326 lines
12 KiB
Python
326 lines
12 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
"""Operations for clipping (gradient, weight) tensors to min/max values."""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import collections
|
||
|
|
||
|
import six
|
||
|
|
||
|
from tensorflow.python.framework import constant_op
|
||
|
from tensorflow.python.framework import dtypes
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.ops import array_ops
|
||
|
from tensorflow.python.ops import gen_array_ops
|
||
|
from tensorflow.python.ops import gen_nn_ops
|
||
|
from tensorflow.python.ops import math_ops
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
@tf_export("clip_by_value")
|
||
|
def clip_by_value(t, clip_value_min, clip_value_max,
|
||
|
name=None):
|
||
|
"""Clips tensor values to a specified min and max.
|
||
|
|
||
|
Given a tensor `t`, this operation returns a tensor of the same type and
|
||
|
shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`.
|
||
|
Any values less than `clip_value_min` are set to `clip_value_min`. Any values
|
||
|
greater than `clip_value_max` are set to `clip_value_max`.
|
||
|
|
||
|
Args:
|
||
|
t: A `Tensor`.
|
||
|
clip_value_min: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape
|
||
|
as `t`. The minimum value to clip by.
|
||
|
clip_value_max: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape
|
||
|
as `t`. The maximum value to clip by.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A clipped `Tensor`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the clip tensors would trigger array broadcasting
|
||
|
that would make the returned tensor larger than the input.
|
||
|
"""
|
||
|
with ops.name_scope(name, "clip_by_value",
|
||
|
[t, clip_value_min, clip_value_max]) as name:
|
||
|
t = ops.convert_to_tensor(t, name="t")
|
||
|
|
||
|
# Go through list of tensors, for each value in each tensor clip
|
||
|
t_min = math_ops.minimum(t, clip_value_max)
|
||
|
# Assert that the shape is compatible with the initial shape,
|
||
|
# to prevent unintentional broadcasting.
|
||
|
_ = t.shape.merge_with(t_min.shape)
|
||
|
|
||
|
t_max = math_ops.maximum(t_min, clip_value_min, name=name)
|
||
|
_ = t.shape.merge_with(t_max.shape)
|
||
|
|
||
|
return t_max
|
||
|
# TODO(scottzhu): switch to use new implmentation in 2 weeks.
|
||
|
# return gen_math_ops.clip_by_value(
|
||
|
# t, clip_value_min, clip_value_max, name=name)
|
||
|
|
||
|
|
||
|
# TODO(scottzhu): switch to use new implmentation in 2 weeks.
|
||
|
# @ops.RegisterGradient("ClipByValue")
|
||
|
def _clip_by_value_grad(op, grad):
|
||
|
"""Returns grad of clip_by_value."""
|
||
|
x = op.inputs[0]
|
||
|
y = op.inputs[1]
|
||
|
z = op.inputs[2]
|
||
|
gdtype = grad.dtype
|
||
|
sx = array_ops.shape(x)
|
||
|
sy = array_ops.shape(y)
|
||
|
sz = array_ops.shape(z)
|
||
|
gradshape = array_ops.shape(grad)
|
||
|
zeros = array_ops.zeros(gradshape, gdtype)
|
||
|
xymask = math_ops.less(x, y)
|
||
|
xzmask = math_ops.greater(x, z)
|
||
|
rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy)
|
||
|
rx, rz = gen_array_ops.broadcast_gradient_args(sx, sz)
|
||
|
xgrad = array_ops.where(math_ops.logical_or(xymask, xzmask), zeros, grad)
|
||
|
ygrad = array_ops.where(xymask, grad, zeros)
|
||
|
zgrad = array_ops.where(xzmask, grad, zeros)
|
||
|
gx = array_ops.reshape(math_ops.reduce_sum(xgrad, rx), sx)
|
||
|
gy = array_ops.reshape(math_ops.reduce_sum(ygrad, ry), sy)
|
||
|
gz = array_ops.reshape(math_ops.reduce_sum(zgrad, rz), sz)
|
||
|
return (gx, gy, gz)
|
||
|
|
||
|
|
||
|
@tf_export("clip_by_norm")
|
||
|
def clip_by_norm(t, clip_norm, axes=None, name=None):
|
||
|
"""Clips tensor values to a maximum L2-norm.
|
||
|
|
||
|
Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
|
||
|
normalizes `t` so that its L2-norm is less than or equal to `clip_norm`,
|
||
|
along the dimensions given in `axes`. Specifically, in the default case
|
||
|
where all dimensions are used for calculation, if the L2-norm of `t` is
|
||
|
already less than or equal to `clip_norm`, then `t` is not modified. If
|
||
|
the L2-norm is greater than `clip_norm`, then this operation returns a
|
||
|
tensor of the same type and shape as `t` with its values set to:
|
||
|
|
||
|
`t * clip_norm / l2norm(t)`
|
||
|
|
||
|
In this case, the L2-norm of the output tensor is `clip_norm`.
