#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2010 Radim Rehurek # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Automated tests for checking transformation algorithms (the models package). """ from __future__ import with_statement import logging import unittest import os from six.moves import zip as izip from collections import namedtuple from testfixtures import log_capture import numpy as np from gensim import utils from gensim.models import doc2vec, keyedvectors from gensim.test.utils import datapath, get_tmpfile, common_texts as raw_sentences class DocsLeeCorpus(object): def __init__(self, string_tags=False, unicode_tags=False): self.string_tags = string_tags self.unicode_tags = unicode_tags def _tag(self, i): if self.unicode_tags: return u'_\xa1_%d' % i elif self.string_tags: return '_*%d' % i return i def __iter__(self): with open(datapath('lee_background.cor')) as f: for i, line in enumerate(f): yield doc2vec.TaggedDocument(utils.simple_preprocess(line), [self._tag(i)]) list_corpus = list(DocsLeeCorpus()) sentences = [doc2vec.TaggedDocument(words, [i]) for i, words in enumerate(raw_sentences)] def load_on_instance(): # Save and load a Doc2Vec Model on instance for test tmpf = get_tmpfile('gensim_doc2vec.tst') model = doc2vec.Doc2Vec(DocsLeeCorpus(), min_count=1) model.save(tmpf) model = doc2vec.Doc2Vec() # should fail at this point return model.load(tmpf) class TestDoc2VecModel(unittest.TestCase): def test_persistence(self): """Test storing/loading the entire model.""" tmpf = get_tmpfile('gensim_doc2vec.tst') model = doc2vec.Doc2Vec(DocsLeeCorpus(), min_count=1) model.save(tmpf) self.models_equal(model, doc2vec.Doc2Vec.load(tmpf)) def testPersistenceWord2VecFormat(self): """Test storing the entire model in word2vec format.""" model = doc2vec.Doc2Vec(DocsLeeCorpus(), min_count=1) # test saving both document and word embedding test_doc_word = get_tmpfile('gensim_doc2vec.dw') model.save_word2vec_format(test_doc_word, doctag_vec=True, word_vec=True, binary=True) binary_model_dv = keyedvectors.KeyedVectors.load_word2vec_format(test_doc_word, binary=True) self.assertEqual(len(model.wv.vocab) + len(model.docvecs), len(binary_model_dv.vocab)) # test saving document embedding only test_doc = get_tmpfile('gensim_doc2vec.d') model.save_word2vec_format(test_doc, doctag_vec=True, word_vec=False, binary=True) binary_model_dv = keyedvectors.KeyedVectors.load_word2vec_format(test_doc, binary=True) self.assertEqual(len(model.docvecs), len(binary_model_dv.vocab)) # test saving word embedding only test_word = get_tmpfile('gensim_doc2vec.w') model.save_word2vec_format(test_word, doctag_vec=False, word_vec=True, binary=True) binary_model_dv = keyedvectors.KeyedVectors.load_word2vec_format(test_word, binary=True) self.assertEqual(len(model.wv.vocab), len(binary_model_dv.vocab)) def testLoadOldModel(self): """Test loading doc2vec models from previous version""" model_file = 'doc2vec_old' model = doc2vec.Doc2Vec.load(datapath(model_file)) self.assertTrue(model.wv.vectors.shape == (3955, 100)) self.assertTrue(len(model.wv.vocab) == 3955) self.assertTrue(len(model.wv.index2word) == 3955) self.assertTrue(model.syn1neg.shape == (len(model.wv.vocab), model.vector_size)) self.assertTrue(model.trainables.vectors_lockf.shape == (3955, )) self.assertTrue(model.vocabulary.cum_table.shape == (3955, )) self.assertTrue(model.docvecs.vectors_docs.shape == (300, 100)) self.assertTrue(model.trainables.vectors_docs_lockf.shape == (300, )) self.assertTrue(model.docvecs.max_rawint == 299) self.assertTrue(model.docvecs.count == 300) self.model_sanity(model) # Model stored in multiple files model_file = 'doc2vec_old_sep' model = doc2vec.Doc2Vec.load(datapath(model_file)) self.assertTrue(model.wv.vectors.shape == (3955, 100)) self.assertTrue(len(model.wv.vocab) == 3955) self.assertTrue(len(model.wv.index2word) == 