#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2010 Radim Rehurek # Copyright (C) 2012 Lars Buitinck # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ USAGE: %(program)s WIKI_XML_DUMP OUTPUT_PREFIX [VOCABULARY_SIZE] Convert articles from a Wikipedia dump to (sparse) vectors. The input is a bz2-compressed dump of Wikipedia articles, in XML format. This actually creates three files: * `OUTPUT_PREFIX_wordids.txt`: mapping between words and their integer ids * `OUTPUT_PREFIX_bow.mm`: bag-of-words (word counts) representation, in Matrix Matrix format * `OUTPUT_PREFIX_tfidf.mm`: TF-IDF representation * `OUTPUT_PREFIX.tfidf_model`: TF-IDF model dump The output Matrix Market files can then be compressed (e.g., by bzip2) to save disk space; gensim's corpus iterators can work with compressed input, too. `VOCABULARY_SIZE` controls how many of the most frequent words to keep (after removing tokens that appear in more than 10%% of all documents). Defaults to 100,000. If you have the `pattern` package installed, this script will use a fancy lemmatization to get a lemma of each token (instead of plain alphabetic tokenizer). The package is available at https://github.com/clips/pattern . Example: python -m gensim.scripts.make_wikicorpus ~/gensim/results/enwiki-latest-pages-articles.xml.bz2 ~/gensim/results/wiki """ import logging import os.path import sys from gensim.corpora import Dictionary, HashDictionary, MmCorpus, WikiCorpus from gensim.models import TfidfModel # Wiki is first scanned for all distinct word types (~7M). The types that # appear in more than 10% of articles are removed and from the rest, the # DEFAULT_DICT_SIZE most frequent types are kept. DEFAULT_DICT_SIZE = 100000 if __name__ == '__main__': program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s') logging.root.setLevel(level=logging.INFO) logger.info("running %s", ' '.join(sys.argv)) # check and process input arguments if len(sys.argv) < 3: print(globals()['__doc__'] % locals()) sys.exit(1) inp, outp = sys.argv[1:3] if not os.path.isdir(os.path.dirname(outp)): raise SystemExit("Error: The output directory does not exist. Create the directory and try again.") if len(sys.argv) > 3: keep_words = int(sys.argv[3]) else: keep_words = DEFAULT_DICT_SIZE online = 'online' in program lemmatize = 'lemma' in program debug = 'nodebug' not in program if online: dictionary = HashDictionary(id_range=keep_words, debug=debug) dictionary.allow_update = True # start collecting document frequencies wiki = WikiCorpus(inp, lemmatize=lemmatize, dictionary=dictionary) # ~4h on my macbook pro without lemmatization, 3.1m articles (august 2012) MmCorpus.serialize(outp + '_bow.mm', wiki, progress_cnt=10000) # with HashDictionary, the token->id mapping is only fully instantiated now, after `serialize` dictionary.filter_extremes(no_below=20, no_above=0.1, keep_n=DEFAULT_DICT_SIZE) dictionary.save_as_text(outp + '_wordids.txt.bz2') wiki.save(outp + '_corpus.pkl.bz2') dictionary.allow_update = False else: wiki = WikiCorpus(inp, lemmatize=lemmatize) # takes about 9h on a macbook pro, for 3.5m articles (june 2011) # only keep the most frequent words (out of total ~8.2m unique tokens) wiki.dictionary.filter_extremes(no_below=20, no_above=0.1, keep_n=DEFAULT_DICT_SIZE) # save dictionary and bag-of-words (term-document frequency matrix) MmCorpus.serialize(outp + '_bow.mm', wiki, progress_cnt=10000) # another ~9h wiki.dictionary.save_as_text(outp + '_wordids.txt.bz2') # load back the id->word mapping directly from file # this seems to save more memory, compared to keeping the wiki.dictionary object from above dictionary = Dictionary.load_from_text(outp + '_wordids.txt.bz2') del wiki # initialize corpus reader and word->id mapping mm = MmCorpus(outp + '_bow.mm') # build tfidf, ~50min tfidf = TfidfModel(mm, id2word=dictionary, normalize=True) tfidf.save(outp + '.tfidf_model') # save tfidf vectors in matrix market format # ~4h; result file is 15GB! bzip2'ed down to 4.5GB MmCorpus.serialize(outp + '_tfidf.mm', tfidf[mm], progress_cnt=10000) logger.info("finished running %s", program)