2711 lines
93 KiB
Python
2711 lines
93 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
# Tests for this file live in python/kernel_tests/array_ops_test.py
|
||
|
"""Support for manipulating tensors.
|
||
|
|
||
|
See the @{$python/array_ops} guide.
|
||
|
"""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import sys
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from tensorflow.python.eager import context
|
||
|
from tensorflow.python.framework import common_shapes
|
||
|
from tensorflow.python.framework import constant_op
|
||
|
from tensorflow.python.framework import dtypes
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.framework import sparse_tensor
|
||
|
from tensorflow.python.framework import tensor_shape
|
||
|
from tensorflow.python.framework import tensor_util
|
||
|
# 'Constant' gets imported in the module 'array_ops'.
|
||
|
from tensorflow.python.framework.constant_op import constant
|
||
|
from tensorflow.python.ops import gen_array_ops
|
||
|
from tensorflow.python.ops import gen_math_ops
|
||
|
# go/tf-wildcard-import
|
||
|
# pylint: disable=wildcard-import
|
||
|
from tensorflow.python.ops.gen_array_ops import *
|
||
|
from tensorflow.python.ops.gen_array_ops import reverse_v2 as reverse # pylint: disable=unused-import
|
||
|
from tensorflow.python.util import deprecation
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
# pylint: enable=wildcard-import
|
||
|
|
||
|
# Used for slicing to specify a new 1 size dimension
|
||
|
newaxis = None
|
||
|
tf_export("newaxis").export_constant(__name__, "newaxis")
|
||
|
|
||
|
# We override the 'slice' for the "slice" op, so we keep python's
|
||
|
# existing 'slice' for later use in this module.
|
||
|
_BaseSlice = slice
|
||
|
|
||
|
|
||
|
@tf_export("identity")
|
||
|
def identity(input, name=None): # pylint: disable=redefined-builtin
|
||
|
r"""Return a tensor with the same shape and contents as input.
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `input`.
|
||
|
"""
|
||
|
if context.executing_eagerly():
|
||
|
input = ops.convert_to_tensor(input)
|
||
|
in_device = input.device
|
||
|
# TODO(ashankar): Does 'identity' need to invoke execution callbacks?
|
||
|
context_device = context.context().device_name
|
||
|
if not context_device:
|
||
|
context_device = "/job:localhost/replica:0/task:0/device:CPU:0"
|
||
|
if context_device != in_device:
|
||
|
return input._copy() # pylint: disable=protected-access
|
||
|
return input
|
||
|
else:
|
||
|
return gen_array_ops.identity(input, name=name)
|
||
|
|
||
|
|
||
|
# pylint: disable=redefined-builtin,protected-access
|
||
|
@tf_export("expand_dims")
|
||
|
@deprecation.deprecated_args(None, "Use the `axis` argument instead", "dim")
|
||
|
def expand_dims(input, axis=None, name=None, dim=None):
|
||
|
"""Inserts a dimension of 1 into a tensor's shape.
|
||
|
|
||
|
Given a tensor `input`, this operation inserts a dimension of 1 at the
|
||
|
dimension index `axis` of `input`'s shape. The dimension index `axis` starts
|
||
|
at zero; if you specify a negative number for `axis` it is counted backward
|
||
|
from the end.
|
||
|
|
||
|
This operation is useful if you want to add a batch dimension to a single
|
||
|
element. For example, if you have a single image of shape `[height, width,
|
||
|
channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`,
|
||
|
which will make the shape `[1, height, width, channels]`.
|
||
|
|
||
|
Other examples:
|
||
|
|
||
|
```python
|
||
|
# 't' is a tensor of shape [2]
|
||
|
tf.shape(tf.expand_dims(t, 0)) # [1, 2]
|
||
|
tf.shape(tf.expand_dims(t, 1)) # [2, 1]
|
||
|
tf.shape(tf.expand_dims(t, -1)) # [2, 1]
|
||
|
|
||
|
# 't2' is a tensor of shape [2, 3, 5]
|
||
|
tf.shape(tf.expand_dims(t2, 0)) # [1, 2, 3, 5]
|
||
|
tf.shape(tf.expand_dims(t2, 2)) # [2, 3, 1, 5]
|
||
|
tf.shape(tf.expand_dims(t2, 3)) # [2, 3, 5, 1]
|
||
|
```
|
||
|
|
||
|
This operation requires that:
|
||
|
|
||
|
`-1-input.dims() <= dim <= input.dims()`
|
||
|
|
||
|
This operation is related to `squeeze()`, which removes dimensions of
|
||
|
size 1.
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor`.
|
||
|
axis: 0-D (scalar). Specifies the dimension index at which to
|
||
|
expand the shape of `input`. Must be in the range
|
||
|
`[-rank(input) - 1, rank(input)]`.
|
||
|
name: The name of the output `Tensor`.
|
||
|
dim: 0-D (scalar). Equivalent to `axis`, to be deprecated.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` with the same data as `input`, but its shape has an additional
|
||
|
dimension of size 1 added.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if both `dim` and `axis` are specified.
|
||
|
"""
|
||
|
axis = deprecation.deprecated_argument_lookup("axis", axis, "dim", dim)
|
||
|
return gen_array_ops.expand_dims(input, axis, name)
|
||
|
|
||
|
|
||
|
# pylint: enable=redefined-builtin,protected-access
|
||
|
|
||
|
|
||
|
# Aliases for some automatically-generated names.
|
||
|
# pylint: disable=protected-access
|
||
|
@deprecation.deprecated(
|
||
|
"2016-11-30",
|
||
|
"This op will be removed after the deprecation date. "
|
||
|
"Please switch to tf.setdiff1d().")
|
||
|
def listdiff(x, y, out_idx=None, name=None):
|
||
|
return gen_array_ops.list_diff(x, y, out_idx, name)
|
||
|
|
||
|
|
||
|
listdiff.__doc__ = gen_array_ops.list_diff.__doc__ + "\n" + listdiff.__doc__
|
||
|
|
||
|
# pylint: enable=protected-access
|
||
|
|
||
|
|
||
|
# pylint: disable=undefined-variable
|
||
|
@tf_export("setdiff1d")
|
||
|
def setdiff1d(x, y, index_dtype=dtypes.int32, name=None):
|
||
|
return gen_array_ops.list_diff(x, y, index_dtype, name)
|
||
|
|
||
|
|
||
|
setdiff1d.__doc__ = gen_array_ops.list_diff.__doc__
|
||
|
|
||
|
|
||
|
@tf_export("broadcast_dynamic_shape")
|
||
|
def broadcast_dynamic_shape(shape_x, shape_y):
|
||
|
"""Returns the broadcasted dynamic shape between `shape_x` and `shape_y`.
|
||
|
|
||
|
Args:
|
||
|
shape_x: A rank 1 integer `Tensor`, representing the shape of x.
|
||
|
shape_y: A rank 1 integer `Tensor`, representing the shape of y.
|
||
|
|
||
|
Returns:
|
||
|
A rank 1 integer `Tensor` representing the broadcasted shape.
|
||
|
"""
|
||
|
return gen_array_ops.broadcast_args(shape_x, shape_y)
|
||
|
|
||
|
|
||
|
@tf_export("broadcast_static_shape")
|
||
|
def broadcast_static_shape(shape_x, shape_y):
|
||
|
"""Returns the broadcasted static shape between `shape_x` and `shape_y`.
|
||
|
|
||
|
Args:
|
||
|
shape_x: A `TensorShape`
|
||
|
shape_y: A `TensorShape`
|
||
|
|
||
|
Returns:
|
||
|
A `TensorShape` representing the broadcasted shape.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the two shapes can not be broadcasted.
|
||
|
"""
|
||
|
return common_shapes.broadcast_shape(shape_x, shape_y)
|
||
|
|
||
|
|
||
|
@tf_export("shape")
|
||
|
def shape(input, name=None, out_type=dtypes.int32):
|
||
|
# pylint: disable=redefined-builtin
|
||
|
"""Returns the shape of a tensor.
|
||
|
|
||
|
This operation returns a 1-D integer tensor representing the shape of `input`.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
|
||
|
tf.shape(t) # [2, 2, 3]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` or `SparseTensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
out_type: (Optional) The specified output type of the operation
|
||
|
(`int32` or `int64`). Defaults to `tf.int32`.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `out_type`.
|
||
|
"""
|
||
|
return shape_internal(input, name, optimize=True, out_type=out_type)
|
||
|
|
||
|
|
||
|
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
|
||
|
# pylint: disable=redefined-builtin
|
||
|
"""Returns the shape of a tensor.
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` or `SparseTensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
optimize: if true, encode the shape as a constant when possible.
|
||
|
out_type: (Optional) The specified output type of the operation
|
||
|
(`int32` or `int64`). Defaults to tf.int32.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `out_type`.
|
||
|
|
||
|
"""
|
||
|
with ops.name_scope(name, "Shape", [input]) as name:
|
||
|
if isinstance(input, (sparse_tensor.SparseTensor,
|
||
|
sparse_tensor.SparseTensorValue)):
|
||
|
return gen_math_ops.cast(input.dense_shape, out_type)
|
||
|
else:
|
||
|
if not context.executing_eagerly():
|
||
|
input_tensor = ops.convert_to_tensor(input)
|
||
|
input_shape = input_tensor.get_shape()
|
||
|
if optimize and input_shape.is_fully_defined():
|
||
|
return constant(input_shape.as_list(), out_type, name=name)
|
||
|
return gen_array_ops.shape(input, name=name, out_type=out_type)
|
||
|
|
||
|
|
||
|
@tf_export("shape_n")
|
||
|
def shape_n(input, out_type=dtypes.int32, name=None):
|
||
|
# pylint: disable=redefined-builtin
|
||
|
"""Returns shape of tensors.
|
||
|
|
||
|
Args:
|
||
|
input: A list of at least 1 `Tensor` object with the same type.
|
||
|
out_type: The specified output type of the operation
|
||
|
(`int32` or `int64`). Defaults to `tf.int32`(optional).
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A list with the same length as `input` of `Tensor` objects with
|
||
|
type `out_type`.
|
||
|
"""
|
||
|
|
||
|
return gen_array_ops.shape_n(input, out_type=out_type, name=name)
|
||
|
|
||
|
|
||
|
@tf_export("size")
|
||
|
def size(input, name=None, out_type=dtypes.int32):
|
||
|
# pylint: disable=redefined-builtin
|
||
|
"""Returns the size of a tensor.
|
||
|
|
||
|
Returns a 0-D `Tensor` representing the number of elements in `input`
|
||
|
of type `out_type`. Defaults to tf.int32.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
|
||
|
tf.size(t) # 12
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` or `SparseTensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
out_type: (Optional) The specified non-quantized numeric output type
|
||
|
of the operation. Defaults to `tf.int32`.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `out_type`. Defaults to `tf.int32`.
|
||
|
|
||
|
@compatibility(numpy)
|
||
|
Equivalent to np.size()
|
||
|
@end_compatibility
|
||
|
"""
|
||
|
return size_internal(input, name, optimize=True, out_type=out_type)
|
||
|
|
||
|
|
||
|
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
|
||
|
# pylint: disable=redefined-builtin,protected-access
|
||
|
"""Returns the size of a tensor.
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` or `SparseTensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
optimize: if true, encode the size as a constant when possible.
|
||
|
out_type: (Optional) The specified non-quantized numeric output type
|
||
|
of the operation. Defaults to `tf.int32`.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `out_type`. Defaults to `tf.int32`.
|
||
|
"""
|
||
|
if context.executing_eagerly() and not isinstance(
|
||
|
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
|
||
|
input = ops.convert_to_tensor(input)
|
||
|
np_out_type = out_type.as_numpy_dtype
|
||
|
num_elements = np.prod(input._shape_tuple(), dtype=np_out_type) # pylint: disable=protected-acces:
|
||
|
return ops.convert_to_tensor(num_elements, dtype=out_type)
|
||
|
with ops.name_scope(name, "Size", [input]) as name:
|
||
|
if isinstance(input, (sparse_tensor.SparseTensor,
|
||
|
sparse_tensor.SparseTensorValue)):
|
||
|
return gen_math_ops.prod(
|
||
|
gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
|
||
|
else:
|
||
|
input_tensor = ops.convert_to_tensor(input)
|
||
|
input_shape = input_tensor.get_shape()
|
||
|
if optimize:
|
||
|
if input_shape.is_fully_defined():
|
||
|
return constant(input_shape.num_elements(), out_type, name=name)
|
||
|
if input_shape.dims and any(dim == 0 for dim in input_shape.dims):
|
||
|
return constant(0, out_type, name=name)
|
||
|
return gen_array_ops.size(input, name=name, out_type=out_type)
|
||
|
|
||
|
|
||
|
@tf_export("rank")
|
||
|
def rank(input, name=None):
|
||
|
# pylint: disable=redefined-builtin
|
||
|
"""Returns the rank of a tensor.
|
||
|
|
||
|
Returns a 0-D `int32` `Tensor` representing the rank of `input`.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
# shape of tensor 't' is [2, 2, 3]
|
||
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
|
||
|
tf.rank(t) # 3
|
||
|
```
|
||
|
|
||
|
**Note**: The rank of a tensor is not the same as the rank of a matrix. The
|
||
|
rank of a tensor is the number of indices required to uniquely select each
|
||
|
element of the tensor. Rank is also known as "order", "degree", or "ndims."
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` or `SparseTensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `int32`.
|
||
|
|
||
|
@compatibility(numpy)
|
||
|
Equivalent to np.ndim
|
||
|
@end_compatibility
|
||
|
"""
|
||
|
return rank_internal(input, name, optimize=True)
|
||
|
|
||
|
|
||
|
def rank_internal(input, name=None, optimize=True):
|
||
|
# pylint: disable=redefined-builtin
|
||
|
"""Returns the rank of a tensor.