|
||
|
|
||
|
As another example, if `t` is a matrix and `axes == [1]`, then each row
|
||
|
of the output will have L2-norm equal to `clip_norm`. If `axes == [0]`
|
||
|
instead, each column of the output will be clipped.
|
||
|
|
||
|
This operation is typically used to clip gradients before applying them with
|
||
|
an optimizer.
|
||
|
|
||
|
Args:
|
||
|
t: A `Tensor`.
|
||
|
clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
|
||
|
axes: A 1-D (vector) `Tensor` of type int32 containing the dimensions
|
||
|
to use for computing the L2-norm. If `None` (the default), uses all
|
||
|
dimensions.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A clipped `Tensor`.
|
||
|
"""
|
||
|
with ops.name_scope(name, "clip_by_norm", [t, clip_norm]) as name:
|
||
|
t = ops.convert_to_tensor(t, name="t")
|
||
|
|
||
|
# Calculate L2-norm, clip elements by ratio of clip_norm to L2-norm
|
||
|
l2norm = math_ops.sqrt(math_ops.reduce_sum(t * t, axes, keepdims=True))
|
||
|
intermediate = t * clip_norm
|
||
|
# Assert that the shape is compatible with the initial shape,
|
||
|
# to prevent unintentional broadcasting.
|
||
|
_ = t.shape.merge_with(intermediate.shape)
|
||
|
tclip = array_ops.identity(
|
||
|
intermediate / math_ops.maximum(l2norm, clip_norm), name=name)
|
||
|
|
||
|
return tclip
|
||
|
|
||
|
|
||
|
@tf_export("global_norm")
|
||
|
def global_norm(t_list, name=None):
|
||
|
"""Computes the global norm of multiple tensors.
|
||
|
|
||
|
Given a tuple or list of tensors `t_list`, this operation returns the
|
||
|
global norm of the elements in all tensors in `t_list`. The global norm is
|
||
|
computed as:
|
||
|
|
||
|
`global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))`
|
||
|
|
||
|
Any entries in `t_list` that are of type None are ignored.
|
||
|
|
||
|
Args:
|
||
|
t_list: A tuple or list of mixed `Tensors`, `IndexedSlices`, or None.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A 0-D (scalar) `Tensor` of type `float`.
|
||
|
|
||
|
Raises:
|
||
|
TypeError: If `t_list` is not a sequence.
|
||
|
"""
|
||
|
if (not isinstance(t_list, collections.Sequence)
|
||
|
or isinstance(t_list, six.string_types)):
|
||
|
raise TypeError("t_list should be a sequence")
|
||
|
t_list = list(t_list)
|
||
|
with ops.name_scope(name, "global_norm", t_list) as name:
|
||
|
values = [
|
||
|
ops.convert_to_tensor(
|
||
|
t.values if isinstance(t, ops.IndexedSlices) else t,
|
||
|
name="t_%d" % i)
|
||
|
if t is not None else t
|
||
|
for i, t in enumerate(t_list)]
|
||
|
half_squared_norms = []
|
||
|
for v in values:
|
||
|
if v is not None:
|
||
|
with ops.colocate_with(v):
|
||
|
half_squared_norms.append(gen_nn_ops.l2_loss(v))
|
||
|
|
||
|
half_squared_norm = math_ops.reduce_sum(array_ops.stack(half_squared_norms))
|
||
|
|
||
|
norm = math_ops.sqrt(
|
||
|
half_squared_norm *
|
||
|
constant_op.constant(2.0, dtype=half_squared_norm.dtype),
|
||
|
name="global_norm")
|
||
|
|
||
|
return norm
|
||
|
|
||
|
|
||
|
@tf_export("clip_by_global_norm")
|
||
|
def clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None):
|
||
|
"""Clips values of multiple tensors by the ratio of the sum of their norms.
|
||
|
|
||
|
Given a tuple or list of tensors `t_list`, and a clipping ratio `clip_norm`,
|
||
|
this operation returns a list of clipped tensors `list_clipped`
|
||
|
and the global norm (`global_norm`) of all tensors in `t_list`. Optionally,
|
||
|
if you've already computed the global norm for `t_list`, you can specify
|
||
|
the global norm with `use_norm`.
|
||
|
|
||
|
To perform the clipping, the values `t_list[i]` are set to:
|
||
|
|
||
|
t_list[i] * clip_norm / max(global_norm, clip_norm)
|
||
|
|
||
|
where:
|
||
|
|
||
|
global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))
|
||
|
|
||
|
If `clip_norm > global_norm` then the entries in `t_list` remain as they are,
|
||
|
otherwise they're all shrunk by the global ratio.
|
||
|
|
||
|
Any of the entries of `t_list` that are of type `None` are ignored.
