three methods append(), prepend() and set(), or a single boolean array to __getitem__. """ def _perform_selection(self, points, op): """ Internal method which actually performs the selection """ points = np.asarray(points, order='C', dtype='u8') if len(points.shape) == 1: points.shape = (1,points.shape[0]) if self._id.get_select_type() != h5s.SEL_POINTS: op = h5s.SELECT_SET if len(points) == 0: self._id.select_none() else: self._id.select_elements(points, op) def __getitem__(self, arg): """ Perform point-wise selection from a NumPy boolean array """ if not (isinstance(arg, np.ndarray) and arg.dtype.kind == 'b'): raise TypeError("PointSelection __getitem__ only works with bool arrays") if not arg.shape == self.shape: raise TypeError("Boolean indexing array has incompatible shape") points = np.transpose(arg.nonzero()) self.set(points) return self def append(self, points): """ Add the sequence of points to the end of the current selection """ self._perform_selection(points, h5s.SELECT_APPEND) def prepend(self, points): """ Add the sequence of points to the beginning of the current selection """ self._perform_selection(points, h5s.SELECT_PREPEND) def set(self, points): """ Replace the current selection with the given sequence of points""" self._perform_selection(points, h5s.SELECT_SET) class SimpleSelection(Selection): """ A single "rectangular" (regular) selection composed of only slices and integer arguments. Can participate in broadcasting. """ @property def mshape(self): """ Shape of current selection """ return self._mshape def __init__(self, shape, *args, **kwds): Selection.__init__(self, shape, *args, **kwds) rank = len(self.shape) self._sel = ((0,)*rank, self.shape, (1,)*rank, (False,)*rank) self._mshape = self.shape def __getitem__(self, args): if not isinstance(args, tuple): args = (args,) if self.shape == (): if len(args) > 0 and args[0] not in (Ellipsis, ()): raise TypeError("Invalid index for scalar dataset (only ..., () allowed)") self._id.select_all() return self start, count, step, scalar = _handle_simple(self.shape,args) self._id.select_hyperslab(start, count, step) self._sel = (start, count, step, scalar) self._mshape = tuple(x for x, y in zip(count, scalar) if not y) return self def broadcast(self, target_shape): """ Return an iterator over target dataspaces for broadcasting. Follows the standard NumPy broadcasting rules against the current selection shape (self.mshape). """ if self.shape == (): if np.product(target_shape) != 1: raise TypeError("Can't broadcast %s to scalar" % target_shape) self._id.select_all() yield self._id return start, count, step, scalar = self._sel rank = len(count) target = list(target_shape) tshape = [] for idx in xrange(1,rank+1): if len(target) == 0 or scalar[-idx]: # Skip scalar axes tshape.append(1) else: t = target.pop() if t == 1 or count[-idx] == t: tshape.append(t) else: raise TypeError("Can't broadcast %s -> %s" % (target_shape, count)) tshape.reverse() tshape = tuple(tshape) chunks = tuple(x//y for x, y in zip(count, tshape)) nchunks = int(np.product(chunks)) if nchunks == 1: yield self._id else: sid = self._id.copy() sid.select_hyperslab((0,)*rank, tshape, step) for idx in xrange(nchunks): offset = tuple(x*y*z + s for x, y, z, s in zip(np.unravel_index(idx, chunks), tshape, step, start)) sid.offset_simple(offset) yield sid class FancySelection(Selection): """ Implements advanced NumPy-style selection operations in addition to the standard slice-and-int behavior. Indexing arguments may be ints, slices, lists of indicies, or per-axis (1D) boolean arrays. Broadcasting is not supported for these selections. """ @property def mshape(self): return self._mshape def __init__(self, shape, *args, **kwds): Selection.__init__(self, shape, *args, **kwds) self._mshape = self.shape def __getitem__(self, args): if not isinstance(args, tuple): args = (args,) args = _expand_ellipsis(args, len(self.shape)) # First build up a dictionary of (position:sequence) pairs sequenceargs = {} for idx, arg in enumerate(args): if not isinstance(arg, slice): if hasattr(arg, 'dtype') and arg.dtype == np.dtype('bool'): if len(arg.shape) != 1: raise TypeError("Boolean indexing arrays must be 1-D") arg = arg.nonzero()[0] try: sequenceargs[idx] = list(arg) except TypeError: pass else: list_arg = list(arg) adjacent = zip(list_arg[:-1], list_arg[1:]) if any(fst >= snd for fst, snd in adjacent): raise TypeError("Indexing elements must be in increasing order") if len(sequenceargs) > 1: raise TypeError("Only one indexing vector or array is currently allowed for advanced selection") if len(sequenceargs) == 0: raise TypeError("Advanced selection inappropriate") vectorlength = len(list(sequenceargs.values())[0]) if not all(len(x) == vectorlength for x in sequenceargs.values()): raise TypeError("All sequence arguments must have the same length %s" % sequenceargs) # Now generate a vector of selection lists, # consisting only of slices and ints argvector = [] for idx in xrange(vectorlength): entry = list(args) for position, seq in