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor` or `SparseTensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
optimize: if true, encode the rank as a constant when possible.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` of type `int32`.
|
||
|
"""
|
||
|
with ops.name_scope(name, "Rank", [input]) as name:
|
||
|
if isinstance(input, (sparse_tensor.SparseTensor,
|
||
|
sparse_tensor.SparseTensorValue)):
|
||
|
return gen_array_ops.size(input.dense_shape, name=name)
|
||
|
else:
|
||
|
input_tensor = ops.convert_to_tensor(input)
|
||
|
input_shape = input_tensor.get_shape()
|
||
|
if optimize and input_shape.ndims is not None:
|
||
|
return constant(input_shape.ndims, dtypes.int32, name=name)
|
||
|
return gen_array_ops.rank(input, name=name)
|
||
|
|
||
|
|
||
|
def _slice_helper(tensor, slice_spec, var=None):
|
||
|
"""Overload for Tensor.__getitem__.
|
||
|
|
||
|
This operation extracts the specified region from the tensor.
|
||
|
The notation is similar to NumPy with the restriction that
|
||
|
currently only support basic indexing. That means that
|
||
|
using a non-scalar tensor as input is not currently allowed.
|
||
|
|
||
|
Some useful examples:
|
||
|
|
||
|
```python
|
||
|
# strip leading and trailing 2 elements
|
||
|
foo = tf.constant([1,2,3,4,5,6])
|
||
|
print(foo[2:-2].eval()) # => [3,4]
|
||
|
|
||
|
# skip every row and reverse every column
|
||
|
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
|
||
|
print(foo[::2,::-1].eval()) # => [[3,2,1], [9,8,7]]
|
||
|
|
||
|
# Use scalar tensors as indices on both dimensions
|
||
|
print(foo[tf.constant(0), tf.constant(2)].eval()) # => 3
|
||
|
|
||
|
# Insert another dimension
|
||
|
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
|
||
|
print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
|
||
|
print(foo[:, tf.newaxis, :].eval()) # => [[[1,2,3]], [[4,5,6]], [[7,8,9]]]
|
||
|
print(foo[:, :, tf.newaxis].eval()) # => [[[1],[2],[3]], [[4],[5],[6]],
|
||
|
[[7],[8],[9]]]
|
||
|
|
||
|
# Ellipses (3 equivalent operations)
|
||
|
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
|
||
|
print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
|
||
|
print(foo[tf.newaxis, ...].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
|
||
|
print(foo[tf.newaxis].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
|
||
|
```
|
||
|
|
||
|
Notes:
|
||
|
- `tf.newaxis` is `None` as in NumPy.
|
||
|
- An implicit ellipsis is placed at the end of the `slice_spec`
|
||
|
- NumPy advanced indexing is currently not supported.
|
||
|
|
||
|
Args:
|
||
|
tensor: An ops.Tensor object.
|
||
|
slice_spec: The arguments to Tensor.__getitem__.
|
||
|
var: In the case of variable slice assignment, the Variable
|
||
|
object to slice (i.e. tensor is the read-only view of this
|
||
|
variable).
|
||
|
|
||
|
Returns:
|
||
|
The appropriate slice of "tensor", based on "slice_spec".
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If a slice range is negative size.
|
||
|
TypeError: If the slice indices aren't int, slice, or Ellipsis.
|
||
|
"""
|
||
|
|
||
|
if not isinstance(slice_spec, (list, tuple)):
|
||
|
slice_spec = [slice_spec]
|
||
|
|
||
|
begin, end, strides = [], [], []
|
||
|
index = 0
|
||
|
|
||
|
new_axis_mask, shrink_axis_mask = 0, 0
|
||
|
begin_mask, end_mask = 0, 0
|
||
|
ellipsis_mask = 0
|
||
|
for s in slice_spec:
|
||
|
if isinstance(s, _BaseSlice):
|
||
|
# python doesn't always use None when constructing ranges
|
||
|
# for example a[:] gives slice(None,sys.maxsize,None)
|
||
|
# whereas a[::1] gives slice(None,None,None)
|
||
|
if s.start is not None and s.start is not sys.maxsize:
|
||
|
begin.append(s.start)
|
||
|
else:
|
||
|
begin.append(0)
|
||
|
begin_mask |= (1 << index)
|
||
|
if s.stop is not None and s.stop != sys.maxsize:
|
||
|
end.append(s.stop)
|
||
|
else:
|
||
|
end.append(0)
|
||
|
end_mask |= (1 << index)
|
||
|
if s.step is not None:
|
||
|
strides.append(s.step)
|
||
|
else:
|
||
|
strides.append(1)
|
||
|
elif s is Ellipsis:
|
||
|
begin.append(0)
|
||
|
end.append(0)
|
||
|
strides.append(1)
|
||
|
ellipsis_mask |= (1 << index)
|
||
|
elif s is newaxis:
|
||
|
begin.append(0)
|
||
|
end.append(0)
|
||
|
strides.append(1)
|
||
|
new_axis_mask |= (1 << index)
|
||
|
else:
|
||
|
begin.append(s)
|
||
|
end.append(s + 1)
|
||
|
strides.append(1)
|
||
|
shrink_axis_mask |= (1 << index)
|
||
|
index += 1
|
||
|
|
||
|
# stack possibly involves no tensors, so we must use op_scope correct graph.
|
||
|
with ops.name_scope(None, "strided_slice",
|
||
|
[tensor] + begin + end + strides) as name:
|
||
|
if begin:
|
||
|
packed_begin, packed_end, packed_strides = (stack(begin), stack(end),
|
||
|
stack(strides))
|
||
|
if (packed_begin.dtype == dtypes.int64 or
|
||
|
packed_end.dtype == dtypes.int64 or
|
||
|
packed_strides.dtype == dtypes.int64):
|
||
|
if packed_begin.dtype != dtypes.int64:
|
||
|
packed_begin = gen_math_ops.cast(packed_begin, dtypes.int64)
|
||
|
if packed_end.dtype != dtypes.int64:
|
||
|
packed_end = gen_math_ops.cast(packed_end, dtypes.int64)
|
||
|
if packed_strides.dtype != dtypes.int64:
|
||
|
packed_strides = gen_math_ops.cast(packed_strides, dtypes.int64)
|
||
|
else:
|
||
|
var_empty = constant([], dtype=dtypes.int32)
|
||
|
packed_begin = packed_end = packed_strides = var_empty
|
||
|
return strided_slice(
|
||
|
tensor,
|
||
|
packed_begin,
|
||
|
packed_end,
|
||
|
packed_strides,
|
||
|
begin_mask=begin_mask,
|
||
|
end_mask=end_mask,
|
||
|
shrink_axis_mask=shrink_axis_mask,
|
||
|
new_axis_mask=new_axis_mask,
|
||
|
ellipsis_mask=ellipsis_mask,
|
||
|
var=var,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
# pylint: disable=undefined-variable,protected-access,redefined-outer-name
|
||
|
@tf_export("slice")
|
||
|
def slice(input_, begin, size, name=None):
|
||
|
# pylint: disable=redefined-builtin
|
||
|
"""Extracts a slice from a tensor.
|
||
|
|
||
|
This operation extracts a slice of size `size` from a tensor `input` starting
|
||
|
at the location specified by `begin`. The slice `size` is represented as a
|
||
|
tensor shape, where `size[i]` is the number of elements of the 'i'th dimension
|
||
|
of `input` that you want to slice. The starting location (`begin`) for the
|
||
|
slice is represented as an offset in each dimension of `input`. In other
|
||
|
words, `begin[i]` is the offset into the 'i'th dimension of `input` that you
|
||
|
want to slice from.
|
||
|
|
||
|
Note that @{tf.Tensor.__getitem__} is typically a more pythonic way to
|
||
|
perform slices, as it allows you to write `foo[3:7, :-2]` instead of
|
||
|
`tf.slice(foo, [3, 0], [4, foo.get_shape()[1]-2])`.
|
||
|
|
||
|
`begin` is zero-based; `size` is one-based. If `size[i]` is -1,
|
||
|
all remaining elements in dimension i are included in the
|
||
|
slice. In other words, this is equivalent to setting:
|
||
|
|
||
|
`size[i] = input.dim_size(i) - begin[i]`
|
||
|
|
||
|
This operation requires that:
|
||
|
|
||
|
`0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]`
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]],
|
||
|
[[3, 3, 3], [4, 4, 4]],
|
||
|
[[5, 5, 5], [6, 6, 6]]])
|
||
|
tf.slice(t, [1, 0, 0], [1, 1, 3]) # [[[3, 3, 3]]]
|
||
|
tf.slice(t, [1, 0, 0], [1, 2, 3]) # [[[3, 3, 3],
|
||
|
# [4, 4, 4]]]
|
||
|
tf.slice(t, [1, 0, 0], [2, 1, 3]) # [[[3, 3, 3]],
|
||
|
# [[5, 5, 5]]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
input_: A `Tensor`.
|
||
|
begin: An `int32` or `int64` `Tensor`.
|
||
|
size: An `int32` or `int64` `Tensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` the same type as `input`.
|
||
|
"""
|
||
|
return gen_array_ops._slice(input_, begin, size, name=name)
|
||
|
|
||
|
|
||
|
# pylint: disable=invalid-name
|
||
|
@tf_export("strided_slice")
|
||
|
def strided_slice(input_,
|
||
|
begin,
|
||
|
end,
|
||
|
strides=None,
|
||
|
begin_mask=0,
|
||
|
end_mask=0,
|
||
|
ellipsis_mask=0,
|
||
|
new_axis_mask=0,
|
||
|
shrink_axis_mask=0,
|
||
|
var=None,
|
||
|
name=None):
|
||
|
"""Extracts a strided slice of a tensor (generalized python array indexing).
|
||
|
|
||
|
**Instead of calling this op directly most users will want to use the
|
||
|
NumPy-style slicing syntax (e.g. `tensor[..., 3:4:-1, tf.newaxis, 3]`), which
|
||
|
is supported via @{tf.Tensor.__getitem__} and @{tf.Variable.__getitem__}.**
|
||
|
The interface of this op is a low-level encoding of the slicing syntax.
|
||
|
|
||
|
Roughly speaking, this op extracts a slice of size `(end-begin)/stride`
|
||
|
from the given `input_` tensor. Starting at the location specified by `begin`
|
||
|
the slice continues by adding `stride` to the index until all dimensions are
|
||
|
not less than `end`.
|
||
|
Note that a stride can be negative, which causes a reverse slice.
|
||
|
|
||
|
Given a Python slice `input[spec0, spec1, ..., specn]`,
|
||
|
this function will be called as follows.
|
||
|
|
||
|
`begin`, `end`, and `strides` will be vectors of length n.
|
||
|
n in general is not equal to the rank of the `input_` tensor.
|
||
|
|
||
|
In each mask field (`begin_mask`, `end_mask`, `ellipsis_mask`,
|
||
|
`new_axis_mask`, `shrink_axis_mask`) the ith bit will correspond to
|
||
|
the ith spec.
|
||
|
|
||
|
If the ith bit of `begin_mask` is set, `begin[i]` is ignored and
|
||
|
the fullest possible range in that dimension is used instead.
|
||
|
`end_mask` works analogously, except with the end range.
|
||
|
|
||
|
`foo[5:,:,:3]` on a 7x8x9 tensor is equivalent to `foo[5:7,0:8,0:3]`.
|
||
|
`foo[::-1]` reverses a tensor with shape 8.
|
||
|
|
||
|
If the ith bit of `ellipsis_mask` is set, as many unspecified dimensions
|
||
|
as needed will be inserted between other dimensions. Only one
|
||
|
non-zero bit is allowed in `ellipsis_mask`.
|
||
|
|
||
|
For example `foo[3:5,...,4:5]` on a shape 10x3x3x10 tensor is
|
||
|
equivalent to `foo[3:5,:,:,4:5]` and
|
||
|
`foo[3:5,...]` is equivalent to `foo[3:5,:,:,:]`.
|
||
|
|
||
|
If the ith bit of `new_axis_mask` is set, then `begin`,
|
||
|
`end`, and `stride` are ignored and a new length 1 dimension is
|
||
|
added at this point in the output tensor.
|
||
|
|
||
|
For example,
|
||
|
`foo[:4, tf.newaxis, :2]` would produce a shape `(4, 1, 2)` tensor.
|
||
|
|
||
|
If the ith bit of `shrink_axis_mask` is set, it implies that the ith
|
||
|
specification shrinks the dimensionality by 1. `begin[i]`, `end[i]` and
|
||
|
`strides[i]` must imply a slice of size 1 in the dimension. For example in
|
||
|
Python one might do `foo[:, 3, :]` which would result in
|
||
|
`shrink_axis_mask` equal to 2.
|
||
|
|
||
|
|
||
|
NOTE: `begin` and `end` are zero-indexed.
|
||
|
`strides` entries must be non-zero.
|
||
|
|
||
|
|
||
|
```python
|
||
|
t = tf.constant([[[1, 1, 1], [2, 2, 2]],
|
||
|
[[3, 3, 3], [4, 4, 4]],
|
||
|
[[5, 5, 5], [6, 6, 6]]])
|
||
|
tf.strided_slice(t, [1, 0, 0], [2, 1, 3], [1, 1, 1]) # [[[3, 3, 3]]]
|
||
|
tf.strided_slice(t, [1, 0, 0], [2, 2, 3], [1, 1, 1]) # [[[3, 3, 3],
|
||
|
# [4, 4, 4]]]
|
||
|
tf.strided_slice(t, [1, -1, 0], [2, -3, 3], [1, -1, 1]) # [[[4, 4, 4],
|
||
|
# [3, 3, 3]]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
input_: A `Tensor`.
|
||
|
begin: An `int32` or `int64` `Tensor`.
|
||
|
end: An `int32` or `int64` `Tensor`.
|
||
|
strides: An `int32` or `int64` `Tensor`.
|
||
|
begin_mask: An `int32` mask.
|
||
|
end_mask: An `int32` mask.
|
||
|
ellipsis_mask: An `int32` mask.
|
||
|
new_axis_mask: An `int32` mask.
|
||
|
shrink_axis_mask: An `int32` mask.
|
||
|
var: The variable corresponding to `input_` or None
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` the same type as `input`.
|
||
|
"""
|
||
|
|
||
|
if strides is None:
|
||
|
strides = ones_like(begin)
|
||
|
|
||
|
op = gen_array_ops.strided_slice(
|
||
|
input=input_,
|
||
|
begin=begin,
|
||
|
end=end,
|
||
|
strides=strides,
|
||
|
name=name,
|
||
|
begin_mask=begin_mask,
|
||
|
end_mask=end_mask,
|
||
|
ellipsis_mask=ellipsis_mask,
|
||
|
new_axis_mask=new_axis_mask,
|
||
|
shrink_axis_mask=shrink_axis_mask)
|
||
|
|
||
|
parent_name = name
|
||
|
|
||
|
def assign(val, name=None):
|
||
|
"""Closure that holds all the arguments to create an assignment."""
|
||
|
|
||
|
if var is None:
|
||
|
raise ValueError("Sliced assignment is only supported for variables")
|
||
|
|
||
|
if name is None:
|
||
|
name = parent_name + "_assign"
|
||
|
|
||
|
return var._strided_slice_assign(
|
||
|
begin=begin,
|
||
|
end=end,
|
||
|
strides=strides,
|
||
|
value=val,
|
||
|
name=name,
|
||
|
begin_mask=begin_mask,
|
||
|
end_mask=end_mask,
|
||
|
ellipsis_mask=ellipsis_mask,
|
||
|
new_axis_mask=new_axis_mask,
|
||
|
shrink_axis_mask=shrink_axis_mask)
|
||
|
|
||
|
if not context.executing_eagerly():
|
||
|
# TODO(apassos) In eager mode assignment will be done by overriding
|
||
|
# __setitem__ instead.
|
||
|
op.assign = assign
|
||
|
return op
|
||
|
|
||
|
|
||
|
def _SliceHelperVar(var, slice_spec):
|
||
|
"""Creates a slice helper object given a variable.
