460 lines
18 KiB
Python
460 lines
18 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# =============================================================================
|
||
|
|
||
|
"""Contains the pooling layer classes and their functional aliases.
|
||
|
"""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from tensorflow.python.keras import layers as keras_layers
|
||
|
from tensorflow.python.layers import base
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
@tf_export('layers.AveragePooling1D')
|
||
|
class AveragePooling1D(keras_layers.AveragePooling1D, base.Layer):
|
||
|
"""Average Pooling layer for 1D inputs.
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: An integer or tuple/list of a single integer,
|
||
|
representing the size of the pooling window.
|
||
|
strides: An integer or tuple/list of a single integer, specifying the
|
||
|
strides of the pooling operation.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string, one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, length, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, length)`.
|
||
|
name: A string, the name of the layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None, **kwargs):
|
||
|
if strides is None:
|
||
|
raise ValueError('Argument `strides` must not be None.')
|
||
|
super(AveragePooling1D, self).__init__(
|
||
|
pool_size=pool_size,
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
data_format=data_format,
|
||
|
name=name,
|
||
|
**kwargs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.average_pooling1d')
|
||
|
def average_pooling1d(inputs, pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None):
|
||
|
"""Average Pooling layer for 1D inputs.
|
||
|
|
||
|
Arguments:
|
||
|
inputs: The tensor over which to pool. Must have rank 3.
|
||
|
pool_size: An integer or tuple/list of a single integer,
|
||
|
representing the size of the pooling window.
|
||
|
strides: An integer or tuple/list of a single integer, specifying the
|
||
|
strides of the pooling operation.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string, one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, length, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, length)`.
|
||
|
name: A string, the name of the layer.
|
||
|
|
||
|
Returns:
|
||
|
The output tensor, of rank 3.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if eager execution is enabled.
|
||
|
"""
|
||
|
layer = AveragePooling1D(pool_size=pool_size,
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
data_format=data_format,
|
||
|
name=name)
|
||
|
return layer.apply(inputs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.MaxPooling1D')
|
||
|
class MaxPooling1D(keras_layers.MaxPooling1D, base.Layer):
|
||
|
"""Max Pooling layer for 1D inputs.
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: An integer or tuple/list of a single integer,
|
||
|
representing the size of the pooling window.
|
||
|
strides: An integer or tuple/list of a single integer, specifying the
|
||
|
strides of the pooling operation.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string, one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, length, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, length)`.
|
||
|
name: A string, the name of the layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None, **kwargs):
|
||
|
if strides is None:
|
||
|
raise ValueError('Argument `strides` must not be None.')
|
||
|
super(MaxPooling1D, self).__init__(
|
||
|
pool_size=pool_size,
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
data_format=data_format,
|
||
|
name=name,
|
||
|
**kwargs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.max_pooling1d')
|
||
|
def max_pooling1d(inputs, pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None):
|
||
|
"""Max Pooling layer for 1D inputs.
|
||
|
|
||
|
Arguments:
|
||
|
inputs: The tensor over which to pool. Must have rank 3.
|
||
|
pool_size: An integer or tuple/list of a single integer,
|
||
|
representing the size of the pooling window.
|
||
|
strides: An integer or tuple/list of a single integer, specifying the
|
||
|
strides of the pooling operation.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string, one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, length, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, length)`.
|
||
|
name: A string, the name of the layer.
|
||
|
|
||
|
Returns:
|
||
|
The output tensor, of rank 3.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if eager execution is enabled.
|
||
|
"""
|
||
|
layer = MaxPooling1D(pool_size=pool_size,
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
data_format=data_format,
|
||
|
name=name)
|
||
|
return layer.apply(inputs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.AveragePooling2D')
|
||
|
class AveragePooling2D(keras_layers.AveragePooling2D, base.Layer):
|
||
|
"""Average pooling layer for 2D inputs (e.g. images).
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 2 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` (default) and `channels_first` are supported.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, height, width, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None, **kwargs):
|
||
|
if strides is None:
|
||
|
raise ValueError('Argument `strides` must not be None.')
|
||
|
super(AveragePooling2D, self).__init__(
|
||
|
pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format, name=name, **kwargs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.average_pooling2d')
|
||
|
def average_pooling2d(inputs,
|
||
|
pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None):
|
||
|
"""Average pooling layer for 2D inputs (e.g. images).
|
||
|
|
||
|
Arguments:
|
||
|
inputs: The tensor over which to pool. Must have rank 4.
|
||
|
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 2 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` (default) and `channels_first` are supported.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, height, width, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
|
||
|
Returns:
|
||
|
Output tensor.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if eager execution is enabled.
|
||
|
"""
|
||
|
layer = AveragePooling2D(pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format,
|
||
|
name=name)
|
||
|
return layer.apply(inputs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.MaxPooling2D')
|
||
|
class MaxPooling2D(keras_layers.MaxPooling2D, base.Layer):
|
||
|
"""Max pooling layer for 2D inputs (e.g. images).