six.iteritems(sequenceargs): entry[position] = seq[idx] argvector.append(entry) # "OR" all these selection lists together to make the final selection self._id.select_none() for idx, vector in enumerate(argvector): start, count, step, scalar = _handle_simple(self.shape, vector) self._id.select_hyperslab(start, count, step, op=h5s.SELECT_OR) # Final shape excludes scalars, except where # they correspond to sequence entries mshape = list(count) for idx in xrange(len(mshape)): if idx in sequenceargs: mshape[idx] = len(sequenceargs[idx]) elif scalar[idx]: mshape[idx] = 0 self._mshape = tuple(x for x in mshape if x != 0) def broadcast(self, target_shape): if not target_shape == self.mshape: raise TypeError("Broadcasting is not supported for complex selections") yield self._id def _expand_ellipsis(args, rank): """ Expand ellipsis objects and fill in missing axes. """ n_el = sum(1 for arg in args if arg is Ellipsis) if n_el > 1: raise ValueError("Only one ellipsis may be used.") elif n_el == 0 and len(args) != rank: args = args + (Ellipsis,) final_args = [] n_args = len(args) for arg in args: if arg is Ellipsis: final_args.extend( (slice(None,None,None),)*(rank-n_args+1) ) else: final_args.append(arg) if len(final_args) > rank: raise TypeError("Argument sequence too long") return final_args def _handle_simple(shape, args): """ Process a "simple" selection tuple, containing only slices and integer objects. Return is a 4-tuple with tuples for start, count, step, and a flag which tells if the axis is a "scalar" selection (indexed by an integer). If "args" is shorter than "shape", the remaining axes are fully selected. """ args = _expand_ellipsis(args, len(shape)) start = [] count = [] step = [] scalar = [] for arg, length in zip(args, shape): if isinstance(arg, slice): x,y,z = _translate_slice(arg, length) s = False else: try: x,y,z = _translate_int(int(arg), length) s = True except TypeError: raise TypeError('Illegal index "%s" (must be a slice or number)' % arg) start.append(x) count.append(y) step.append(z) scalar.append(s) return tuple(start), tuple(count), tuple(step), tuple(scalar) def _translate_int(exp, length): """ Given an integer index, return a 3-tuple (start, count, step) for hyperslab selection """ if exp < 0: exp = length+exp if not 0<=exp 0, then start and stop are in [0, length]; # if step < 0, they are in [-1, length - 1] (Python 2.6b2 and later; # Python issue 3004). if step < 1: raise ValueError("Step must be >= 1 (got %d)" % step) if stop < start: # list/tuple and numpy consider stop < start to be an empty selection return 0, 0, 1 count = 1 + (stop - start - 1) // step return start, count, step def guess_shape(sid): """ Given a dataspace, try to deduce the shape of the selection. Returns one of: * A tuple with the selection shape, same length as the dataspace * A 1D selection shape for point-based and multiple-hyperslab selections * None, for unselected scalars and for NULL dataspaces """ sel_class = sid.get_simple_extent_type() # Dataspace class sel_type = sid.get_select_type() # Flavor of selection in use if sel_class == h5s.NULL: # NULL dataspaces don't support selections return None elif sel_class == h5s.SCALAR: # NumPy has no way of expressing empty 0-rank selections, so we use None if sel_type == h5s.SEL_NONE: return None if sel_type == h5s.SEL_ALL: return tuple() elif sel_class != h5s.SIMPLE: raise TypeError("Unrecognized dataspace class %s" % sel_class) # We have a "simple" (rank >= 1) dataspace N = sid.get_select_npoints() rank = len(sid.shape) if sel_type == h5s.SEL_NONE: return (0,)*rank elif sel_type == h5s.SEL_ALL: return sid.shape elif sel_type == h5s.SEL_POINTS: # Like NumPy, point-based selections yield 1D arrays regardless of # the dataspace rank return (N,) elif sel_type != h5s.SEL_HYPERSLABS: raise TypeError("Unrecognized selection method %s" % sel_type) # We have a hyperslab-based selection if N == 0: return (0,)*rank bottomcorner, topcorner = (np.array(x) for x in sid.get_select_bounds()) # Shape of full selection box boxshape = topcorner - bottomcorner + np.ones((rank,)) def get_n_axis(sid, axis): """ Determine the number of elements selected along a particular axis. To do this, we "mask off" the axis by making a hyperslab selection which leaves only the first point along the axis. For a 2D dataset with selection box shape (X, Y), for axis 1, this would leave a selection of shape (X, 1). We count the number of points N_leftover remaining in the selection and compute the axis selection length by N_axis = N/N_leftover. """ if(boxshape[axis]) == 1: return 1 start = bottomcorner.copy() start[axis] += 1 count = boxshape.copy() count[axis] -= 1 # Throw away all points along this axis masked_sid = sid.copy() masked_sid.select_hyperslab(tuple(start), tuple(count), op=h5s.SELECT_NOTB) N_leftover = masked_sid.get_select_npoints() return N//N_leftover shape = tuple(get_n_axis(sid, x) for x in xrange(rank)) if np.product(shape) != N: # This means multiple hyperslab selections are in effect, # so we fall back to a 1D shape return (N,) return shape