|
||
|
|
||
|
This allows creating a sub-tensor from part of the current contents
|
||
|
of a variable. See @{tf.Tensor.__getitem__} for detailed examples
|
||
|
of slicing.
|
||
|
|
||
|
This function in addition also allows assignment to a sliced range.
|
||
|
This is similar to `__setitem__` functionality in Python. However,
|
||
|
the syntax is different so that the user can capture the assignment
|
||
|
operation for grouping or passing to `sess.run()`.
|
||
|
For example,
|
||
|
|
||
|
```python
|
||
|
import tensorflow as tf
|
||
|
A = tf.Variable([[1,2,3], [4,5,6], [7,8,9]], dtype=tf.float32)
|
||
|
with tf.Session() as sess:
|
||
|
sess.run(tf.global_variables_initializer())
|
||
|
print(sess.run(A[:2, :2])) # => [[1,2], [4,5]]
|
||
|
|
||
|
op = A[:2,:2].assign(22. * tf.ones((2, 2)))
|
||
|
print(sess.run(op)) # => [[22, 22, 3], [22, 22, 6], [7,8,9]]
|
||
|
```
|
||
|
|
||
|
Note that assignments currently do not support NumPy broadcasting
|
||
|
semantics.
|
||
|
|
||
|
Args:
|
||
|
var: An `ops.Variable` object.
|
||
|
slice_spec: The arguments to `Tensor.__getitem__`.
|
||
|
|
||
|
Returns:
|
||
|
The appropriate slice of "tensor", based on "slice_spec".
|
||
|
As an operator. The operator also has a `assign()` method
|
||
|
that can be used to generate an assignment operator.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If a slice range is negative size.
|
||
|
TypeError: If the slice indices aren't int, slice, or Ellipsis.
|
||
|
|
||
|
"""
|
||
|
|
||
|
return _slice_helper(var._AsTensor(), slice_spec, var)
|
||
|
|
||
|
|
||
|
ops.Tensor._override_operator("__getitem__", _slice_helper)
|
||
|
|
||
|
|
||
|
@tf_export("parallel_stack")
|
||
|
def parallel_stack(values, name="parallel_stack"):
|
||
|
"""Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor in parallel.
|
||
|
|
||
|
Requires that the shape of inputs be known at graph construction time.
|
||
|
|
||
|
Packs the list of tensors in `values` into a tensor with rank one higher than
|
||
|
each tensor in `values`, by packing them along the first dimension.
|
||
|
Given a list of length `N` of tensors of shape `(A, B, C)`; the `output`
|
||
|
tensor will have the shape `(N, A, B, C)`.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
x = tf.constant([1, 4])
|
||
|
y = tf.constant([2, 5])
|
||
|
z = tf.constant([3, 6])
|
||
|
tf.parallel_stack([x, y, z]) # [[1, 4], [2, 5], [3, 6]]
|
||
|
```
|
||
|
|
||
|
The difference between `stack` and `parallel_stack` is that `stack` requires
|
||
|
all the inputs be computed before the operation will begin but doesn't require
|
||
|
that the input shapes be known during graph construction.
|
||
|
|
||
|
`parallel_stack` will copy pieces of the input into the output as they become
|
||
|
available, in some situations this can provide a performance benefit.
|
||
|
|
||
|
Unlike `stack`, `parallel_stack` does NOT support backpropagation.
|
||
|
|
||
|
This is the opposite of unstack. The numpy equivalent is
|
||
|
|
||
|
tf.parallel_stack([x, y, z]) = np.asarray([x, y, z])
|
||
|
|
||
|
Args:
|
||
|
values: A list of `Tensor` objects with the same shape and type.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
output: A stacked `Tensor` with the same type as `values`.
|
||
|
"""
|
||
|
with ops.name_scope(name):
|
||
|
value_t = ops.convert_to_tensor(values[0])
|
||
|
value_shape = ops.convert_to_tensor(value_t).get_shape()
|
||
|
|
||
|
output_shape = tensor_shape.TensorShape([len(values)])
|
||
|
output_shape = output_shape.concatenate(value_shape)
|
||
|
# expand_dims converts concat to stack.
|
||
|
return gen_array_ops.parallel_concat(
|
||
|
[expand_dims(value, 0) for value in values], shape=output_shape)
|
||
|
|
||
|
|
||
|
@tf_export("stack")
|
||
|
def stack(values, axis=0, name="stack"):
|
||
|
"""Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor.
|
||
|
|
||
|
Packs the list of tensors in `values` into a tensor with rank one higher than
|
||
|
each tensor in `values`, by packing them along the `axis` dimension.
|
||
|
Given a list of length `N` of tensors of shape `(A, B, C)`;
|
||
|
|
||
|
if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
|
||
|
if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`.
|
||
|
Etc.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
x = tf.constant([1, 4])
|
||
|
y = tf.constant([2, 5])
|
||
|
z = tf.constant([3, 6])
|
||
|
tf.stack([x, y, z]) # [[1, 4], [2, 5], [3, 6]] (Pack along first dim.)
|
||
|
tf.stack([x, y, z], axis=1) # [[1, 2, 3], [4, 5, 6]]
|
||
|
```
|
||
|
|
||
|
This is the opposite of unstack. The numpy equivalent is
|
||
|
|
||
|
```python
|
||
|
tf.stack([x, y, z]) = np.stack([x, y, z])
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
values: A list of `Tensor` objects with the same shape and type.
|
||
|
axis: An `int`. The axis to stack along. Defaults to the first dimension.
|
||
|
Negative values wrap around, so the valid range is `[-(R+1), R+1)`.
|
||
|
name: A name for this operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
output: A stacked `Tensor` with the same type as `values`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If `axis` is out of the range [-(R+1), R+1).
|
||
|
"""
|
||
|
if axis == 0:
|
||
|
try:
|
||
|
# If the input is a constant list, it can be converted to a constant op
|
||
|
return ops.convert_to_tensor(values, name=name)
|
||
|
except (TypeError, ValueError):
|
||
|
pass # Input list contains non-constant tensors
|
||
|
|
||
|
value_shape = ops.convert_to_tensor(values[0], name=name)._shape_tuple() # pylint: disable=protected-access
|
||
|
if value_shape is not None:
|
||
|
expanded_num_dims = len(value_shape) + 1
|
||
|
if axis < -expanded_num_dims or axis >= expanded_num_dims:
|
||
|
raise ValueError("axis = %d not in [%d, %d)" % (axis, -expanded_num_dims,
|
||
|
expanded_num_dims))
|
||
|
|
||
|
return gen_array_ops.pack(values, axis=axis, name=name)
|
||
|
|
||
|
|
||
|
# pylint: disable=invalid-name
|
||
|
def _autopacking_helper(list_or_tuple, dtype, name):
|
||
|
"""Converts the given list or tuple to a tensor by packing.
|
||
|
|
||
|
Args:
|
||
|
list_or_tuple: A (possibly nested) list or tuple containing a tensor.
|
||
|
dtype: The element type of the returned tensor.
|
||
|
name: A name for the returned tensor.
|
||
|
|
||
|
Returns:
|
||
|
A `tf.Tensor` with value equivalent to `list_or_tuple`.
|
||
|
"""
|
||
|
if context.executing_eagerly():
|
||
|
# NOTE: Fast path when all the items are tensors, this doesn't do any type
|
||
|
# checking.
|
||
|
if all(ops.is_dense_tensor_like(elem) for elem in list_or_tuple):
|
||
|
return gen_array_ops.pack(list_or_tuple, name=name)
|
||
|
must_pack = False
|
||
|
converted_elems = []
|
||
|
with ops.name_scope(name) as scope:
|
||
|
for i, elem in enumerate(list_or_tuple):
|
||
|
if ops.is_dense_tensor_like(elem):
|
||
|
if dtype is not None and elem.dtype.base_dtype != dtype:
|
||
|
raise TypeError("Cannot convert a list containing a tensor of dtype "
|
||
|
"%s to %s (Tensor is: %r)" % (elem.dtype, dtype,
|
||
|
elem))
|
||
|
converted_elems.append(elem)
|
||
|
must_pack = True
|
||
|
elif isinstance(elem, (list, tuple)):
|
||
|
converted_elem = _autopacking_helper(elem, dtype, str(i))
|
||
|
if ops.is_dense_tensor_like(converted_elem):
|
||
|
must_pack = True
|
||
|
converted_elems.append(converted_elem)
|
||
|
else:
|
||
|
converted_elems.append(elem)
|
||
|
if must_pack:
|
||
|
elems_as_tensors = []
|
||
|
for i, elem in enumerate(converted_elems):
|
||
|
if ops.is_dense_tensor_like(elem):
|
||
|
elems_as_tensors.append(elem)
|
||
|
else:
|
||
|
# NOTE(mrry): This is inefficient, but it enables us to
|
||
|
# handle the case where the list arguments are other
|
||
|
# convertible-to-tensor types, such as numpy arrays.
|
||
|
elems_as_tensors.append(
|
||
|
constant_op.constant(elem, dtype=dtype, name=str(i)))
|
||
|
return gen_array_ops.pack(elems_as_tensors, name=scope)
|
||
|
else:
|
||
|
return converted_elems
|
||
|
|
||
|
|
||
|
def _get_dtype_from_nested_lists(list_or_tuple):
|
||
|
"""Returns the dtype of any tensor-like object in `list_or_tuple`, if found.
|
||
|
|
||
|
Args:
|
||
|
list_or_tuple: A list or tuple representing an object that can be
|
||
|
converted to a `tf.Tensor`.
|
||
|
|
||
|
Returns:
|
||
|
The dtype of any tensor-like object in `list_or_tuple`, or `None` if no
|
||
|
such object exists.
|
||
|
"""
|
||
|
for elem in list_or_tuple:
|
||
|
if ops.is_dense_tensor_like(elem):
|
||
|
return elem.dtype.base_dtype
|
||
|
elif isinstance(elem, (list, tuple)):
|
||
|
maybe_dtype = _get_dtype_from_nested_lists(elem)
|
||
|
if maybe_dtype is not None:
|
||
|
return maybe_dtype
|
||
|
return None
|
||
|
|
||
|
|
||
|
def _autopacking_conversion_function(v, dtype=None, name=None, as_ref=False):
|
||
|
"""Tensor conversion function that automatically packs arguments."""
|
||
|
if as_ref:
|
||
|
return NotImplemented
|
||
|
inferred_dtype = _get_dtype_from_nested_lists(v)
|
||
|
if inferred_dtype is None:
|
||
|
# We did not find any tensor-like objects in the nested lists, so defer to
|
||
|
# other conversion functions.
|
||
|
return NotImplemented
|
||
|
if dtype is not None and dtype != inferred_dtype:
|
||
|
return NotImplemented
|
||
|
return _autopacking_helper(v, inferred_dtype, name or "packed")
|
||
|
|
||
|
|
||
|
# pylint: enable=invalid-name
|
||
|
|
||
|
# NOTE: Register this conversion function to run *before* one that
|
||
|
# assumes every element is a value.
|
||
|
ops.register_tensor_conversion_function((list, tuple),
|
||
|
_autopacking_conversion_function, 99)
|
||
|
|
||
|
|
||
|
@tf_export("unstack")
|
||
|
def unstack(value, num=None, axis=0, name="unstack"):
|
||
|
"""Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors.
|
||
|
|
||
|
Unpacks `num` tensors from `value` by chipping it along the `axis` dimension.
|
||
|
If `num` is not specified (the default), it is inferred from `value`'s shape.
|
||
|
If `value.shape[axis]` is not known, `ValueError` is raised.
|
||
|
|
||
|
For example, given a tensor of shape `(A, B, C, D)`;
|
||
|
|
||
|
If `axis == 0` then the i'th tensor in `output` is the slice
|
||
|
`value[i, :, :, :]` and each tensor in `output` will have shape `(B, C, D)`.
|
||
|
(Note that the dimension unpacked along is gone, unlike `split`).
|
||
|
|
||
|
If `axis == 1` then the i'th tensor in `output` is the slice
|
||
|
`value[:, i, :, :]` and each tensor in `output` will have shape `(A, C, D)`.
|
||
|
Etc.
|
||
|
|
||
|
This is the opposite of stack.
|
||
|
|
||
|
Args:
|
||
|
value: A rank `R > 0` `Tensor` to be unstacked.
|
||
|
num: An `int`. The length of the dimension `axis`. Automatically inferred
|
||
|
if `None` (the default).
|
||
|
axis: An `int`. The axis to unstack along. Defaults to the first
|
||
|
dimension. Negative values wrap around, so the valid range is `[-R, R)`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
The list of `Tensor` objects unstacked from `value`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If `num` is unspecified and cannot be inferred.
|
||
|
ValueError: If `axis` is out of the range [-R, R).
|
||
|
"""
|
||
|
if num is None:
|
||
|
value = ops.convert_to_tensor(value)
|
||
|
value_shape = value.get_shape()
|
||
|
if value_shape.ndims is not None:
|
||
|
if axis < -value_shape.ndims or axis >= value_shape.ndims:
|
||
|
raise ValueError("axis = %d not in [%d, %d)" %
|
||
|
(axis, -value_shape.ndims, value_shape.ndims))
|
||
|
num = value_shape[axis].value
|
||
|
if num is None:
|
||
|
raise ValueError("Cannot infer num from shape %s" % value_shape)
|
||
|
return gen_array_ops.unpack(value, num=num, axis=axis, name=name)
|
||
|
|
||
|
|
||
|
@tf_export("concat")
|
||
|
def concat(values, axis, name="concat"):
|
||
|
"""Concatenates tensors along one dimension.
|
||
|
|
||
|
Concatenates the list of tensors `values` along dimension `axis`. If
|
||
|
`values[i].shape = [D0, D1, ... Daxis(i), ...Dn]`, the concatenated
|
||
|
result has shape
|
||
|
|
||
|
[D0, D1, ... Raxis, ...Dn]
|
||
|
|
||
|
where
|
||
|
|
||
|
Raxis = sum(Daxis(i))
|
||
|
|
||
|
That is, the data from the input tensors is joined along the `axis`
|
||
|
dimension.
|
||
|
|
||
|
The number of dimensions of the input tensors must match, and all dimensions
|
||
|
except `axis` must be equal.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
t1 = [[1, 2, 3], [4, 5, 6]]
|
||
|
t2 = [[7, 8, 9], [10, 11, 12]]
|
||
|
tf.concat([t1, t2], 0) # [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
|
||
|
tf.concat([t1, t2], 1) # [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
|
||
|
|
||
|
# tensor t3 with shape [2, 3]
|
||
|
# tensor t4 with shape [2, 3]
|
||
|
tf.shape(tf.concat([t3, t4], 0)) # [4, 3]
|
||
|
tf.shape(tf.concat([t3, t4], 1)) # [2, 6]
|
||
|
```
|
||
|
As in Python, the `axis` could also be negative numbers. Negative `axis`
|
||
|
are interpreted as counting from the end of the rank, i.e.,
|
||
|
`axis + rank(values)`-th dimension.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]]
|
||
|
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
|
||
|
tf.concat([t1, t2], -1)
|
||
|
```
|
||
|
|
||
|
would produce:
|
||
|
|
||
|
```python
|
||
|
[[[ 1, 2, 7, 4],
|
||
|
[ 2, 3, 8, 4]],
|
||
|
|
||
|
[[ 4, 4, 2, 10],
|
||
|
[ 5, 3, 15, 11]]]
|
||
|
```
|
||
|
|
||
|
Note: If you are concatenating along a new axis consider using stack.
