laywerrobot/lib/python3.6/site-packages/tensorflow/python/keras/datasets/cifar100.py

65 lines
2.2 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CIFAR100 small images classification dataset.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.datasets.cifar import load_batch
from tensorflow.python.keras.utils.data_utils import get_file
from tensorflow.python.util.tf_export import tf_export
@tf_export('keras.datasets.cifar100.load_data')
def load_data(label_mode='fine'):
"""Loads CIFAR100 dataset.
Arguments:
label_mode: one of "fine", "coarse".
Returns:
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
Raises:
ValueError: in case of invalid `label_mode`.
"""
if label_mode not in ['fine', 'coarse']:
raise ValueError('`label_mode` must be one of `"fine"`, `"coarse"`.')
dirname = 'cifar-100-python'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
path = get_file(dirname, origin=origin, untar=True)
fpath = os.path.join(path, 'train')
x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels')
fpath = os.path.join(path, 'test')
x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels')
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
if K.image_data_format() == 'channels_last':
x_train = x_train.transpose(0, 2, 3, 1)
x_test = x_test.transpose(0, 2, 3, 1)
return (x_train, y_train), (x_test, y_test)