3955) self.assertTrue(model.syn1neg.shape == (len(model.wv.vocab), model.vector_size)) self.assertTrue(model.trainables.vectors_lockf.shape == (3955, )) self.assertTrue(model.vocabulary.cum_table.shape == (3955, )) self.assertTrue(model.docvecs.vectors_docs.shape == (300, 100)) self.assertTrue(model.trainables.vectors_docs_lockf.shape == (300, )) self.assertTrue(model.docvecs.max_rawint == 299) self.assertTrue(model.docvecs.count == 300) self.model_sanity(model) # load really old model model_file = 'd2v-lee-v0.13.0' model = doc2vec.Doc2Vec.load(datapath(model_file)) self.model_sanity(model) # Test loading doc2vec models from all previous versions old_versions = [ '0.12.0', '0.12.1', '0.12.2', '0.12.3', '0.12.4', '0.13.0', '0.13.1', '0.13.2', '0.13.3', '0.13.4', '1.0.0', '1.0.1', '2.0.0', '2.1.0', '2.2.0', '2.3.0', '3.0.0', '3.1.0', '3.2.0', '3.3.0', '3.4.0' ] saved_models_dir = datapath('old_d2v_models/d2v_{}.mdl') for old_version in old_versions: model = doc2vec.Doc2Vec.load(saved_models_dir.format(old_version)) self.assertTrue(len(model.wv.vocab) == 3) self.assertTrue(model.wv.vectors.shape == (3, 4)) self.assertTrue(model.docvecs.vectors_docs.shape == (2, 4)) self.assertTrue(model.docvecs.count == 2) # check if inferring vectors for new documents and similarity search works. doc0_inferred = model.infer_vector(list(DocsLeeCorpus())[0].words) sims_to_infer = model.docvecs.most_similar([doc0_inferred], topn=len(model.docvecs)) self.assertTrue(sims_to_infer) # check if inferring vectors and similarity search works after saving and loading back the model tmpf = get_tmpfile('gensim_doc2vec.tst') model.save(tmpf) loaded_model = doc2vec.Doc2Vec.load(tmpf) doc0_inferred = loaded_model.infer_vector(list(DocsLeeCorpus())[0].words) sims_to_infer = loaded_model.docvecs.most_similar([doc0_inferred], topn=len(loaded_model.docvecs)) self.assertTrue(sims_to_infer) def test_unicode_in_doctag(self): """Test storing document vectors of a model with unicode titles.""" model = doc2vec.Doc2Vec(DocsLeeCorpus(unicode_tags=True), min_count=1) tmpf = get_tmpfile('gensim_doc2vec.tst') try: model.save_word2vec_format(tmpf, doctag_vec=True, word_vec=True, binary=True) except UnicodeEncodeError: self.fail('Failed storing unicode title.') def test_load_mmap(self): """Test storing/loading the entire model.""" model = doc2vec.Doc2Vec(sentences, min_count=1) tmpf = get_tmpfile('gensim_doc2vec.tst') # test storing the internal arrays into separate files model.save(tmpf, sep_limit=0) self.models_equal(model, doc2vec.Doc2Vec.load(tmpf)) # make sure mmaping the arrays back works, too self.models_equal(model, doc2vec.Doc2Vec.load(tmpf, mmap='r')) def test_int_doctags(self): """Test doc2vec doctag alternatives""" corpus = DocsLeeCorpus() model = doc2vec.Doc2Vec(min_count=1) model.build_vocab(corpus) self.assertEqual(len(model.docvecs.doctag_syn0), 300) self.assertEqual(model.docvecs[0].shape, (100,)) self.assertEqual(model.docvecs[np.int64(0)].shape, (100,)) self.assertRaises(KeyError, model.__getitem__, '_*0') def test_missing_string_doctag(self): """Test doc2vec doctag alternatives""" corpus = list(DocsLeeCorpus(True)) # force duplicated tags corpus = corpus[0:10] + corpus model = doc2vec.Doc2Vec(min_count=1) model.build_vocab(corpus) self.assertRaises(KeyError, model.docvecs.