|
||
|
E.g.
|
||
|
|
||
|
```python
|
||
|
tf.concat([tf.expand_dims(t, axis) for t in tensors], axis)
|
||
|
```
|
||
|
|
||
|
can be rewritten as
|
||
|
|
||
|
```python
|
||
|
tf.stack(tensors, axis=axis)
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
values: A list of `Tensor` objects or a single `Tensor`.
|
||
|
axis: 0-D `int32` `Tensor`. Dimension along which to concatenate. Must be
|
||
|
in the range `[-rank(values), rank(values))`. As in Python, indexing
|
||
|
for axis is 0-based. Positive axis in the rage of
|
||
|
`[0, rank(values))` refers to `axis`-th dimension. And negative axis
|
||
|
refers to `axis + rank(values)`-th dimension.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` resulting from concatenation of the input tensors.
|
||
|
"""
|
||
|
if not isinstance(values, (list, tuple)):
|
||
|
values = [values]
|
||
|
# TODO(mrry): Change to return values?
|
||
|
if len(values) == 1: # Degenerate case of one tensor.
|
||
|
# Make a throwaway call to convert_to_tensor to make sure
|
||
|
# that axis is of the correct type, and make sure that
|
||
|
# the returned tensor is a scalar.
|
||
|
# TODO(keveman): Implement a standalone type and shape checker.
|
||
|
with ops.name_scope(name) as scope:
|
||
|
ops.convert_to_tensor(
|
||
|
axis, name="concat_dim",
|
||
|
dtype=dtypes.int32).get_shape().assert_is_compatible_with(
|
||
|
tensor_shape.scalar())
|
||
|
return identity(values[0], name=scope)
|
||
|
return gen_array_ops.concat_v2(values=values, axis=axis, name=name)
|
||
|
|
||
|
|
||
|
@tf_export("boolean_mask")
|
||
|
def boolean_mask(tensor, mask, name="boolean_mask", axis=None):
|
||
|
"""Apply boolean mask to tensor. Numpy equivalent is `tensor[mask]`.
|
||
|
|
||
|
```python
|
||
|
# 1-D example
|
||
|
tensor = [0, 1, 2, 3]
|
||
|
mask = np.array([True, False, True, False])
|
||
|
boolean_mask(tensor, mask) # [0, 2]
|
||
|
```
|
||
|
|
||
|
In general, `0 < dim(mask) = K <= dim(tensor)`, and `mask`'s shape must match
|
||
|
the first K dimensions of `tensor`'s shape. We then have:
|
||
|
`boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]`
|
||
|
where `(i1,...,iK)` is the ith `True` entry of `mask` (row-major order).
|
||
|
The `axis` could be used with `mask` to indicate the axis to mask from.
|
||
|
In that case, `axis + dim(mask) <= dim(tensor)` and `mask`'s shape must match
|
||
|
the first `axis + dim(mask)` dimensions of `tensor`'s shape.
|
||
|
|
||
|
Args:
|
||
|
tensor: N-D tensor.
|
||
|
mask: K-D boolean tensor, K <= N and K must be known statically.
|
||
|
name: A name for this operation (optional).
|
||
|
axis: A 0-D int Tensor representing the axis in `tensor` to mask from.
|
||
|
By default, axis is 0 which will mask from the first dimension. Otherwise
|
||
|
K + axis <= N.
|
||
|
|
||
|
Returns:
|
||
|
(N-K+1)-dimensional tensor populated by entries in `tensor` corresponding
|
||
|
to `True` values in `mask`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If shapes do not conform.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
# 2-D example
|
||
|
tensor = [[1, 2], [3, 4], [5, 6]]
|
||
|
mask = np.array([True, False, True])
|
||
|
boolean_mask(tensor, mask) # [[1, 2], [5, 6]]
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def _apply_mask_1d(reshaped_tensor, mask, axis=None):
|
||
|
"""Mask tensor along dimension 0 with a 1-D mask."""
|
||
|
indices = squeeze(where(mask), axis=[1])
|
||
|
return gather(reshaped_tensor, indices, axis=axis)
|
||
|
|
||
|
with ops.name_scope(name, values=[tensor, mask]):
|
||
|
tensor = ops.convert_to_tensor(tensor, name="tensor")
|
||
|
mask = ops.convert_to_tensor(mask, name="mask")
|
||
|
|
||
|
shape_mask = mask.get_shape()
|
||
|
ndims_mask = shape_mask.ndims
|
||
|
shape_tensor = tensor.get_shape()
|
||
|
if ndims_mask == 0:
|
||
|
raise ValueError("mask cannot be scalar.")
|
||
|
if ndims_mask is None:
|
||
|
raise ValueError(
|
||
|
"Number of mask dimensions must be specified, even if some dimensions"
|
||
|
" are None. E.g. shape=[None] is ok, but shape=None is not.")
|
||
|
axis = 0 if axis is None else axis
|
||
|
shape_tensor[axis:axis + ndims_mask].assert_is_compatible_with(shape_mask)
|
||
|
|
||
|
leading_size = gen_math_ops.prod(shape(tensor)[axis:axis + ndims_mask], [0])
|
||
|
tensor = reshape(tensor,
|
||
|
concat([
|
||
|
shape(tensor)[:axis], [leading_size],
|
||
|
shape(tensor)[axis + ndims_mask:]
|
||
|
], 0))
|
||
|
first_dim = shape_tensor[axis:axis + ndims_mask].num_elements()
|
||
|
tensor.set_shape(
|
||
|
tensor_shape.as_shape(shape_tensor[:axis]).concatenate([first_dim])
|
||
|
.concatenate(shape_tensor[axis + ndims_mask:]))
|
||
|
|
||
|
mask = reshape(mask, [-1])
|
||
|
return _apply_mask_1d(tensor, mask, axis)
|
||
|
|
||
|
|
||
|
@tf_export("sparse_mask")
|
||
|
def sparse_mask(a, mask_indices, name=None):
|
||
|
"""Masks elements of `IndexedSlices`.
|
||
|
|
||
|
Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
|
||
|
contains a subset of the slices of `a`. Only the slices at indices not
|
||
|
specified in `mask_indices` are returned.
|
||
|
|
||
|
This is useful when you need to extract a subset of slices in an
|
||
|
`IndexedSlices` object.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
|
||
|
# with shape [1000, 10]
|
||
|
a.indices # [12, 26, 37, 45]
|
||
|
tf.shape(a.values) # [4, 10]
|
||
|
|
||
|
# `b` will be the subset of `a` slices at its second and third indices, so
|
||
|
# we want to mask its first and last indices (which are at absolute
|
||
|
# indices 12, 45)
|
||
|
b = tf.sparse_mask(a, [12, 45])
|
||
|
|
||
|
b.indices # [26, 37]
|
||
|
tf.shape(b.values) # [2, 10]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
a: An `IndexedSlices` instance.
|
||
|
mask_indices: Indices of elements to mask.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
The masked `IndexedSlices` instance.
|
||
|
"""
|
||
|
with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
|
||
|
indices = a.indices
|
||
|
out_indices, to_gather = setdiff1d(indices, mask_indices)
|
||
|
out_values = gather(a.values, to_gather, name=name)
|
||
|
return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
|
||
|
|
||
|
|
||
|
@tf_export("unique")
|
||
|
def unique(x, out_idx=dtypes.int32, name=None):
|
||
|
# TODO(yongtang): switch to v2 once API deprecation
|
||
|
# period (3 weeks) pass.
|
||
|
# TODO(yongtang): The documentation should also
|
||
|
# be updated when switch to v2.
|
||
|
return gen_array_ops.unique(x, out_idx, name)
|
||
|
|
||
|
|
||
|
unique.__doc__ = gen_array_ops.unique.__doc__
|
||
|
|
||
|
|
||
|
@tf_export("unique_with_counts")
|
||
|
def unique_with_counts(x, out_idx=dtypes.int32, name=None):
|
||
|
# TODO(yongtang): switch to v2 once API deprecation
|
||
|
# period (3 weeks) pass.
|
||
|
# TODO(yongtang): The documentation should also
|
||
|
# be updated when switch to v2.
|
||
|
return gen_array_ops.unique_with_counts(x, out_idx, name)
|
||
|
|
||
|
|
||
|
unique_with_counts.__doc__ = gen_array_ops.unique_with_counts.__doc__
|
||
|
|
||
|
|
||
|
@tf_export("split")
|
||
|
def split(value, num_or_size_splits, axis=0, num=None, name="split"):
|
||
|
"""Splits a tensor into sub tensors.
|
||
|
|
||
|
If `num_or_size_splits` is an integer type, `num_split`, then splits `value`
|
||
|
along dimension `axis` into `num_split` smaller tensors.
|
||
|
Requires that `num_split` evenly divides `value.shape[axis]`.
|
||
|
|
||
|
If `num_or_size_splits` is not an integer type, it is presumed to be a Tensor
|
||
|
`size_splits`, then splits `value` into `len(size_splits)` pieces. The shape
|
||
|
of the `i`-th piece has the same size as the `value` except along dimension
|
||
|
`axis` where the size is `size_splits[i]`.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
# 'value' is a tensor with shape [5, 30]
|
||
|
# Split 'value' into 3 tensors with sizes [4, 15, 11] along dimension 1
|
||
|
split0, split1, split2 = tf.split(value, [4, 15, 11], 1)
|
||
|
tf.shape(split0) # [5, 4]
|
||
|
tf.shape(split1) # [5, 15]
|
||
|
tf.shape(split2) # [5, 11]
|
||
|
# Split 'value' into 3 tensors along dimension 1
|
||
|
split0, split1, split2 = tf.split(value, num_or_size_splits=3, axis=1)
|
||
|
tf.shape(split0) # [5, 10]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
value: The `Tensor` to split.
|
||
|
num_or_size_splits: Either a 0-D integer `Tensor` indicating the number of
|
||
|
splits along split_dim or a 1-D integer `Tensor` containing
|
||
|
the sizes of each output tensor along split_dim. If a scalar then it must
|
||
|
evenly divide `value.shape[axis]`; otherwise the sum of sizes along the
|
||
|
split dimension must match that of the `value`.
|
||
|
axis: A 0-D `int32` `Tensor`. The dimension along which to split.
|
||
|
Must be in the range `[-rank(value), rank(value))`. Defaults to 0.
|
||
|
num: Optional, used to specify the number of outputs when it cannot be
|
||
|
inferred from the shape of `size_splits`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
if `num_or_size_splits` is a scalar returns `num_or_size_splits` `Tensor`
|
||
|
objects; if `num_or_size_splits` is a 1-D Tensor returns
|
||
|
`num_or_size_splits.get_shape[0]` `Tensor` objects resulting from splitting
|
||
|
`value`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If `num` is unspecified and cannot be inferred.
|
||
|
"""
|
||
|
size_splits = ops.convert_to_tensor(num_or_size_splits)
|
||
|
if size_splits._rank() == 0 and size_splits.dtype.is_integer:
|
||
|
return gen_array_ops.split(
|
||
|
axis=axis, num_split=num_or_size_splits, value=value, name=name)
|
||
|
|
||
|
if num is None:
|
||
|
size_splits_shape = size_splits._shape_tuple()
|
||
|
if size_splits_shape:
|
||
|
num = size_splits_shape[0]
|
||
|
if num is None:
|
||
|
raise ValueError("Cannot infer num from shape %s" % num_or_size_splits)
|
||
|
|
||
|
return gen_array_ops.split_v(
|
||
|
value=value, size_splits=size_splits, axis=axis, num_split=num, name=name)
|
||
|
|
||
|
|
||
|
@tf_export("transpose")
|
||
|
def transpose(a, perm=None, name="transpose", conjugate=False):
|
||
|
"""Transposes `a`. Permutes the dimensions according to `perm`.
|
||
|
|
||
|
The returned tensor's dimension i will correspond to the input dimension
|
||
|
`perm[i]`. If `perm` is not given, it is set to (n-1...0), where n is
|
||
|
the rank of the input tensor. Hence by default, this operation performs a
|
||
|
regular matrix transpose on 2-D input Tensors. If conjugate is True and
|
||
|
`a.dtype` is either `complex64` or `complex128` then the values of `a`
|
||
|
are conjugated and transposed.
|
||
|
|
||
|
@compatibility(numpy)
|
||
|
In `numpy` transposes are memory-efficient constant time operations as they
|
||
|
simply return a new view of the same data with adjusted `strides`.
|
||
|
|
||
|
TensorFlow does not support strides, so `transpose` returns a new tensor with
|
||
|
the items permuted.
|
||
|
@end_compatibility
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
x = tf.constant([[1, 2, 3], [4, 5, 6]])
|
||
|
tf.transpose(x) # [[1, 4]
|
||
|
# [2, 5]
|
||
|
# [3, 6]]
|
||
|
|
||
|
# Equivalently
|
||
|
tf.transpose(x, perm=[1, 0]) # [[1, 4]
|
||
|
# [2, 5]
|
||
|
# [3, 6]]
|
||
|
|
||
|
# If x is complex, setting conjugate=True gives the conjugate transpose
|
||
|
x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
|
||
|
[4 + 4j, 5 + 5j, 6 + 6j]])
|
||
|
tf.transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j],
|
||
|
# [2 - 2j, 5 - 5j],
|
||
|
# [3 - 3j, 6 - 6j]]
|
||
|
|
||
|
# 'perm' is more useful for n-dimensional tensors, for n > 2
|
||
|
x = tf.constant([[[ 1, 2, 3],
|
||
|
[ 4, 5, 6]],
|
||
|
[[ 7, 8, 9],
|
||
|
[10, 11, 12]]])
|
||
|
|
||
|
# Take the transpose of the matrices in dimension-0
|
||
|
# (this common operation has a shorthand `matrix_transpose`)
|
||
|
tf.transpose(x, perm=[0, 2, 1]) # [[[1, 4],
|
||
|
# [2, 5],
|
||
|
# [3, 6]],
|
||
|
# [[7, 10],
|
||
|
# [8, 11],
|
||
|
# [9, 12]]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
a: A `Tensor`.
|
||
|
perm: A permutation of the dimensions of `a`.
|
||
|
name: A name for the operation (optional).
|
||
|
conjugate: Optional bool. Setting it to `True` is mathematically equivalent
|
||
|
to tf.conj(tf.transpose(input)).
|
||
|
|
||
|
Returns:
|
||
|
A transposed `Tensor`.