|
||
|
|
||
|
This is the correct way to perform gradient clipping (for example, see
|
||
|
[Pascanu et al., 2012](http://arxiv.org/abs/1211.5063)
|
||
|
([pdf](http://arxiv.org/pdf/1211.5063.pdf))).
|
||
|
|
||
|
However, it is slower than `clip_by_norm()` because all the parameters must be
|
||
|
ready before the clipping operation can be performed.
|
||
|
|
||
|
Args:
|
||
|
t_list: A tuple or list of mixed `Tensors`, `IndexedSlices`, or None.
|
||
|
clip_norm: A 0-D (scalar) `Tensor` > 0. The clipping ratio.
|
||
|
use_norm: A 0-D (scalar) `Tensor` of type `float` (optional). The global
|
||
|
norm to use. If not provided, `global_norm()` is used to compute the norm.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
list_clipped: A list of `Tensors` of the same type as `list_t`.
|
||
|
global_norm: A 0-D (scalar) `Tensor` representing the global norm.
|
||
|
|
||
|
Raises:
|
||
|
TypeError: If `t_list` is not a sequence.
|
||
|
"""
|
||
|
if (not isinstance(t_list, collections.Sequence)
|
||
|
or isinstance(t_list, six.string_types)):
|
||
|
raise TypeError("t_list should be a sequence")
|
||
|
t_list = list(t_list)
|
||
|
if use_norm is None:
|
||
|
use_norm = global_norm(t_list, name)
|
||
|
|
||
|
with ops.name_scope(name, "clip_by_global_norm",
|
||
|
t_list + [clip_norm]) as name:
|
||
|
# Calculate L2-norm, clip elements by ratio of clip_norm to L2-norm
|
||
|
scale = clip_norm * math_ops.minimum(
|
||
|
1.0 / use_norm,
|
||
|
constant_op.constant(1.0, dtype=use_norm.dtype) / clip_norm)
|
||
|
|
||
|
values = [
|
||
|
ops.convert_to_tensor(
|
||
|
t.values if isinstance(t, ops.IndexedSlices) else t,
|
||
|
name="t_%d" % i)
|
||
|
if t is not None else t
|
||
|
for i, t in enumerate(t_list)]
|
||
|
|
||
|
values_clipped = []
|
||
|
for i, v in enumerate(values):
|
||
|
if v is None:
|
||
|
values_clipped.append(None)
|
||
|
else:
|
||
|
with ops.colocate_with(v):
|
||
|
values_clipped.append(
|
||
|
array_ops.identity(v * scale, name="%s_%d" % (name, i)))
|
||
|
|
||
|
list_clipped = [
|
||
|
ops.IndexedSlices(c_v, t.indices, t.dense_shape)
|
||
|
if isinstance(t, ops.IndexedSlices)
|
||
|
else c_v
|
||
|
for (c_v, t) in zip(values_clipped, t_list)]
|
||
|
|
||
|
return list_clipped, use_norm
|
||
|
|
||
|
|
||
|
@tf_export("clip_by_average_norm")
|
||
|
def clip_by_average_norm(t, clip_norm, name=None):
|
||
|
"""Clips tensor values to a maximum average L2-norm.
|
||
|
|
||
|
Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
|
||
|
normalizes `t` so that its average L2-norm is less than or equal to
|
||
|
`clip_norm`. Specifically, if the average L2-norm is already less than or
|
||
|
equal to `clip_norm`, then `t` is not modified. If the average L2-norm is
|
||
|
greater than `clip_norm`, then this operation returns a tensor of the same
|
||
|
type and shape as `t` with its values set to:
|
||
|
|
||
|
`t * clip_norm / l2norm_avg(t)`
|
||
|
|
||
|
In this case, the average L2-norm of the output tensor is `clip_norm`.
|
||
|
|
||
|
This operation is typically used to clip gradients before applying them with
|
||
|
an optimizer.
|
||
|
|
||
|
Args:
|
||
|
t: A `Tensor`.
|
||
|
clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A clipped `Tensor`.
|
||
|
"""
|
||
|
with ops.name_scope(name, "clip_by_average_norm", [t, clip_norm]) as name:
|
||
|
t = ops.convert_to_tensor(t, name="t")
|
||
|
|
||
|
# Calculate L2-norm per element, clip elements by ratio of clip_norm to
|
||
|
# L2-norm per element
|
||
|
n_element = math_ops.cast(array_ops.size(t), dtypes.float32)
|
||
|
l2norm_inv = math_ops.rsqrt(
|
||
|
math_ops.reduce_sum(t * t, math_ops.range(array_ops.rank(t))))
|
||
|
tclip = array_ops.identity(
|
||
|
t * clip_norm * math_ops.minimum(
|
||
|
l2norm_inv * n_element, constant_op.constant(1.0) / clip_norm),
|
||
|
name=name)
|
||
|
|
||
|
return tclip
|