__getitem__, 'not_a_tag') def test_string_doctags(self): """Test doc2vec doctag alternatives""" corpus = list(DocsLeeCorpus(True)) # force duplicated tags corpus = corpus[0:10] + corpus model = doc2vec.Doc2Vec(min_count=1) model.build_vocab(corpus) self.assertEqual(len(model.docvecs.doctag_syn0), 300) self.assertEqual(model.docvecs[0].shape, (100,)) self.assertEqual(model.docvecs['_*0'].shape, (100,)) self.assertTrue(all(model.docvecs['_*0'] == model.docvecs[0])) self.assertTrue(max(d.offset for d in model.docvecs.doctags.values()) < len(model.docvecs.doctags)) self.assertTrue( max( model.docvecs._int_index(str_key, model.docvecs.doctags, model.docvecs.max_rawint) for str_key in model.docvecs.doctags.keys()) < len(model.docvecs.doctag_syn0) ) # verify docvecs.most_similar() returns string doctags rather than indexes self.assertEqual(model.docvecs.offset2doctag[0], model.docvecs.most_similar([model.docvecs[0]])[0][0]) def test_empty_errors(self): # no input => "RuntimeError: you must first build vocabulary before training the model" self.assertRaises(RuntimeError, doc2vec.Doc2Vec, []) # input not empty, but rather completely filtered out self.assertRaises(RuntimeError, doc2vec.Doc2Vec, list_corpus, min_count=10000) def test_similarity_unseen_docs(self): """Test similarity of out of training sentences""" rome_str = ['rome', 'italy'] car_str = ['car'] corpus = list(DocsLeeCorpus(True)) model = doc2vec.Doc2Vec(min_count=1) model.build_vocab(corpus) self.assertTrue( model.docvecs.similarity_unseen_docs(model, rome_str, rome_str) > model.docvecs.similarity_unseen_docs(model, rome_str, car_str) ) def model_sanity(self, model, keep_training=True): """Any non-trivial model on DocsLeeCorpus can pass these sanity checks""" fire1 = 0 # doc 0 sydney fires fire2 = np.int64(8) # doc 8 sydney fires tennis1 = 6 # doc 6 tennis # inferred vector should be top10 close to bulk-trained one doc0_inferred = model.infer_vector(list(DocsLeeCorpus())[0].words) sims_to_infer = model.docvecs.most_similar([doc0_inferred], topn=len(model.docvecs)) f_rank = [docid for docid, sim in sims_to_infer].index(fire1) self.assertLess(f_rank, 10) # fire2 should be top30 close to fire1 sims = model.docvecs.most_similar(fire1, topn=len(model.docvecs)) f2_rank = [docid for docid, sim in sims].index(fire2) self.assertLess(f2_rank, 30) # same sims should appear in lookup by vec as by index doc0_vec = model.docvecs[fire1] sims2 = model.docvecs.most_similar(positive=[doc0_vec], topn=21) sims2 = [(id, sim) for id, sim in sims2 if id != fire1] # ignore the doc itself sims = sims[:20] self.assertEqual(list(zip(*sims))[0], list(zip(*sims2))[0]) # same doc ids self.assertTrue(np.allclose(list(zip(*sims))[1], list(zip(*sims2))[1])) # close-enough dists # sim results should be in clip range if given clip_sims = \ model.docvecs.most_similar(fire1, clip_start=len(model.docvecs) // 2, clip_end=len(model.docvecs) * 2 // 3) sims_doc_id = [docid for docid, sim in clip_sims] for s_id in sims_doc_id: self.assertTrue(len(model.docvecs) // 2 <= s_id <= len(model.docvecs) * 2 // 3) # tennis doc should be out-of-place among fire news self.assertEqual(model.docvecs.doesnt_match([fire1, tennis1, fire2]), tennis1) # fire docs should be closer than fire-tennis self.assertTrue(model.docvecs.similarity(fire1, fire2) > model.docvecs.similarity(fire1, tennis1)) # keep training after save if keep_training: tmpf = get_tmpfile('gensim_doc2vec.tst') model.save(tmpf) loaded = doc2vec.Doc2Vec.load(tmpf) loaded.train(sentences, total_examples=loaded.corpus_count, epochs=loaded.iter) def test_training(self): """Test doc2vec training.""" corpus = DocsLeeCorpus() model = doc2vec.Doc2Vec(size=100, min_count=2, iter=20, workers=1) model.build_vocab(corpus) self.assertEqual(model.docvecs.doctag_syn0.shape, (300, 100)) model.train(corpus, total_examples=model.corpus_count, epochs=model.iter) self.model_sanity(model) # build vocab and train in one step; must be the same as above model2 = doc2vec.Doc2Vec(corpus, size=100, min_count=2, iter=20, workers=1) self.models_equal(model, model2) def test_dbow_hs(self): """Test DBOW doc2vec training.""" model = doc2vec.Doc2Vec(list_corpus, dm=0, hs=1, negative=0, min_count=2, iter=20) self.model_sanity(model) def test_dmm_hs(self): """Test DM/mean doc2vec training.""" model = doc2vec.Doc2Vec( list_corpus, dm=1, dm_mean=1, size=24, window=4, hs=1, negative=0, alpha=0.05, min_count=2, iter=20 ) self.model_sanity(model) def test_dms_hs(self): """Test DM/sum doc2vec training.""" model = doc2vec.Doc2Vec( list_corpus, dm=1, dm_mean=0, size=24, window=4, hs=1, negative=0, alpha=0.05, min_count=2, iter=20 ) self.model_sanity(model) def test_dmc_hs(self): """Test DM/concatenate doc2vec training.""" model = doc2vec.Doc2Vec( list_corpus, dm=1, dm_concat=1, size=24, window=4, hs=1, negative=0, alpha=0.05, min_count=2, iter=20 ) self.model_sanity(model) def test_dbow_neg(self): """Test DBOW doc2vec training.""" model = doc2vec.Doc2Vec(list_corpus, dm=0, hs=0, negative=10, min_count=2, iter=20) self.model_sanity(model) def test_dmm_neg(self): """Test DM/mean doc2vec training.""" model = doc2vec.Doc2Vec( list_corpus, dm=1, dm_mean=1, size=24, window=4, hs=0, negative=10, alpha=0.05, min_count=2, iter=20 ) self.model_sanity(model) def test_dms_neg(self): """Test DM/sum doc2vec training.""" model = doc2vec.Doc2Vec( list_corpus, dm=1, dm_mean=0, size=24, window=4, hs=0, negative=10, alpha=0.05, min_count=2, iter=20 ) self.model_sanity(model) def test_dmc_neg(self): """Test DM/concatenate doc2vec training.""" model = doc2vec.Doc2Vec( list_corpus, dm=1, dm_concat=1, size=24, window=4, hs=0, negative=10, alpha=0.05, min_count=2, iter=20 ) self.model_sanity(model) def test_parallel(self): """Test doc2vec parallel training.""" if doc2vec.FAST_VERSION < 0: # don't test the plain NumPy version for parallelism (too slow) return corpus = utils.RepeatCorpus(DocsLeeCorpus(), 10000) for workers in [2, 4]: model = doc2vec.Doc2Vec(corpus, workers=workers) self.model_sanity(model) def test_deterministic_hs(self): """Test doc2vec results identical with identical RNG seed.""" # hs model = doc2vec.Doc2Vec(DocsLeeCorpus(), seed=42, workers=1) model2 = doc2vec.Doc2Vec(DocsLeeCorpus(), seed=42, workers=1) self.models_equal(model, model2) def test_deterministic_neg(self): """Test doc2vec results identical with identical RNG seed.""" # neg model = doc2vec.Doc2Vec(DocsLeeCorpus(), hs=0, negative=3, seed=42, workers=1) model2 = doc2vec.Doc2Vec(DocsLeeCorpus(), hs=0, negative=3, seed=42, workers=1) self.models_equal(model, model2) def test_deterministic_dmc(self): """Test doc2vec results identical with identical RNG seed.""" # bigger, dmc model = doc2vec.Doc2Vec( DocsLeeCorpus(), dm=1, dm_concat=1, size=24, window=4, hs=1, negative=3, seed=42, workers=1 ) model2 = doc2vec.Doc2Vec( DocsLeeCorpus(), dm=1, dm_concat=1, size=24, window=4, hs=1, negative=3, seed=42, workers=1 ) self.models_equal(model, model2) def test_mixed_tag_types(self): """Ensure alternating int/string tags don't share indexes in doctag_syn0""" mixed_tag_corpus = [doc2vec.TaggedDocument(words, [i, words[0]]) for i, words in enumerate(raw_sentences)] model = doc2vec.Doc2Vec() model.build_vocab(mixed_tag_corpus) expected_length = len(sentences) + len(model.docvecs.doctags) # 9 sentences, 7 unique first tokens self.assertEqual(len(model.docvecs.doctag_syn0), expected_length) def models_equal(self, model, model2): # check words/hidden-weights self.assertEqual(len(model.wv.vocab), len(model2.wv.vocab)) self.assertTrue(np.allclose(model.wv.syn0, model2.wv.syn0)) if model.hs: self.assertTrue(np.allclose(model.syn1, model2.syn1)) if model.negative: self.assertTrue(np.allclose(model.syn1neg, model2.syn1neg)) # check docvecs self.assertEqual(len(model.docvecs.doctags), len(model2.docvecs.doctags)) self.assertEqual(len(model.docvecs.offset2doctag), len(model2.docvecs.offset2doctag)) self.assertTrue(np.allclose(model.docvecs.doctag_syn0, model2.docvecs.doctag_syn0)) def test_delete_temporary_training_data(self): """Test doc2vec model after delete_temporary_training_data""" for i in [0, 1]: for j in [0, 1]: model = doc2vec.Doc2Vec(sentences, size=5, min_count=1, window=4, hs=i, negative=j) if