|
||
|
"""
|
||
|
with ops.name_scope(name, "transpose", [a]) as name:
|
||
|
transpose_fn = (
|
||
|
gen_array_ops.conjugate_transpose
|
||
|
if (conjugate and a.dtype.is_complex) else gen_array_ops.transpose)
|
||
|
if perm is None:
|
||
|
rank = gen_array_ops.rank(a)
|
||
|
perm = (rank - 1) - gen_math_ops._range(0, rank, 1)
|
||
|
ret = transpose_fn(a, perm, name=name)
|
||
|
# NOTE(mrry): Setting the shape explicitly because
|
||
|
# reverse is not handled by the shape function.
|
||
|
if not context.executing_eagerly():
|
||
|
input_shape = ret.op.inputs[0].get_shape().dims
|
||
|
if input_shape is not None:
|
||
|
ret.set_shape(input_shape[::-1])
|
||
|
else:
|
||
|
ret = transpose_fn(a, perm, name=name)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
# pylint: disable=invalid-name
|
||
|
@tf_export("matrix_transpose", "linalg.transpose")
|
||
|
def matrix_transpose(a, name="matrix_transpose", conjugate=False):
|
||
|
"""Transposes last two dimensions of tensor `a`.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
x = tf.constant([[1, 2, 3], [4, 5, 6]])
|
||
|
tf.matrix_transpose(x) # [[1, 4],
|
||
|
# [2, 5],
|
||
|
# [3, 6]]
|
||
|
|
||
|
x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
|
||
|
[4 + 4j, 5 + 5j, 6 + 6j]])
|
||
|
tf.matrix_transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j],
|
||
|
# [2 - 2j, 5 - 5j],
|
||
|
# [3 - 3j, 6 - 6j]]
|
||
|
|
||
|
# Matrix with two batch dimensions.
|
||
|
# x.shape is [1, 2, 3, 4]
|
||
|
# tf.matrix_transpose(x) is shape [1, 2, 4, 3]
|
||
|
```
|
||
|
|
||
|
Note that `tf.matmul` provides kwargs allowing for transpose of arguments.
|
||
|
This is done with minimal cost, and is preferable to using this function. E.g.
|
||
|
|
||
|
```python
|
||
|
# Good! Transpose is taken at minimal additional cost.
|
||
|
tf.matmul(matrix, b, transpose_b=True)
|
||
|
|
||
|
# Inefficient!
|
||
|
tf.matmul(matrix, tf.matrix_transpose(b))
|
||
|
```
|
||
|
|
||
|
@compatibility(numpy)
|
||
|
In `numpy` transposes are memory-efficient constant time operations as they
|
||
|
simply return a new view of the same data with adjusted `strides`.
|
||
|
|
||
|
TensorFlow does not support strides, `matrix_transposes` return a new tensor
|
||
|
with the items permuted.
|
||
|
@end_compatibility
|
||
|
|
||
|
Args:
|
||
|
a: A `Tensor` with `rank >= 2`.
|
||
|
name: A name for the operation (optional).
|
||
|
conjugate: Optional bool. Setting it to `True` is mathematically equivalent
|
||
|
to tf.conj(tf.matrix_transpose(input)).
|
||
|
|
||
|
Returns:
|
||
|
A transposed batch matrix `Tensor`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If `a` is determined statically to have `rank < 2`.
|
||
|
"""
|
||
|
with ops.name_scope(name, values=[a]):
|
||
|
a = ops.convert_to_tensor(a, name="a")
|
||
|
|
||
|
# If we know the number of dimensions (statically), we can do two things:
|
||
|
# 1. Check that `a` is a (batch) matrix.
|
||
|
# 2. Use a python list for perm. This preserves static shape information
|
||
|
# and avoids extra computations.
|
||
|
a_shape = a.get_shape()
|
||
|
ndims = a_shape.ndims
|
||
|
if ndims is not None:
|
||
|
if ndims < 2:
|
||
|
raise ValueError(
|
||
|
"Argument 'a' should be a (batch) matrix, with rank >= 2. Found: "
|
||
|
"%s" % a_shape)
|
||
|
perm = list(range(ndims - 2)) + [ndims - 1] + [ndims - 2]
|
||
|
else:
|
||
|
a_rank = rank(a)
|
||
|
perm = concat((gen_math_ops._range(0, a_rank - 2, 1),
|
||
|
[a_rank - 1, a_rank - 2]), 0)
|
||
|
|
||
|
return transpose(a, perm=perm, conjugate=conjugate)
|
||
|
|
||
|
|
||
|
# pylint: enable=invalid-name
|
||
|
|
||
|
|
||
|
def _constant_if_small(value, shape, dtype, name):
|
||
|
try:
|
||
|
if np.prod(shape) < 1000:
|
||
|
return constant(value, shape=shape, dtype=dtype, name=name)
|
||
|
except TypeError:
|
||
|
# Happens when shape is a Tensor, list with Tensor elements, etc.
|
||
|
pass
|
||
|
return None
|
||
|
|
||
|
|
||
|
@tf_export("zeros")
|
||
|
def zeros(shape, dtype=dtypes.float32, name=None):
|
||
|
"""Creates a tensor with all elements set to zero.
|
||
|
|
||
|
This operation returns a tensor of type `dtype` with shape `shape` and
|
||
|
all elements set to zero.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
tf.zeros([3, 4], tf.int32) # [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
shape: A list of integers, a tuple of integers, or a 1-D `Tensor` of type
|
||
|
`int32`.
|
||
|
dtype: The type of an element in the resulting `Tensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` with all elements set to zero.
|
||
|
"""
|
||
|
dtype = dtypes.as_dtype(dtype).base_dtype
|
||
|
with ops.name_scope(name, "zeros", [shape]) as name:
|
||
|
if dtype == dtypes.bool:
|
||
|
zero = False
|
||
|
elif dtype == dtypes.string:
|
||
|
zero = ""
|
||
|
else:
|
||
|
zero = 0
|
||
|
|
||
|
if not isinstance(shape, ops.Tensor):
|
||
|
try:
|
||
|
# Create a constant if it won't be very big. Otherwise create a fill op
|
||
|
# to prevent serialized GraphDefs from becoming too large.
|
||
|
output = _constant_if_small(zero, shape, dtype, name)
|
||
|
if output is not None:
|
||
|
return output
|
||
|
|
||
|
# Go through tensor shapes to get int64-if-needed semantics
|
||
|
shape = constant_op._tensor_shape_tensor_conversion_function(
|
||
|
tensor_shape.TensorShape(shape))
|
||
|
except (TypeError, ValueError):
|
||
|
# Happens when shape is a list with tensor elements
|
||
|
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32)
|
||
|
if not shape._shape_tuple():
|
||
|
shape = reshape(shape, [-1]) # Ensure it's a vector
|
||
|
output = fill(shape, constant(zero, dtype=dtype), name=name)
|
||
|
assert output.dtype.base_dtype == dtype
|
||
|
return output
|
||
|
|
||
|
|
||
|
@tf_export("zeros_like")
|
||
|
def zeros_like(tensor, dtype=None, name=None, optimize=True):
|
||
|
"""Creates a tensor with all elements set to zero.
|
||
|
|
||
|
Given a single tensor (`tensor`), this operation returns a tensor of the
|
||
|
same type and shape as `tensor` with all elements set to zero. Optionally,
|
||
|
you can use `dtype` to specify a new type for the returned tensor.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
|
||
|
tf.zeros_like(tensor) # [[0, 0, 0], [0, 0, 0]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
tensor: A `Tensor`.
|
||
|
dtype: A type for the returned `Tensor`. Must be `float16`, `float32`,
|
||
|
`float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`,
|
||
|
`complex64`, `complex128`, `bool` or `string`.
|
||
|
name: A name for the operation (optional).
|
||
|
optimize: if true, attempt to statically determine the shape of 'tensor'
|
||
|
and encode it as a constant.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` with all elements set to zero.
|
||
|
"""
|
||
|
with ops.name_scope(name, "zeros_like", [tensor]) as name:
|
||
|
tensor = ops.convert_to_tensor(tensor, name="tensor")
|
||
|
|
||
|
if context.executing_eagerly():
|
||
|
if dtype is not None and dtype != tensor.dtype:
|
||
|
return zeros(
|
||
|
shape_internal(tensor, optimize=optimize), dtype=dtype, name=name)
|
||
|
with ops.device(tensor.device):
|
||
|
return gen_array_ops.zeros_like(tensor, name=name)
|
||
|
|
||
|
# For now, variant types must be created via zeros_like; as we need to
|
||
|
# pass the input variant object to the proper zeros callback.
|
||
|
|
||
|
if (optimize and tensor.shape.is_fully_defined() and
|
||
|
tensor.dtype != dtypes.variant):
|
||
|
# We can produce a zeros tensor independent of the value of 'tensor',
|
||
|
# since the shape is known statically.
|
||
|
return zeros(tensor.shape, dtype=dtype or tensor.dtype, name=name)
|
||
|
|
||
|
if dtype is not None and dtype != tensor.dtype and dtype != dtypes.variant:
|
||
|
return zeros(
|
||
|
shape_internal(tensor, optimize=optimize), dtype=dtype, name=name)
|
||
|
else:
|
||
|
return gen_array_ops.zeros_like(tensor, name=name)
|
||
|
|
||
|
|
||
|
@tf_export("ones_like")
|
||
|
def ones_like(tensor, dtype=None, name=None, optimize=True):
|
||
|
"""Creates a tensor with all elements set to 1.
|
||
|
|
||
|
Given a single tensor (`tensor`), this operation returns a tensor of the same
|
||
|
type and shape as `tensor` with all elements set to 1. Optionally, you can
|
||
|
specify a new type (`dtype`) for the returned tensor.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
|
||
|
tf.ones_like(tensor) # [[1, 1, 1], [1, 1, 1]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
tensor: A `Tensor`.
|
||
|
dtype: A type for the returned `Tensor`. Must be `float32`, `float64`,
|
||
|
`int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`,
|
||
|
`complex64`, `complex128` or `bool`.
|
||
|
name: A name for the operation (optional).
|
||
|
optimize: if true, attempt to statically determine the shape of 'tensor'
|
||
|
and encode it as a constant.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` with all elements set to 1.
|
||
|
"""
|
||
|
with ops.name_scope(name, "ones_like", [tensor]) as name:
|
||
|
tensor = ops.convert_to_tensor(tensor, name="tensor")
|
||
|
ones_shape = shape_internal(tensor, optimize=optimize)
|
||
|
if dtype is None:
|
||
|
dtype = tensor.dtype
|
||
|
ret = ones(ones_shape, dtype=dtype, name=name)
|
||
|
if not context.executing_eagerly():
|
||
|
ret.set_shape(tensor.get_shape())
|
||
|
return ret
|
||
|
|
||
|
|
||
|
@tf_export("ones")
|
||
|
def ones(shape, dtype=dtypes.float32, name=None):
|
||
|
"""Creates a tensor with all elements set to 1.
|
||
|
|
||
|
This operation returns a tensor of type `dtype` with shape `shape` and all
|
||
|
elements set to 1.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
tf.ones([2, 3], tf.int32) # [[1, 1, 1], [1, 1, 1]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
shape: A list of integers, a tuple of integers, or a 1-D `Tensor` of type
|
||
|
`int32`.
|
||
|
dtype: The type of an element in the resulting `Tensor`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` with all elements set to 1.
|
||
|
"""
|
||
|
dtype = dtypes.as_dtype(dtype).base_dtype
|
||
|
with ops.name_scope(name, "ones", [shape]) as name:
|
||
|
one = True if dtype == dtypes.bool else 1
|
||
|
if not isinstance(shape, ops.Tensor):
|
||
|
try:
|
||
|
# Create a constant if it won't be very big. Otherwise create a fill op
|
||
|
# to prevent serialized GraphDefs from becoming too large.
|
||
|
output = _constant_if_small(one, shape, dtype, name)
|
||
|
if output is not None:
|
||
|
return output
|
||
|
|
||
|
# Go through tensor shapes to get int64-if-needed semantics
|
||
|
shape = constant_op._tensor_shape_tensor_conversion_function(
|
||
|
tensor_shape.TensorShape(shape))
|
||
|
except (TypeError, ValueError):
|
||
|
# Happens when shape is a list with tensor elements
|
||
|
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32)
|
||
|
if not shape._shape_tuple():
|
||
|
shape = reshape(shape, [-1]) # Ensure it's a vector
|
||
|
output = fill(shape, constant(one, dtype=dtype), name=name)
|
||
|
assert output.dtype.base_dtype == dtype
|
||
|
return output
|
||
|
|
||
|
|
||
|
@tf_export("placeholder")
|
||
|
def placeholder(dtype, shape=None, name=None):
|
||
|
"""Inserts a placeholder for a tensor that will be always fed.
|
||
|
|
||
|
**Important**: This tensor will produce an error if evaluated. Its value must
|
||
|
be fed using the `feed_dict` optional argument to `Session.run()`,
|
||
|
`Tensor.eval()`, or `Operation.run()`.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
x = tf.placeholder(tf.float32, shape=(1024, 1024))
|
||
|
y = tf.matmul(x, x)
|
||
|
|
||
|
with tf.Session() as sess:
|
||
|
print(sess.run(y)) # ERROR: will fail because x was not fed.
|
||
|
|
||
|
rand_array = np.random.rand(1024, 1024)
|
||
|
print(sess.run(y, feed_dict={x: rand_array})) # Will succeed.
|
||
|
```
|
||
|
|
||
|
@compatibility(eager)
|
||
|
Placeholders are not compatible with eager execution.
|
||
|
@end_compatibility
|
||
|
|
||
|
Args:
|
||
|
dtype: The type of elements in the tensor to be fed.
|
||
|
shape: The shape of the tensor to be fed (optional). If the shape is not
|
||
|
specified, you can feed a tensor of any shape.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` that may be used as a handle for feeding a value, but not
|
||
|
evaluated directly.
|
||
|
|
||
|
Raises:
|
||
|
RuntimeError: if eager execution is enabled
|
||
|
"""
|
||
|
if context.executing_eagerly():
|
||
|
raise RuntimeError("tf.placeholder() is not compatible with "
|
||
|
"eager execution.")
|
||
|
|
||
|
return gen_array_ops.placeholder(dtype=dtype, shape=shape, name=name)
|
||
|
|
||
|
|
||
|
# pylint: disable=redefined-outer-name
|
||
|
def _normalize_sparse_shape(shape, name):
|
||
|
"""Returns a tuple of (Tensor or None, rank or None)."""
|
||
|
if shape is None:
|
||
|
return (None, None)
|
||
|
rank = shape.get_shape()[0] if isinstance(shape, ops.Tensor) else len(shape)
|
||
|
if not isinstance(shape, ops.Tensor) and None in shape:
|
||
|
return (None, rank)
|
||
|
return (ops.convert_to_tensor(shape, dtype=dtypes.int64, name=name), rank)
|
||
|
|
||
|
|
||
|
@tf_export("sparse_placeholder")
|
||
|
def sparse_placeholder(dtype, shape=None, name=None):
|
||
|
"""Inserts a placeholder for a sparse tensor that will be always fed.
