laywerrobot/lib/python3.6/site-packages/tensorflow/python/ops/distributions/beta.py

391 lines
14 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Beta distribution class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import random_ops
from tensorflow.python.ops.distributions import distribution
from tensorflow.python.ops.distributions import kullback_leibler
from tensorflow.python.ops.distributions import util as distribution_util
from tensorflow.python.util.tf_export import tf_export
__all__ = [
"Beta",
"BetaWithSoftplusConcentration",
]
_beta_sample_note = """Note: `x` must have dtype `self.dtype` and be in
`[0, 1].` It must have a shape compatible with `self.batch_shape()`."""
@tf_export("distributions.Beta")
class Beta(distribution.Distribution):
"""Beta distribution.
The Beta distribution is defined over the `(0, 1)` interval using parameters
`concentration1` (aka "alpha") and `concentration0` (aka "beta").
#### Mathematical Details
The probability density function (pdf) is,
```none
pdf(x; alpha, beta) = x**(alpha - 1) (1 - x)**(beta - 1) / Z
Z = Gamma(alpha) Gamma(beta) / Gamma(alpha + beta)
```
where:
* `concentration1 = alpha`,
* `concentration0 = beta`,
* `Z` is the normalization constant, and,
* `Gamma` is the [gamma function](
https://en.wikipedia.org/wiki/Gamma_function).
The concentration parameters represent mean total counts of a `1` or a `0`,
i.e.,
```none
concentration1 = alpha = mean * total_concentration
concentration0 = beta = (1. - mean) * total_concentration
```
where `mean` in `(0, 1)` and `total_concentration` is a positive real number
representing a mean `total_count = concentration1 + concentration0`.
Distribution parameters are automatically broadcast in all functions; see
examples for details.
Warning: The samples can be zero due to finite precision.
This happens more often when some of the concentrations are very small.
Make sure to round the samples to `np.finfo(dtype).tiny` before computing the
density.
Samples of this distribution are reparameterized (pathwise differentiable).
The derivatives are computed using the approach described in the paper
[Michael Figurnov, Shakir Mohamed, Andriy Mnih.
Implicit Reparameterization Gradients, 2018](https://arxiv.org/abs/1805.08498)
#### Examples
```python
# Create a batch of three Beta distributions.
alpha = [1, 2, 3]
beta = [1, 2, 3]
dist = tf.distributions.Beta(alpha, beta)
dist.sample([4, 5]) # Shape [4, 5, 3]
# `x` has three batch entries, each with two samples.
x = [[.1, .4, .5],
[.2, .3, .5]]
# Calculate the probability of each pair of samples under the corresponding
# distribution in `dist`.
dist.prob(x) # Shape [2, 3]
```
```python
# Create batch_shape=[2, 3] via parameter broadcast:
alpha = [[1.], [2]] # Shape [2, 1]
beta = [3., 4, 5] # Shape [3]
dist = tf.distributions.Beta(alpha, beta)
# alpha broadcast as: [[1., 1, 1,],
# [2, 2, 2]]
# beta broadcast as: [[3., 4, 5],
# [3, 4, 5]]
# batch_Shape [2, 3]
dist.sample([4, 5]) # Shape [4, 5, 2, 3]
x = [.2, .3, .5]
# x will be broadcast as [[.2, .3, .5],
# [.2, .3, .5]],
# thus matching batch_shape [2, 3].
dist.prob(x) # Shape [2, 3]
```
Compute the gradients of samples w.r.t. the parameters:
```python
alpha = tf.constant(1.0)
beta = tf.constant(2.0)
dist = tf.distributions.Beta(alpha, beta)
samples = dist.sample(5) # Shape [5]
loss = tf.reduce_mean(tf.square(samples)) # Arbitrary loss function
# Unbiased stochastic gradients of the loss function
grads = tf.gradients(loss, [alpha, beta])
```
"""
def __init__(self,
concentration1=None,
concentration0=None,
validate_args=False,
allow_nan_stats=True,
name="Beta"):
"""Initialize a batch of Beta distributions.