i: self.assertTrue(hasattr(model, 'syn1')) if j: self.assertTrue(hasattr(model, 'syn1neg')) self.assertTrue(hasattr(model, 'syn0_lockf')) model.delete_temporary_training_data(keep_doctags_vectors=False, keep_inference=False) self.assertTrue(len(model['human']), 10) self.assertTrue(model.wv.vocab['graph'].count, 5) self.assertTrue(not hasattr(model, 'syn1')) self.assertTrue(not hasattr(model, 'syn1neg')) self.assertTrue(not hasattr(model, 'syn0_lockf')) self.assertTrue(model.docvecs and not hasattr(model.docvecs, 'doctag_syn0')) self.assertTrue(model.docvecs and not hasattr(model.docvecs, 'doctag_syn0_lockf')) model = doc2vec.Doc2Vec( list_corpus, dm=1, dm_mean=1, size=24, window=4, hs=1, negative=0, alpha=0.05, min_count=2, iter=20 ) model.delete_temporary_training_data(keep_doctags_vectors=True, keep_inference=True) self.assertTrue(model.docvecs and hasattr(model.docvecs, 'doctag_syn0')) self.assertTrue(hasattr(model, 'syn1')) self.model_sanity(model, keep_training=False) model = doc2vec.Doc2Vec( list_corpus, dm=1, dm_mean=1, size=24, window=4, hs=0, negative=1, alpha=0.05, min_count=2, iter=20 ) model.delete_temporary_training_data(keep_doctags_vectors=True, keep_inference=True) self.model_sanity(model, keep_training=False) self.assertTrue(hasattr(model, 'syn1neg')) def test_word_vec_non_writeable(self): model = keyedvectors.KeyedVectors.load_word2vec_format(datapath('word2vec_pre_kv_c')) vector = model['says'] with self.assertRaises(ValueError): vector *= 0 @log_capture() def testBuildVocabWarning(self, l): """Test if logger warning is raised on non-ideal input to a doc2vec model""" raw_sentences = ['human', 'machine'] sentences = [doc2vec.TaggedDocument(words, [i]) for i, words in enumerate(raw_sentences)] model = doc2vec.Doc2Vec() model.build_vocab(sentences) warning = "Each 'words' should be a list of words (usually unicode strings)." self.assertTrue(warning in str(l)) @log_capture() def testTrainWarning(self, l): """Test if warning is raised if alpha rises during subsequent calls to train()""" raw_sentences = [['human'], ['graph', 'trees']] sentences = [doc2vec.TaggedDocument(words, [i]) for i, words in enumerate(raw_sentences)] model = doc2vec.Doc2Vec(alpha=0.025, min_alpha=0.025, min_count=1, workers=8, size=5) model.build_vocab(sentences) for epoch in range(10): model.train(sentences, total_examples=model.corpus_count, epochs=model.iter) model.alpha -= 0.002 model.min_alpha = model.alpha if epoch == 5: model.alpha += 0.05 warning = "Effective 'alpha' higher than previous training cycles" self.assertTrue(warning in str(l)) def testLoadOnClassError(self): """Test if exception is raised when loading doc2vec model on instance""" self.assertRaises(AttributeError, load_on_instance) # endclass TestDoc2VecModel if not hasattr(TestDoc2VecModel, 'assertLess'): # workaround for python 2.6 def assertLess(self, a, b, msg=None): self.assertTrue(a < b, msg="%s is not less than %s" % (a, b)) setattr(TestDoc2VecModel, 'assertLess', assertLess) # following code is useful for reproducing paragraph-vectors paper sentiment experiments class ConcatenatedDoc2Vec(object): """ Concatenation of multiple models for reproducing the Paragraph Vectors paper. Models must have exactly-matching vocabulary and document IDs. (Models should be trained separately; this wrapper just returns concatenated results.) """ def __init__(self, models): self.models = models if hasattr(models[0], 'docvecs'): self.docvecs = ConcatenatedDocvecs([model.docvecs for model in models]) def __getitem__(self, token): return np.concatenate([model[token] for model in self.models]) def __str__(self): """Abbreviated name, built from submodels' names""" return "+".join([str(model) for model in self.models]) @property def epochs(self): return self.models[0].epochs def