|
||
|
|
||
|
**Important**: This sparse tensor will produce an error if evaluated.
|
||
|
Its value must be fed using the `feed_dict` optional argument to
|
||
|
`Session.run()`, `Tensor.eval()`, or `Operation.run()`.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
x = tf.sparse_placeholder(tf.float32)
|
||
|
y = tf.sparse_reduce_sum(x)
|
||
|
|
||
|
with tf.Session() as sess:
|
||
|
print(sess.run(y)) # ERROR: will fail because x was not fed.
|
||
|
|
||
|
indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64)
|
||
|
values = np.array([1.0, 2.0], dtype=np.float32)
|
||
|
shape = np.array([7, 9, 2], dtype=np.int64)
|
||
|
print(sess.run(y, feed_dict={
|
||
|
x: tf.SparseTensorValue(indices, values, shape)})) # Will succeed.
|
||
|
print(sess.run(y, feed_dict={
|
||
|
x: (indices, values, shape)})) # Will succeed.
|
||
|
|
||
|
sp = tf.SparseTensor(indices=indices, values=values, dense_shape=shape)
|
||
|
sp_value = sp.eval(session=sess)
|
||
|
print(sess.run(y, feed_dict={x: sp_value})) # Will succeed.
|
||
|
```
|
||
|
|
||
|
@compatibility{eager} Placeholders are not compatible with eager execution.
|
||
|
|
||
|
Args:
|
||
|
dtype: The type of `values` elements in the tensor to be fed.
|
||
|
shape: The shape of the tensor to be fed (optional). If the shape is not
|
||
|
specified, you can feed a sparse tensor of any shape.
|
||
|
name: A name for prefixing the operations (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `SparseTensor` that may be used as a handle for feeding a value, but not
|
||
|
evaluated directly.
|
||
|
|
||
|
Raises:
|
||
|
RuntimeError: if eager execution is enabled
|
||
|
"""
|
||
|
if context.executing_eagerly():
|
||
|
raise RuntimeError("tf.placeholder() is not compatible with "
|
||
|
"eager execution.")
|
||
|
|
||
|
shape_name = (name + "/shape") if name is not None else None
|
||
|
shape, rank = _normalize_sparse_shape(shape, shape_name)
|
||
|
if shape is None:
|
||
|
shape = placeholder(dtypes.int64, shape=[rank], name=shape_name)
|
||
|
return sparse_tensor.SparseTensor(
|
||
|
values=placeholder(
|
||
|
dtype,
|
||
|
shape=[None],
|
||
|
name=(name + "/values") if name is not None else None),
|
||
|
indices=placeholder(
|
||
|
dtypes.int64, shape=[None, rank],
|
||
|
name=(name + "/indices") if name is not None else None),
|
||
|
dense_shape=shape)
|
||
|
|
||
|
|
||
|
# pylint: enable=redefined-outer-name
|
||
|
|
||
|
|
||
|
@tf_export("pad")
|
||
|
def pad(tensor, paddings, mode="CONSTANT", name=None, constant_values=0): # pylint: disable=invalid-name
|
||
|
"""Pads a tensor.
|
||
|
|
||
|
This operation pads a `tensor` according to the `paddings` you specify.
|
||
|
`paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of
|
||
|
`tensor`. For each dimension D of `input`, `paddings[D, 0]` indicates how
|
||
|
many values to add before the contents of `tensor` in that dimension, and
|
||
|
`paddings[D, 1]` indicates how many values to add after the contents of
|
||
|
`tensor` in that dimension. If `mode` is "REFLECT" then both `paddings[D, 0]`
|
||
|
and `paddings[D, 1]` must be no greater than `tensor.dim_size(D) - 1`. If
|
||
|
`mode` is "SYMMETRIC" then both `paddings[D, 0]` and `paddings[D, 1]` must be
|
||
|
no greater than `tensor.dim_size(D)`.
|
||
|
|
||
|
The padded size of each dimension D of the output is:
|
||
|
|
||
|
`paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]`
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
t = tf.constant([[1, 2, 3], [4, 5, 6]])
|
||
|
paddings = tf.constant([[1, 1,], [2, 2]])
|
||
|
# 'constant_values' is 0.
|
||
|
# rank of 't' is 2.
|
||
|
tf.pad(t, paddings, "CONSTANT") # [[0, 0, 0, 0, 0, 0, 0],
|
||
|
# [0, 0, 1, 2, 3, 0, 0],
|
||
|
# [0, 0, 4, 5, 6, 0, 0],
|
||
|
# [0, 0, 0, 0, 0, 0, 0]]
|
||
|
|
||
|
tf.pad(t, paddings, "REFLECT") # [[6, 5, 4, 5, 6, 5, 4],
|
||
|
# [3, 2, 1, 2, 3, 2, 1],
|
||
|
# [6, 5, 4, 5, 6, 5, 4],
|
||
|
# [3, 2, 1, 2, 3, 2, 1]]
|
||
|
|
||
|
tf.pad(t, paddings, "SYMMETRIC") # [[2, 1, 1, 2, 3, 3, 2],
|
||
|
# [2, 1, 1, 2, 3, 3, 2],
|
||
|
# [5, 4, 4, 5, 6, 6, 5],
|
||
|
# [5, 4, 4, 5, 6, 6, 5]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
tensor: A `Tensor`.
|
||
|
paddings: A `Tensor` of type `int32`.
|
||
|
mode: One of "CONSTANT", "REFLECT", or "SYMMETRIC" (case-insensitive)
|
||
|
name: A name for the operation (optional).
|
||
|
constant_values: In "CONSTANT" mode, the scalar pad value to use. Must be
|
||
|
same type as `tensor`.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `tensor`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: When mode is not one of "CONSTANT", "REFLECT", or "SYMMETRIC".
|
||
|
"""
|
||
|
|
||
|
# Convert lower/mixed case to upper for NumPy compatibility
|
||
|
# NumPy uses all lower-case modes.
|
||
|
mode = mode.upper()
|
||
|
if mode == "CONSTANT":
|
||
|
# TODO(rjryan): Once the forward compatibility period (3 weeks) have passed
|
||
|
# remove the "Pad" fallback here.
|
||
|
if constant_values != 0:
|
||
|
result = gen_array_ops.pad_v2(
|
||
|
tensor, paddings, constant_values, name=name)
|
||
|
else:
|
||
|
result = gen_array_ops.pad(tensor, paddings, name=name)
|
||
|
elif mode == "REFLECT":
|
||
|
result = gen_array_ops.mirror_pad(
|
||
|
tensor, paddings, mode="REFLECT", name=name)
|
||
|
elif mode == "SYMMETRIC":
|
||
|
result = gen_array_ops.mirror_pad(
|
||
|
tensor, paddings, mode="SYMMETRIC", name=name)
|
||
|
else:
|
||
|
raise ValueError("Unknown padding mode: %s" % mode)
|
||
|
|
||
|
# Restore shape information where possible.
|
||
|
if not context.executing_eagerly():
|
||
|
paddings_constant = tensor_util.constant_value(
|
||
|
result.op.inputs[1], partial=True)
|
||
|
input_shape = result.op.inputs[0].shape
|
||
|
if (input_shape.ndims is not None and not result.shape.is_fully_defined()
|
||
|
and paddings_constant is not None):
|
||
|
new_shape = []
|
||
|
for padding, dim in zip(paddings_constant, input_shape.as_list()):
|
||
|
if padding is None or dim is None or any((x is None for x in padding)):
|
||
|
new_shape.append(None)
|
||
|
else:
|
||
|
new_shape.append(sum(padding) + dim)
|
||
|
result.set_shape(new_shape)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
@tf_export("meshgrid")
|
||
|
def meshgrid(*args, **kwargs):
|
||
|
"""Broadcasts parameters for evaluation on an N-D grid.
|
||
|
|
||
|
Given N one-dimensional coordinate arrays `*args`, returns a list `outputs`
|
||
|
of N-D coordinate arrays for evaluating expressions on an N-D grid.
|
||
|
|
||
|
Notes:
|
||
|
|
||
|
`meshgrid` supports cartesian ('xy') and matrix ('ij') indexing conventions.
|
||
|
When the `indexing` argument is set to 'xy' (the default), the broadcasting
|
||
|
instructions for the first two dimensions are swapped.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
Calling `X, Y = meshgrid(x, y)` with the tensors
|
||
|
|
||
|
```python
|
||
|
x = [1, 2, 3]
|
||
|
y = [4, 5, 6]
|
||
|
X, Y = tf.meshgrid(x, y)
|
||
|
# X = [[1, 2, 3],
|
||
|
# [1, 2, 3],
|
||
|
# [1, 2, 3]]
|
||
|
# Y = [[4, 4, 4],
|
||
|
# [5, 5, 5],
|
||
|
# [6, 6, 6]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
*args: `Tensor`s with rank 1.
|
||
|
**kwargs:
|
||
|
- indexing: Either 'xy' or 'ij' (optional, default: 'xy').
|
||
|
- name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
outputs: A list of N `Tensor`s with rank N.
|
||
|
|
||
|
Raises:
|
||
|
TypeError: When no keyword arguments (kwargs) are passed.
|
||
|
ValueError: When indexing keyword argument is not one of `xy` or `ij`.
|
||
|
"""
|
||
|
|
||
|
indexing = kwargs.pop("indexing", "xy")
|
||
|
name = kwargs.pop("name", "meshgrid")
|
||
|
if kwargs:
|
||
|
key = list(kwargs.keys())[0]
|
||
|
raise TypeError("'{}' is an invalid keyword argument "
|
||
|
"for this function".format(key))
|
||
|
|
||
|
if indexing not in ("xy", "ij"):
|
||
|
raise ValueError("indexing parameter must be either 'xy' or 'ij'")
|
||
|
|
||
|
with ops.name_scope(name, "meshgrid", args) as name:
|
||
|
ndim = len(args)
|
||
|
s0 = (1,) * ndim
|
||
|
|
||
|
# Prepare reshape by inserting dimensions with size 1 where needed
|
||
|
output = []
|
||
|
for i, x in enumerate(args):
|
||
|
output.append(reshape(stack(x), (s0[:i] + (-1,) + s0[i + 1::])))
|
||
|
# Create parameters for broadcasting each tensor to the full size
|
||
|
shapes = [size(x) for x in args]
|
||
|
|
||
|
output_dtype = ops.convert_to_tensor(args[0]).dtype.base_dtype
|
||
|
|
||
|
if indexing == "xy" and ndim > 1:
|
||
|
output[0] = reshape(output[0], (1, -1) + (1,) * (ndim - 2))
|
||
|
output[1] = reshape(output[1], (-1, 1) + (1,) * (ndim - 2))
|
||
|
shapes[0], shapes[1] = shapes[1], shapes[0]
|
||
|
|
||
|
# TODO(nolivia): improve performance with a broadcast
|
||
|
mult_fact = ones(shapes, output_dtype)
|
||
|
return [x * mult_fact for x in output]
|
||
|
|
||
|
|
||
|
NEW_AXIS = -1
|
||
|
SHRINK_AXIS = -2
|
||
|
|
||
|
|
||
|
# PEP-8 naming
|
||
|
# pylint: disable=invalid-name,redefined-outer-name
|
||
|
def _compute_size_of_strided_dim(shrink, spec, size):
|
||
|
"""Computes the size of a single strided slice dimension."""
|
||
|
|
||
|
unknown = None # Document what None means here.
|
||
|
use_full_range = None # Document other use of None.
|
||
|
# if this is a shrink axis (i.e. a non-range index)
|
||
|
# it either will produce an error or return 1
|
||
|
if shrink:
|
||
|
return 1
|
||
|
if size is unknown or size.value is unknown:
|
||
|
return unknown
|
||
|
size = size.value
|
||
|
stride = spec.step
|
||
|
if stride is not unknown:
|
||
|
if stride == 0:
|
||
|
return unknown
|
||
|
stride = spec.step
|
||
|
valid_range = [0, size] if stride > 0 else [-1, size - 1]
|
||
|
|
||
|
# PEP-8 naming
|
||
|
# pylint: disable=invalid-name
|
||
|
def canonical(x, c):
|
||
|
if x is use_full_range:
|
||
|
return valid_range[c] if stride > 0 else valid_range[(c + 1) & 1]
|
||
|
else:
|
||
|
x_fwd = size + x if x < 0 else x # make negative indices positive
|
||
|
return max(valid_range[0], min(valid_range[1], x_fwd))
|
||
|
|
||
|
begin = canonical(spec.start, 0)
|
||
|
end = canonical(spec.stop, 1)
|
||
|
interval_length = end - begin
|
||
|
if interval_length == 0 or ((interval_length < 0) != (stride < 0)):
|
||
|
return 0
|
||
|
else:
|
||
|
remainder = 1 if interval_length % stride != 0 else 0
|
||
|
return interval_length // stride + remainder
|
||
|
else:
|
||
|
return unknown # unknown because stride is unknown
|
||
|
|
||
|
|
||
|
def _TileGradShape(op):
|
||
|
"""Shape function for the TileGrad op."""
|
||
|
multiples_shape = op.inputs[1].get_shape().with_rank(1)
|
||
|
input_shape = op.inputs[0].get_shape().with_rank(multiples_shape[0])
|
||
|
# NOTE(mrry): Represent `multiples` as a `TensorShape` because (i)
|
||
|
# it is a vector of non-negative integers, and (ii) doing so allows
|
||
|
# us to handle partially-known multiples.
|
||
|
multiples = tensor_util.constant_value_as_shape(op.inputs[1]).with_rank(
|
||
|
input_shape.ndims)
|
||
|
if multiples.ndims is None:
|
||
|
return [tensor_shape.unknown_shape()]
|
||
|
else:
|
||
|
output_dims = []
|
||
|
for dim, multiple in zip(input_shape.dims, multiples.dims):
|
||
|
output_dims.append(dim // multiple)
|
||
|
return [tensor_shape.TensorShape(output_dims)]
|
||
|
|
||
|
|
||
|
@tf_export("edit_distance")
|
||
|
def edit_distance(hypothesis, truth, normalize=True, name="edit_distance"):
|
||
|
"""Computes the Levenshtein distance between sequences.
|
||
|
|
||
|
This operation takes variable-length sequences (`hypothesis` and `truth`),
|
||
|
each provided as a `SparseTensor`, and computes the Levenshtein distance.
|
||
|
You can normalize the edit distance by length of `truth` by setting
|
||
|
`normalize` to true.