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 2 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` (default) and `channels_first` are supported.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, height, width, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None, **kwargs):
|
||
|
if strides is None:
|
||
|
raise ValueError('Argument `strides` must not be None.')
|
||
|
super(MaxPooling2D, self).__init__(
|
||
|
pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format, name=name, **kwargs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.max_pooling2d')
|
||
|
def max_pooling2d(inputs,
|
||
|
pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None):
|
||
|
"""Max pooling layer for 2D inputs (e.g. images).
|
||
|
|
||
|
Arguments:
|
||
|
inputs: The tensor over which to pool. Must have rank 4.
|
||
|
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 2 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` (default) and `channels_first` are supported.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, height, width, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
|
||
|
Returns:
|
||
|
Output tensor.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if eager execution is enabled.
|
||
|
"""
|
||
|
layer = MaxPooling2D(pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format,
|
||
|
name=name)
|
||
|
return layer.apply(inputs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.AveragePooling3D')
|
||
|
class AveragePooling3D(keras_layers.AveragePooling3D, base.Layer):
|
||
|
"""Average pooling layer for 3D inputs (e.g. volumes).
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: An integer or tuple/list of 3 integers:
|
||
|
(pool_depth, pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 3 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` (default) and `channels_first` are supported.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, depth, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch, channels, depth, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None, **kwargs):
|
||
|
if strides is None:
|
||
|
raise ValueError('Argument `strides` must not be None.')
|
||
|
super(AveragePooling3D, self).__init__(
|
||
|
pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format, name=name, **kwargs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.average_pooling3d')
|
||
|
def average_pooling3d(inputs,
|
||
|
pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None):
|
||
|
"""Average pooling layer for 3D inputs (e.g. volumes).
|
||
|
|
||
|
Arguments:
|
||
|
inputs: The tensor over which to pool. Must have rank 5.
|
||
|
pool_size: An integer or tuple/list of 3 integers:
|
||
|
(pool_depth, pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 3 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` (default) and `channels_first` are supported.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, depth, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch, channels, depth, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
|
||
|
Returns:
|
||
|
Output tensor.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if eager execution is enabled.
|
||
|
"""
|
||
|
layer = AveragePooling3D(pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format,
|
||
|
name=name)
|
||
|
return layer.apply(inputs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.MaxPooling3D')
|
||
|
class MaxPooling3D(keras_layers.MaxPooling3D, base.Layer):
|
||
|
"""Max pooling layer for 3D inputs (e.g. volumes).
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: An integer or tuple/list of 3 integers:
|
||
|
(pool_depth, pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 3 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` (default) and `channels_first` are supported.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, depth, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch, channels, depth, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None, **kwargs):
|
||
|
if strides is None:
|
||
|
raise ValueError('Argument `strides` must not be None.')
|
||
|
super(MaxPooling3D, self).__init__(
|
||
|
pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format, name=name, **kwargs)
|
||
|
|
||
|
|
||
|
@tf_export('layers.max_pooling3d')
|
||
|
def max_pooling3d(inputs,
|
||
|
pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None):
|
||
|
"""Max pooling layer for 3D inputs (e.g. volumes).
|
||
|
|
||
|
Arguments:
|
||
|
inputs: The tensor over which to pool. Must have rank 5.
|
||
|
pool_size: An integer or tuple/list of 3 integers:
|
||
|
(pool_depth, pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 3 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` (default) and `channels_first` are supported.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, depth, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch, channels, depth, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
|
||
|
Returns:
|
||
|
Output tensor.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if eager execution is enabled.
|
||
|
"""
|
||
|
layer = MaxPooling3D(pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format,
|
||
|
name=name)
|
||
|
return layer.apply(inputs)
|
||
|
|
||
|
# Aliases
|
||
|
|
||
|
AvgPool2D = AveragePooling2D
|
||
|
MaxPool2D = MaxPooling2D
|
||
|
max_pool2d = max_pooling2d
|
||
|
avg_pool2d = average_pooling2d
|