63 lines
2.1 KiB
Python
63 lines
2.1 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""CIFAR10 small images classification dataset.
|
||
|
"""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from tensorflow.python.keras import backend as K
|
||
|
from tensorflow.python.keras.datasets.cifar import load_batch
|
||
|
from tensorflow.python.keras.utils.data_utils import get_file
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
@tf_export('keras.datasets.cifar10.load_data')
|
||
|
def load_data():
|
||
|
"""Loads CIFAR10 dataset.
|
||
|
|
||
|
Returns:
|
||
|
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
|
||
|
"""
|
||
|
dirname = 'cifar-10-batches-py'
|
||
|
origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
|
||
|
path = get_file(dirname, origin=origin, untar=True)
|
||
|
|
||
|
num_train_samples = 50000
|
||
|
|
||
|
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
|
||
|
y_train = np.empty((num_train_samples,), dtype='uint8')
|
||
|
|
||
|
for i in range(1, 6):
|
||
|
fpath = os.path.join(path, 'data_batch_' + str(i))
|
||
|
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
|
||
|
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
|
||
|
|
||
|
fpath = os.path.join(path, 'test_batch')
|
||
|
x_test, y_test = load_batch(fpath)
|
||
|
|
||
|
y_train = np.reshape(y_train, (len(y_train), 1))
|
||
|
y_test = np.reshape(y_test, (len(y_test), 1))
|
||
|
|
||
|
if K.image_data_format() == 'channels_last':
|
||
|
x_train = x_train.transpose(0, 2, 3, 1)
|
||
|
x_test = x_test.transpose(0, 2, 3, 1)
|
||
|
|
||
|
return (x_train, y_train), (x_test, y_test)
|