|
||
|
|
||
|
For example, given the following input:
|
||
|
|
||
|
```python
|
||
|
# 'hypothesis' is a tensor of shape `[2, 1]` with variable-length values:
|
||
|
# (0,0) = ["a"]
|
||
|
# (1,0) = ["b"]
|
||
|
hypothesis = tf.SparseTensor(
|
||
|
[[0, 0, 0],
|
||
|
[1, 0, 0]],
|
||
|
["a", "b"],
|
||
|
(2, 1, 1))
|
||
|
|
||
|
# 'truth' is a tensor of shape `[2, 2]` with variable-length values:
|
||
|
# (0,0) = []
|
||
|
# (0,1) = ["a"]
|
||
|
# (1,0) = ["b", "c"]
|
||
|
# (1,1) = ["a"]
|
||
|
truth = tf.SparseTensor(
|
||
|
[[0, 1, 0],
|
||
|
[1, 0, 0],
|
||
|
[1, 0, 1],
|
||
|
[1, 1, 0]],
|
||
|
["a", "b", "c", "a"],
|
||
|
(2, 2, 2))
|
||
|
|
||
|
normalize = True
|
||
|
```
|
||
|
|
||
|
This operation would return the following:
|
||
|
|
||
|
```python
|
||
|
# 'output' is a tensor of shape `[2, 2]` with edit distances normalized
|
||
|
# by 'truth' lengths.
|
||
|
output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis
|
||
|
[0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
hypothesis: A `SparseTensor` containing hypothesis sequences.
|
||
|
truth: A `SparseTensor` containing truth sequences.
|
||
|
normalize: A `bool`. If `True`, normalizes the Levenshtein distance by
|
||
|
length of `truth.`
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A dense `Tensor` with rank `R - 1`, where R is the rank of the
|
||
|
`SparseTensor` inputs `hypothesis` and `truth`.
|
||
|
|
||
|
Raises:
|
||
|
TypeError: If either `hypothesis` or `truth` are not a `SparseTensor`.
|
||
|
"""
|
||
|
if not isinstance(hypothesis, (sparse_tensor.SparseTensor,
|
||
|
sparse_tensor.SparseTensorValue)):
|
||
|
raise TypeError("Hypothesis must be a SparseTensor.")
|
||
|
if not isinstance(truth, (sparse_tensor.SparseTensor,
|
||
|
sparse_tensor.SparseTensorValue)):
|
||
|
raise TypeError("Truth must be a SparseTensor.")
|
||
|
|
||
|
return gen_array_ops.edit_distance(
|
||
|
hypothesis.indices,
|
||
|
hypothesis.values,
|
||
|
hypothesis.dense_shape,
|
||
|
truth.indices,
|
||
|
truth.values,
|
||
|
truth.dense_shape,
|
||
|
normalize=normalize,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
@ops.RegisterGradient("FakeQuantWithMinMaxArgs")
|
||
|
def _FakeQuantWithMinMaxArgsGradient(op, grad):
|
||
|
"""Gradient for FakeQuantWithMinMaxArgs op."""
|
||
|
return fake_quant_with_min_max_args_gradient(
|
||
|
grad,
|
||
|
op.inputs[0],
|
||
|
min=op.get_attr("min"),
|
||
|
max=op.get_attr("max"),
|
||
|
num_bits=op.get_attr("num_bits"),
|
||
|
narrow_range=op.get_attr("narrow_range"))
|
||
|
|
||
|
|
||
|
@ops.RegisterGradient("FakeQuantWithMinMaxVars")
|
||
|
def _FakeQuantWithMinMaxVarsGradient(op, grad):
|
||
|
"""Gradient for FakeQuantWithMinMaxVars op."""
|
||
|
return fake_quant_with_min_max_vars_gradient(
|
||
|
grad,
|
||
|
op.inputs[0],
|
||
|
op.inputs[1],
|
||
|
op.inputs[2],
|
||
|
num_bits=op.get_attr("num_bits"),
|
||
|
narrow_range=op.get_attr("narrow_range"))
|
||
|
|
||
|
|
||
|
@ops.RegisterGradient("FakeQuantWithMinMaxVarsPerChannel")
|
||
|
def _FakeQuantWithMinMaxVarsPerChannelGradient(op, grad):
|
||
|
"""Gradient for FakeQuantWithMinMaxVarsPerChannel op."""
|
||
|
return fake_quant_with_min_max_vars_per_channel_gradient(
|
||
|
grad,
|
||
|
op.inputs[0],
|
||
|
op.inputs[1],
|
||
|
op.inputs[2],
|
||
|
num_bits=op.get_attr("num_bits"),
|
||
|
narrow_range=op.get_attr("narrow_range"))
|
||
|
|
||
|
|
||
|
@tf_export("required_space_to_batch_paddings")
|
||
|
def required_space_to_batch_paddings(input_shape,
|
||
|
block_shape,
|
||
|
base_paddings=None,
|
||
|
name=None):
|
||
|
"""Calculate padding required to make block_shape divide input_shape.
|
||
|
|
||
|
This function can be used to calculate a suitable paddings argument for use
|
||
|
with space_to_batch_nd and batch_to_space_nd.
|
||
|
|
||
|
Args:
|
||
|
input_shape: int32 Tensor of shape [N].
|
||
|
block_shape: int32 Tensor of shape [N].
|
||
|
base_paddings: Optional int32 Tensor of shape [N, 2]. Specifies the minimum
|
||
|
amount of padding to use. All elements must be >= 0. If not specified,
|
||
|
defaults to 0.
|
||
|
name: string. Optional name prefix.
|
||
|
|
||
|
Returns:
|
||
|
(paddings, crops), where:
|
||
|
|
||
|
`paddings` and `crops` are int32 Tensors of rank 2 and shape [N, 2]
|
||
|
satisfying:
|
||
|
|
||
|
paddings[i, 0] = base_paddings[i, 0].
|
||
|
0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i]
|
||
|
(input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0
|
||
|
|
||
|
crops[i, 0] = 0
|
||
|
crops[i, 1] = paddings[i, 1] - base_paddings[i, 1]
|
||
|
|
||
|
Raises: ValueError if called with incompatible shapes.
|
||
|
"""
|
||
|
with ops.name_scope(name, "required_space_to_batch_paddings",
|
||
|
[input_shape, block_shape]):
|
||
|
input_shape = ops.convert_to_tensor(
|
||
|
input_shape, dtype=dtypes.int32, name="input_shape")
|
||
|
block_shape = ops.convert_to_tensor(
|
||
|
block_shape, dtype=dtypes.int32, name="block_shape")
|
||
|
|
||
|
block_shape.get_shape().assert_is_fully_defined()
|
||
|
block_shape.get_shape().assert_has_rank(1)
|
||
|
num_block_dims = block_shape.get_shape()[0].value
|
||
|
if num_block_dims == 0:
|
||
|
return zeros([0, 2], dtypes.int32), zeros([0, 2], dtypes.int32)
|
||
|
|
||
|
input_shape.get_shape().assert_is_compatible_with([num_block_dims])
|
||
|
|
||
|
if base_paddings is not None:
|
||
|
base_paddings = ops.convert_to_tensor(
|
||
|
base_paddings, dtype=dtypes.int32, name="base_paddings")
|
||
|
base_paddings.get_shape().assert_is_compatible_with([num_block_dims, 2])
|
||
|
else:
|
||
|
base_paddings = zeros([num_block_dims, 2], dtypes.int32)
|
||
|
|
||
|
const_block_shape = tensor_util.constant_value(block_shape)
|
||
|
const_input_shape = tensor_util.constant_value(input_shape)
|
||
|
const_base_paddings = tensor_util.constant_value(base_paddings)
|
||
|
if (const_block_shape is not None and const_input_shape is not None and
|
||
|
const_base_paddings is not None):
|
||
|
block_shape = const_block_shape
|
||
|
input_shape = const_input_shape
|
||
|
base_paddings = const_base_paddings
|
||
|
|
||
|
# Use same expression for both constant and non-constant case.
|
||
|
pad_start = base_paddings[:, 0]
|
||
|
orig_pad_end = base_paddings[:, 1]
|
||
|
full_input_shape = input_shape + pad_start + orig_pad_end
|
||
|
pad_end_extra = (block_shape - full_input_shape % block_shape) % block_shape
|
||
|
pad_end = orig_pad_end + pad_end_extra
|
||
|
|
||
|
result_paddings = stack(
|
||
|
[[pad_start[i], pad_end[i]] for i in range(num_block_dims)],
|
||
|
name="paddings")
|
||
|
result_crops = stack(
|
||
|
[[0, pad_end_extra[i]] for i in range(num_block_dims)], name="crops")
|
||
|
return result_paddings, result_crops
|
||
|
|
||
|
|
||
|
@tf_export("space_to_batch")
|
||
|
def space_to_batch(input, paddings, block_size, name=None): # pylint: disable=redefined-builtin
|
||
|
result = space_to_batch_nd(
|
||
|
input,
|
||
|
paddings=paddings,
|
||
|
block_shape=np.array([block_size, block_size], dtype=np.int64),
|
||
|
name=name)
|
||
|
result.set_shape(result.get_shape().with_rank(4))
|
||
|
return result
|
||
|
|
||
|
|
||
|
space_to_batch.__doc__ = gen_array_ops.space_to_batch.__doc__
|
||
|
|
||
|
|
||
|
@tf_export("space_to_depth")
|
||
|
def space_to_depth(input, block_size, name=None, data_format="NHWC"): # pylint: disable=redefined-builtin
|
||
|
return gen_array_ops.space_to_depth(input, block_size, data_format, name=name)
|
||
|
|
||
|
|
||
|
space_to_depth.__doc__ = gen_array_ops.space_to_depth.__doc__
|
||
|
|
||
|
|
||
|
@tf_export("depth_to_space")
|
||
|
def depth_to_space(input, block_size, name=None, data_format="NHWC"): # pylint: disable=redefined-builtin
|
||
|
return gen_array_ops.depth_to_space(input, block_size, data_format, name=name)
|
||
|
|
||
|
|
||
|
depth_to_space.__doc__ = gen_array_ops.depth_to_space.__doc__
|
||
|
|
||
|
|
||
|
@tf_export("batch_to_space")
|
||
|
def batch_to_space(input, crops, block_size, name=None): # pylint: disable=redefined-builtin
|
||
|
result = batch_to_space_nd(
|
||
|
input,
|
||
|
crops=crops,
|
||
|
block_shape=np.array([block_size, block_size], dtype=np.int64),
|
||
|
name=name)
|
||
|
result.set_shape(result.get_shape().with_rank(4))
|
||
|
return result
|
||
|
|
||
|
|
||
|
batch_to_space.__doc__ = gen_array_ops.batch_to_space.__doc__
|
||
|
|
||
|
|
||
|
@tf_export("one_hot")
|
||
|
def one_hot(indices,
|
||
|
depth,
|
||
|
on_value=None,
|
||
|
off_value=None,
|
||
|
axis=None,
|
||
|
dtype=None,
|
||
|
name=None):
|
||
|
"""Returns a one-hot tensor.
|
||
|
|
||
|
The locations represented by indices in `indices` take value `on_value`,
|
||
|
while all other locations take value `off_value`.
|
||
|
|
||
|
`on_value` and `off_value` must have matching data types. If `dtype` is also
|
||
|
provided, they must be the same data type as specified by `dtype`.
|
||
|
|
||
|
If `on_value` is not provided, it will default to the value `1` with type
|
||
|
`dtype`
|
||
|
|
||
|
If `off_value` is not provided, it will default to the value `0` with type
|
||
|
`dtype`
|
||
|
|
||
|
If the input `indices` is rank `N`, the output will have rank `N+1`. The
|
||
|
new axis is created at dimension `axis` (default: the new axis is appended
|
||
|
at the end).
|
||
|
|
||
|
If `indices` is a scalar the output shape will be a vector of length `depth`
|
||
|
|
||
|
If `indices` is a vector of length `features`, the output shape will be:
|
||
|
|
||
|
```
|
||
|
features x depth if axis == -1
|
||
|
depth x features if axis == 0
|
||
|
```
|
||
|
|
||
|
If `indices` is a matrix (batch) with shape `[batch, features]`, the output
|
||
|
shape will be:
|
||
|
|
||
|
```
|
||
|
batch x features x depth if axis == -1
|
||
|
batch x depth x features if axis == 1
|
||
|
depth x batch x features if axis == 0
|
||
|
```
|
||
|
|
||
|
If `dtype` is not provided, it will attempt to assume the data type of
|
||
|
`on_value` or `off_value`, if one or both are passed in. If none of
|
||
|
`on_value`, `off_value`, or `dtype` are provided, `dtype` will default to the
|
||
|
value `tf.float32`.
|
||
|
|
||
|
Note: If a non-numeric data type output is desired (`tf.string`, `tf.bool`,
|
||
|
etc.), both `on_value` and `off_value` _must_ be provided to `one_hot`.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
indices = [0, 1, 2]
|
||
|
depth = 3
|
||
|
tf.one_hot(indices, depth) # output: [3 x 3]
|
||
|
# [[1., 0., 0.],
|
||
|
# [0., 1., 0.],
|
||
|
# [0., 0., 1.]]
|
||
|
|
||
|
indices = [0, 2, -1, 1]
|
||
|
depth = 3
|
||
|
tf.one_hot(indices, depth,
|
||
|
on_value=5.0, off_value=0.0,
|
||
|
axis=-1) # output: [4 x 3]
|
||
|
# [[5.0, 0.0, 0.0], # one_hot(0)
|
||
|
# [0.0, 0.0, 5.0], # one_hot(2)
|
||
|
# [0.0, 0.0, 0.0], # one_hot(-1)
|
||
|
# [0.0, 5.0, 0.0]] # one_hot(1)
|
||
|
|
||
|
indices = [[0, 2], [1, -1]]
|
||
|
depth = 3
|
||
|
tf.one_hot(indices, depth,
|
||
|
on_value=1.0, off_value=0.0,
|
||
|
axis=-1) # output: [2 x 2 x 3]
|
||
|
# [[[1.0, 0.0, 0.0], # one_hot(0)
|
||
|
# [0.0, 0.0, 1.0]], # one_hot(2)
|
||
|
# [[0.0, 1.0, 0.0], # one_hot(1)
|
||
|
# [0.0, 0.0, 0.0]]] # one_hot(-1)
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
indices: A `Tensor` of indices.
|
||
|
depth: A scalar defining the depth of the one hot dimension.
|
||
|
on_value: A scalar defining the value to fill in output when `indices[j]
|
||
|
= i`. (default: 1)
|
||
|
off_value: A scalar defining the value to fill in output when `indices[j]
|
||
|
!= i`. (default: 0)
|
||
|
axis: The axis to fill (default: -1, a new inner-most axis).
|
||
|
dtype: The data type of the output tensor.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
output: The one-hot tensor.