Args:
concentration1: Positive floating-point `Tensor` indicating mean
number of successes; aka "alpha". Implies `self.dtype` and
`self.batch_shape`, i.e.,
`concentration1.shape = [N1, N2, ..., Nm] = self.batch_shape`.
concentration0: Positive floating-point `Tensor` indicating mean
number of failures; aka "beta". Otherwise has same semantics as
`concentration1`.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
(e.g., mean, mode, variance) use the value "`NaN`" to indicate the
result is undefined. When `False`, an exception is raised if one or
more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
"""
parameters = dict(locals())
with ops.name_scope(name, values=[concentration1, concentration0]) as name:
self._concentration1 = self._maybe_assert_valid_concentration(
ops.convert_to_tensor(concentration1, name="concentration1"),
validate_args)
self._concentration0 = self._maybe_assert_valid_concentration(
ops.convert_to_tensor(concentration0, name="concentration0"),
validate_args)
check_ops.assert_same_float_dtype([
self._concentration1, self._concentration0])
self._total_concentration = self._concentration1 + self._concentration0
super(Beta, self).__init__(
dtype=self._total_concentration.dtype,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
reparameterization_type=distribution.FULLY_REPARAMETERIZED,
parameters=parameters,
graph_parents=[self._concentration1,
self._concentration0,
self._total_concentration],
name=name)
@staticmethod
def _param_shapes(sample_shape):
return dict(zip(
["concentration1", "concentration0"],
[ops.convert_to_tensor(sample_shape, dtype=dtypes.int32)] * 2))
@property
def concentration1(self):
"""Concentration parameter associated with a `1` outcome."""
return self._concentration1
@property
def concentration0(self):
"""Concentration parameter associated with a `0` outcome."""
return self._concentration0
@property
def total_concentration(self):
"""Sum of concentration parameters."""
return self._total_concentration
def _batch_shape_tensor(self):
return array_ops.shape(self.total_concentration)
def _batch_shape(self):
return self.total_concentration.get_shape()
def _event_shape_tensor(self):
return constant_op.constant([], dtype=dtypes.int32)
def _event_shape(self):
return tensor_shape.scalar()
def _sample_n(self, n, seed=None):
expanded_concentration1 = array_ops.ones_like(
self.total_concentration, dtype=self.dtype) * self.concentration1
expanded_concentration0 = array_ops.ones_like(
self.total_concentration, dtype=self.dtype) * self.concentration0
gamma1_sample = random_ops.random_gamma(
shape=[n],
alpha=expanded_concentration1,
dtype=self.dtype,
seed=seed)
gamma2_sample = random_ops.random_gamma(
shape=[n],
alpha=expanded_concentration0,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, "beta"))
beta_sample = gamma1_sample / (gamma1_sample + gamma2_sample)
return beta_sample
@distribution_util.AppendDocstring(_beta_sample_note)
def _log_prob(self, x):
return self._log_unnormalized_prob(x) - self._log_normalization()
@distribution_util.AppendDocstring(_beta_sample_note)
def _prob(self, x):
return math_ops.exp(self._log_prob(x))
@distribution_util.AppendDocstring(_beta_sample_note)
def _log_cdf(self, x):
return math_ops.log(self._cdf(x))
@distribution_util.AppendDocstring(_beta_sample_note)
def _cdf(self, x):
return math_ops.betainc(self.concentration1, self.concentration0, x)
def _log_unnormalized_prob(self, x):
x = self._maybe_assert_valid_sample(x)
return ((self.concentration1 - 1.) * math_ops.log(x)
+ (self.concentration0 - 1.) * math_ops.log1p(-x))
def _log_normalization(self):
return (math_ops.lgamma(self.concentration1)
+ math_ops.lgamma(self.concentration0)
- math_ops.lgamma(self.total_concentration))
def _entropy(self):
return (
self._log_normalization()
- (self.concentration1 - 1.) * math_ops.digamma(self.concentration1)
- (self.concentration0 - 1.) * math_ops.digamma(self.concentration0)
+ ((self.total_concentration - 2.) *
math_ops.digamma(self.total_concentration)))
def _mean(self):
return self._concentration1 / self._total_concentration
def _variance(self):
return self._mean() * (1. - self._mean()) / (1. + self.total_concentration)
@distribution_util.AppendDocstring(
"""Note: The mode is undefined when `concentration1 <= 1` or
`concentration0 <= 1`. If `self.allow_nan_stats` is `True`, `NaN`
is used for undefined modes. If `self.allow_nan_stats` is `False` an
exception is raised when one or more modes are undefined.""")