infer_vector(self, document, alpha=None, min_alpha=None, epochs=None, steps=None): return np.concatenate([model.infer_vector(document, alpha, min_alpha, epochs, steps) for model in self.models]) def train(self, *ignore_args, **ignore_kwargs): pass # train subcomponents individually class ConcatenatedDocvecs(object): def __init__(self, models): self.models = models def __getitem__(self, token): return np.concatenate([model[token] for model in self.models]) SentimentDocument = namedtuple('SentimentDocument', 'words tags split sentiment') def read_su_sentiment_rotten_tomatoes(dirname, lowercase=True): """ Read and return documents from the Stanford Sentiment Treebank corpus (Rotten Tomatoes reviews), from http://nlp.Stanford.edu/sentiment/ Initialize the corpus from a given directory, where http://nlp.stanford.edu/~socherr/stanfordSentimentTreebank.zip has been expanded. It's not too big, so compose entirely into memory. """ logging.info("loading corpus from %s", dirname) # many mangled chars in sentences (datasetSentences.txt) chars_sst_mangled = [ 'à', 'á', 'â', 'ã', 'æ', 'ç', 'è', 'é', 'í', 'í', 'ï', 'ñ', 'ó', 'ô', 'ö', 'û', 'ü' ] sentence_fixups = [(char.encode('utf-8').decode('latin1'), char) for char in chars_sst_mangled] # more junk, and the replace necessary for sentence-phrase consistency sentence_fixups.extend([ ('Â', ''), ('\xa0', ' '), ('-LRB-', '('), ('-RRB-', ')'), ]) # only this junk in phrases (dictionary.txt) phrase_fixups = [('\xa0', ' ')] # sentence_id and split are only positive for the full sentences # read sentences to temp {sentence -> (id,split) dict, to correlate with dictionary.txt info_by_sentence = {} with open(os.path.join(dirname, 'datasetSentences.txt'), 'r') as sentences: with open(os.path.join(dirname, 'datasetSplit.txt'), 'r') as splits: next(sentences) # legend next(splits) # legend for sentence_line, split_line in izip(sentences, splits): (id, text) = sentence_line.split('\t') id = int(id) text = text.rstrip() for junk, fix in sentence_fixups: text = text.replace(junk, fix) (id2, split_i) = split_line.split(',') assert id == int(id2) if text not in info_by_sentence: # discard duplicates info_by_sentence[text] = (id, int(split_i)) # read all phrase text phrases = [None] * 239232 # known size of phrases with open(os.path.join(dirname, 'dictionary.txt'), 'r') as phrase_lines: for line in phrase_lines: (text, id) = line.split('|') for junk, fix in phrase_fixups: text = text.replace(junk, fix) phrases[int(id)] = text.rstrip() # for 1st pass just string SentimentPhrase = namedtuple('SentimentPhrase', SentimentDocument._fields + ('sentence_id',)) # add sentiment labels, correlate with sentences with open(os.path.join(dirname, 'sentiment_labels.txt'), 'r') as sentiments: next(sentiments) # legend for line in sentiments: (id, sentiment) = line.split('|') id = int(id) sentiment = float(sentiment) text = phrases[id] words = text.split() if lowercase: words = [word.lower() for word in words] (sentence_id, split_i) = info_by_sentence.get(text, (None, 0)) split = [None, 'train', 'test', 'dev'][split_i] phrases[id] = SentimentPhrase(words, [id], split, sentiment, sentence_id) assert len([phrase for phrase in phrases if phrase.sentence_id is not None]) == len(info_by_sentence) # all # counts don't match 8544, 2210, 1101 because 13 TRAIN and 1 DEV sentences are duplicates assert len([phrase for phrase in phrases if phrase.split == 'train']) == 8531 # 'train' assert len([phrase for phrase in phrases if phrase.split == 'test']) == 2210 # 'test' assert len([phrase for phrase in phrases if phrase.split == 'dev']) == 1100 # 'dev' logging.info( "loaded corpus with %i sentences and %i phrases from %s", len(info_by_sentence), len(phrases), dirname ) return phrases if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) logging.info("using optimization %s", doc2vec.FAST_VERSION) unittest.main()