|
||
|
|
||
|
Raises:
|
||
|
TypeError: If dtype of either `on_value` or `off_value` don't match `dtype`
|
||
|
TypeError: If dtype of `on_value` and `off_value` don't match one another
|
||
|
"""
|
||
|
with ops.name_scope(name, "one_hot",
|
||
|
[indices, depth, on_value, off_value, axis,
|
||
|
dtype]) as name:
|
||
|
on_exists = on_value is not None
|
||
|
off_exists = off_value is not None
|
||
|
|
||
|
on_dtype = (ops.convert_to_tensor(on_value).dtype.base_dtype if on_exists
|
||
|
else None)
|
||
|
off_dtype = (ops.convert_to_tensor(off_value).dtype.base_dtype if off_exists
|
||
|
else None)
|
||
|
|
||
|
if on_exists or off_exists:
|
||
|
if dtype is not None:
|
||
|
# Ensure provided on_value and/or off_value match dtype
|
||
|
if on_exists and on_dtype != dtype:
|
||
|
raise TypeError("dtype {0} of on_value does not match "
|
||
|
"dtype parameter {1}".format(on_dtype, dtype))
|
||
|
if off_exists and off_dtype != dtype:
|
||
|
raise TypeError("dtype {0} of off_value does not match "
|
||
|
"dtype parameter {1}".format(off_dtype, dtype))
|
||
|
else:
|
||
|
# dtype not provided: automatically assign it
|
||
|
dtype = on_dtype if on_exists else off_dtype
|
||
|
elif dtype is None:
|
||
|
# None of on_value, off_value, or dtype provided. Default dtype to float32
|
||
|
dtype = dtypes.float32
|
||
|
|
||
|
if not on_exists:
|
||
|
# on_value not provided: assign to value 1 of type dtype
|
||
|
on_value = ops.convert_to_tensor(1, dtype, name="on_value")
|
||
|
on_dtype = dtype
|
||
|
if not off_exists:
|
||
|
# off_value not provided: assign to value 0 of type dtype
|
||
|
off_value = ops.convert_to_tensor(0, dtype, name="off_value")
|
||
|
off_dtype = dtype
|
||
|
|
||
|
if on_dtype != off_dtype:
|
||
|
raise TypeError("dtype {0} of on_value does not match "
|
||
|
"dtype {1} of off_value".format(on_dtype, off_dtype))
|
||
|
|
||
|
return gen_array_ops.one_hot(indices, depth, on_value, off_value, axis,
|
||
|
name)
|
||
|
|
||
|
|
||
|
def _all_dimensions(x):
|
||
|
"""Returns a 1D-tensor listing all dimensions in x."""
|
||
|
# Fast path: avoid creating Rank and Range ops if ndims is known.
|
||
|
if isinstance(x, ops.Tensor) and x.get_shape().ndims is not None:
|
||
|
return constant_op.constant(
|
||
|
np.arange(x.get_shape().ndims), dtype=dtypes.int32)
|
||
|
if (isinstance(x, sparse_tensor.SparseTensor) and
|
||
|
x.dense_shape.get_shape().is_fully_defined()):
|
||
|
r = x.dense_shape.get_shape()[0].value # sparse.dense_shape is 1-D.
|
||
|
return constant_op.constant(np.arange(r), dtype=dtypes.int32)
|
||
|
|
||
|
# Otherwise, we rely on `range` and `rank` to do the right thing at runtime.
|
||
|
return gen_math_ops._range(0, rank(x), 1)
|
||
|
|
||
|
|
||
|
@tf_export("sequence_mask")
|
||
|
def sequence_mask(lengths, maxlen=None, dtype=dtypes.bool, name=None):
|
||
|
"""Returns a mask tensor representing the first N positions of each cell.
|
||
|
|
||
|
If `lengths` has shape `[d_1, d_2, ..., d_n]` the resulting tensor `mask` has
|
||
|
dtype `dtype` and shape `[d_1, d_2, ..., d_n, maxlen]`, with
|
||
|
|
||
|
```
|
||
|
mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])
|
||
|
```
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
tf.sequence_mask([1, 3, 2], 5) # [[True, False, False, False, False],
|
||
|
# [True, True, True, False, False],
|
||
|
# [True, True, False, False, False]]
|
||
|
|
||
|
tf.sequence_mask([[1, 3],[2,0]]) # [[[True, False, False],
|
||
|
# [True, True, True]],
|
||
|
# [[True, True, False],
|
||
|
# [False, False, False]]]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
lengths: integer tensor, all its values <= maxlen.
|
||
|
maxlen: scalar integer tensor, size of last dimension of returned tensor.
|
||
|
Default is the maximum value in `lengths`.
|
||
|
dtype: output type of the resulting tensor.
|
||
|
name: name of the op.
|
||
|
Returns:
|
||
|
A mask tensor of shape `lengths.shape + (maxlen,)`, cast to specified dtype.
|
||
|
Raises:
|
||
|
ValueError: if `maxlen` is not a scalar.
|
||
|
"""
|
||
|
with ops.name_scope(name, "SequenceMask", [lengths, maxlen]):
|
||
|
lengths = ops.convert_to_tensor(lengths)
|
||
|
|
||
|
if maxlen is None:
|
||
|
maxlen = gen_math_ops._max(lengths, _all_dimensions(lengths))
|
||
|
else:
|
||
|
maxlen = ops.convert_to_tensor(maxlen)
|
||
|
if maxlen.get_shape().ndims is not None and maxlen.get_shape().ndims != 0:
|
||
|
raise ValueError("maxlen must be scalar for sequence_mask")
|
||
|
|
||
|
# The basic idea is to compare a range row vector of size maxlen:
|
||
|
# [0, 1, 2, 3, 4]
|
||
|
# to length as a matrix with 1 column: [[1], [3], [2]].
|
||
|
# Because of broadcasting on both arguments this comparison results
|
||
|
# in a matrix of size (len(lengths), maxlen)
|
||
|
row_vector = gen_math_ops._range(
|
||
|
constant(0, maxlen.dtype), maxlen, constant(1, maxlen.dtype))
|
||
|
# Since maxlen >= max(lengths), it is safe to use maxlen as a cast
|
||
|
# authoritative type. Whenever maxlen fits into tf.int32, so do the lengths.
|
||
|
matrix = gen_math_ops.cast(expand_dims(lengths, -1), maxlen.dtype)
|
||
|
result = row_vector < matrix
|
||
|
|
||
|
if dtype is None or result.dtype.base_dtype == dtype.base_dtype:
|
||
|
return result
|
||
|
else:
|
||
|
return gen_math_ops.cast(result, dtype)
|
||
|
|
||
|
|
||
|
@tf_export("squeeze")
|
||
|
@deprecation.deprecated_args(None, "Use the `axis` argument instead",
|
||
|
"squeeze_dims")
|
||
|
def squeeze(input, axis=None, name=None, squeeze_dims=None):
|
||
|
# pylint: disable=redefined-builtin
|
||
|
"""Removes dimensions of size 1 from the shape of a tensor.
|
||
|
|
||
|
Given a tensor `input`, this operation returns a tensor of the same type with
|
||
|
all dimensions of size 1 removed. If you don't want to remove all size 1
|
||
|
dimensions, you can remove specific size 1 dimensions by specifying
|
||
|
`axis`.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
|
||
|
tf.shape(tf.squeeze(t)) # [2, 3]
|
||
|
```
|
||
|
|
||
|
Or, to remove specific size 1 dimensions:
|
||
|
|
||
|
```python
|
||
|
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
|
||
|
tf.shape(tf.squeeze(t, [2, 4])) # [1, 2, 3, 1]
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor`. The `input` to squeeze.
|
||
|
axis: An optional list of `ints`. Defaults to `[]`.
|
||
|
If specified, only squeezes the dimensions listed. The dimension
|
||
|
index starts at 0. It is an error to squeeze a dimension that is not 1.
|
||
|
Must be in the range `[-rank(input), rank(input))`.
|
||
|
name: A name for the operation (optional).
|
||
|
squeeze_dims: Deprecated keyword argument that is now axis.
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `input`.
|
||
|
Contains the same data as `input`, but has one or more dimensions of
|
||
|
size 1 removed.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: When both `squeeze_dims` and `axis` are specified.
|
||
|
"""
|
||
|
axis = deprecation.deprecated_argument_lookup(
|
||
|
"axis", axis, "squeeze_dims", squeeze_dims)
|
||
|
if np.isscalar(axis):
|
||
|
axis = [axis]
|
||
|
return gen_array_ops.squeeze(input, axis, name)
|
||
|
|
||
|
|
||
|
@tf_export("where")
|
||
|
def where(condition, x=None, y=None, name=None):
|
||
|
"""Return the elements, either from `x` or `y`, depending on the `condition`.
|
||
|
|
||
|
If both `x` and `y` are None, then this operation returns the coordinates of
|
||
|
true elements of `condition`. The coordinates are returned in a 2-D tensor
|
||
|
where the first dimension (rows) represents the number of true elements, and
|
||
|
the second dimension (columns) represents the coordinates of the true
|
||
|
elements. Keep in mind, the shape of the output tensor can vary depending on
|
||
|
how many true values there are in input. Indices are output in row-major
|
||
|
order.
|
||
|
|
||
|
If both non-None, `x` and `y` must have the same shape.
|
||
|
The `condition` tensor must be a scalar if `x` and `y` are scalar.
|
||
|
If `x` and `y` are vectors of higher rank, then `condition` must be either a
|
||
|
vector with size matching the first dimension of `x`, or must have the same
|
||
|
shape as `x`.
|
||
|
|
||
|
The `condition` tensor acts as a mask that chooses, based on the value at each
|
||
|
element, whether the corresponding element / row in the output should be taken
|
||
|
from `x` (if true) or `y` (if false).
|
||
|
|
||
|
If `condition` is a vector and `x` and `y` are higher rank matrices, then it
|
||
|
chooses which row (outer dimension) to copy from `x` and `y`. If `condition`
|
||
|
has the same shape as `x` and `y`, then it chooses which element to copy from
|
||
|
`x` and `y`.
|
||
|
|
||
|
Args:
|
||
|
condition: A `Tensor` of type `bool`
|
||
|
x: A Tensor which may have the same shape as `condition`. If `condition` is
|
||
|
rank 1, `x` may have higher rank, but its first dimension must match the
|
||
|
size of `condition`.
|
||
|
y: A `tensor` with the same shape and type as `x`.
|
||
|
name: A name of the operation (optional)
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` with the same type and shape as `x`, `y` if they are non-None.
|
||
|
A `Tensor` with shape `(num_true, dim_size(condition))`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: When exactly one of `x` or `y` is non-None.
|
||
|
"""
|
||
|
if x is None and y is None:
|
||
|
with ops.name_scope(name, "Where", [condition]) as name:
|
||
|
condition = ops.convert_to_tensor(
|
||
|
condition, preferred_dtype=dtypes.bool, name="condition")
|
||
|
return gen_array_ops.where(condition=condition, name=name)
|
||
|
elif x is not None and y is not None:
|
||
|
return gen_math_ops.select(condition=condition, x=x, y=y, name=name)
|
||
|
else:
|
||
|
raise ValueError("x and y must both be non-None or both be None.")
|
||
|
|
||
|
|
||
|
# pylint: disable=redefined-builtin
|
||
|
@tf_export("reverse_sequence")
|
||
|
@deprecation.deprecated_args(
|
||
|
None, "seq_dim is deprecated, use seq_axis instead", "seq_dim")
|
||
|
@deprecation.deprecated_args(
|
||
|
None, "batch_dim is deprecated, use batch_axis instead", "batch_dim")
|
||
|
def reverse_sequence(input,
|
||
|
seq_lengths,
|
||
|
seq_axis=None,
|
||
|
batch_axis=None,
|
||
|
name=None,
|
||
|
seq_dim=None,
|
||
|
batch_dim=None):
|
||
|
seq_axis = deprecation.deprecated_argument_lookup("seq_axis", seq_axis,
|
||
|
"seq_dim", seq_dim)
|
||
|
batch_axis = deprecation.deprecated_argument_lookup("batch_axis", batch_axis,
|
||
|
"batch_dim", batch_dim)
|
||
|
return gen_array_ops.reverse_sequence(
|
||
|
input=input,
|
||
|
seq_lengths=seq_lengths,
|
||
|
seq_dim=seq_axis,
|
||
|
batch_dim=batch_axis,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
# pylint: enable=redefined-builtin
|
||
|
|
||
|
reverse_sequence.__doc__ = deprecation.rewrite_argument_docstring(
|
||
|
deprecation.rewrite_argument_docstring(
|
||
|
gen_array_ops.reverse_sequence.__doc__, "batch_dim", "batch_axis"),
|
||
|
"seq_dim", "seq_axis")
|
||
|
|
||
|
|
||
|
@tf_export("gather")
|
||
|
def gather(params, indices, validate_indices=None, name=None, axis=0):
|
||
|
del validate_indices
|
||
|
if axis != 0:
|
||
|
# Note that we do a sparse_read here to avoid snapshotting the entire
|
||
|
# resource variable and doing a gather, which can be inefficient and lead to
|
||
|
# subtle race conditions. TODO(apassos) implement axis != 0 on sparse_read
|
||
|
return gen_array_ops.gather_v2(params, indices, axis, name=name)
|
||
|
try:
|
||
|
# TODO(apassos) find a less bad way of detecting resource variables without
|
||
|
# introducing a circular dependency.
|
||
|
return params.sparse_read(indices, name=name)
|
||
|
except AttributeError:
|
||
|
return gen_array_ops.gather_v2(params, indices, axis, name=name)
|
||
|
|
||
|
|
||
|
gather.__doc__ = gen_array_ops.gather_v2.__doc__
|
||
|
|
||
|
|
||
|
# Define quantize_v2 here in order to make name the second-to-last attribute,
|
||
|
# because round_mode was added later.
|
||
|
@tf_export("quantize_v2")
|
||
|
@deprecation.deprecated(
|
||
|
"2017-10-25",
|
||
|
"`tf.quantize_v2` is deprecated, please use `tf.quantize` instead.")
|
||
|
def quantize_v2(input, # pylint: disable=redefined-builtin
|
||
|
min_range,
|
||
|
max_range,
|
||
|
T,
|
||
|
mode="MIN_COMBINED",
|
||
|
name=None,
|
||
|
round_mode="HALF_AWAY_FROM_ZERO"):
|
||
|
return gen_array_ops.quantize_v2(input,
|
||
|
min_range,
|
||
|
max_range,
|
||
|
T=T,
|
||
|
mode=mode,
|
||
|
name=name,
|
||
|
round_mode=round_mode)
|
||
|
|
||
|
|
||
|
quantize_v2.__doc__ = """Please use `tf.quantize` instead."""
|
||
|
|
||
|
|
||
|
# We want to expose tf.quantize instead of tf.quantize_v2; we can deprecate
|
||
|
# tf.quantize_v2 in next version of TensorFlow.
|
||
|
@tf_export("quantize")
|
||
|
def quantize(input, # pylint: disable=redefined-builtin
|
||
|
min_range,
|
||
|
max_range,
|
||
|
T,
|
||
|
mode="MIN_COMBINED",
|
||
|
round_mode="HALF_AWAY_FROM_ZERO",
|
||
|
name=None):
|
||
|
return gen_array_ops.quantize_v2(
|
||
|
input,
|
||
|
min_range,
|
||
|
max_range,
|
||
|
T,
|
||
|
mode=mode,
|
||
|
round_mode=round_mode,
|
||
|
name=name)
|
||
|
|
||
|
|
||
|
quantize.__doc__ = gen_array_ops.quantize_v2.__doc__
|