def _mode(self):
mode = (self.concentration1 - 1.) / (self.total_concentration - 2.)
if self.allow_nan_stats:
nan = array_ops.fill(
self.batch_shape_tensor(),
np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
name="nan")
is_defined = math_ops.logical_and(self.concentration1 > 1.,
self.concentration0 > 1.)
return array_ops.where(is_defined, mode, nan)
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones([], dtype=self.dtype),
self.concentration1,
message="Mode undefined for concentration1 <= 1."),
check_ops.assert_less(
array_ops.ones([], dtype=self.dtype),
self.concentration0,
message="Mode undefined for concentration0 <= 1.")
], mode)
def _maybe_assert_valid_concentration(self, concentration, validate_args):
"""Checks the validity of a concentration parameter."""
if not validate_args:
return concentration
return control_flow_ops.with_dependencies([
check_ops.assert_positive(
concentration,
message="Concentration parameter must be positive."),
], concentration)
def _maybe_assert_valid_sample(self, x):
"""Checks the validity of a sample."""
if not self.validate_args:
return x
return control_flow_ops.with_dependencies([
check_ops.assert_positive(x, message="sample must be positive"),
check_ops.assert_less(
x,
array_ops.ones([], self.dtype),
message="sample must be less than `1`."),
], x)
class BetaWithSoftplusConcentration(Beta):
"""Beta with softplus transform of `concentration1` and `concentration0`."""
def __init__(self,
concentration1,
concentration0,
validate_args=False,
allow_nan_stats=True,
name="BetaWithSoftplusConcentration"):
parameters = dict(locals())
with ops.name_scope(name, values=[concentration1,
concentration0]) as name:
super(BetaWithSoftplusConcentration, self).__init__(
concentration1=nn.softplus(concentration1,
name="softplus_concentration1"),
concentration0=nn.softplus(concentration0,
name="softplus_concentration0"),
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
name=name)
self._parameters = parameters
@kullback_leibler.RegisterKL(Beta, Beta)
def _kl_beta_beta(d1, d2, name=None):
"""Calculate the batchwise KL divergence KL(d1 || d2) with d1 and d2 Beta.
Args:
d1: instance of a Beta distribution object.
d2: instance of a Beta distribution object.
name: (optional) Name to use for created operations.
default is "kl_beta_beta".
Returns:
Batchwise KL(d1 || d2)
"""
def delta(fn, is_property=True):
fn1 = getattr(d1, fn)
fn2 = getattr(d2, fn)
return (fn2 - fn1) if is_property else (fn2() - fn1())
with ops.name_scope(name, "kl_beta_beta", values=[
d1.concentration1,
d1.concentration0,
d1.total_concentration,
d2.concentration1,
d2.concentration0,
d2.total_concentration,
]):
return (delta("_log_normalization", is_property=False)
- math_ops.digamma(d1.concentration1) * delta("concentration1")
- math_ops.digamma(d1.concentration0) * delta("concentration0")
+ (math_ops.digamma(d1.total_concentration)
* delta("total_concentration")))