230 lines
8.4 KiB
Python
230 lines
8.4 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
# pylint: disable=invalid-name
|
||
|
# pylint: disable=unused-import
|
||
|
"""VGG16 model for Keras.
|
||
|
|
||
|
# Reference
|
||
|
|
||
|
- [Very Deep Convolutional Networks for Large-Scale Image
|
||
|
Recognition](https://arxiv.org/abs/1409.1556)
|
||
|
|
||
|
"""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
|
||
|
from tensorflow.python.keras import backend as K
|
||
|
from tensorflow.python.keras.applications.imagenet_utils import _obtain_input_shape
|
||
|
from tensorflow.python.keras.applications.imagenet_utils import decode_predictions
|
||
|
from tensorflow.python.keras.applications.imagenet_utils import preprocess_input
|
||
|
from tensorflow.python.keras.layers import Conv2D
|
||
|
from tensorflow.python.keras.layers import Dense
|
||
|
from tensorflow.python.keras.layers import Flatten
|
||
|
from tensorflow.python.keras.layers import GlobalAveragePooling2D
|
||
|
from tensorflow.python.keras.layers import GlobalMaxPooling2D
|
||
|
from tensorflow.python.keras.layers import Input
|
||
|
from tensorflow.python.keras.layers import MaxPooling2D
|
||
|
from tensorflow.python.keras.models import Model
|
||
|
from tensorflow.python.keras.utils import layer_utils
|
||
|
from tensorflow.python.keras.utils.data_utils import get_file
|
||
|
from tensorflow.python.platform import tf_logging as logging
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5'
|
||
|
WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5'
|
||
|
|
||
|
|
||
|
@tf_export('keras.applications.VGG16', 'keras.applications.vgg16.VGG16')
|
||
|
def VGG16(include_top=True,
|
||
|
weights='imagenet',
|
||
|
input_tensor=None,
|
||
|
input_shape=None,
|
||
|
pooling=None,
|
||
|
classes=1000):
|
||
|
"""Instantiates the VGG16 architecture.
|
||
|
|
||
|
Optionally loads weights pre-trained
|
||
|
on ImageNet. Note that when using TensorFlow,
|
||
|
for best performance you should set
|
||
|
`image_data_format='channels_last'` in your Keras config
|
||
|
at ~/.keras/keras.json.
|
||
|
|
||
|
The model and the weights are compatible with both
|
||
|
TensorFlow and Theano. The data format
|
||
|
convention used by the model is the one
|
||
|
specified in your Keras config file.
|
||
|
|
||
|
Arguments:
|
||
|
include_top: whether to include the 3 fully-connected
|
||
|
layers at the top of the network.
|
||
|
weights: one of `None` (random initialization),
|
||
|
'imagenet' (pre-training on ImageNet),
|
||
|
or the path to the weights file to be loaded.
|
||
|
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
|
||
|
to use as image input for the model.
|
||
|
input_shape: optional shape tuple, only to be specified
|
||
|
if `include_top` is False (otherwise the input shape
|
||
|
has to be `(224, 224, 3)` (with `channels_last` data format)
|
||
|
or `(3, 224, 224)` (with `channels_first` data format).
|
||
|
It should have exactly 3 input channels,
|
||
|
and width and height should be no smaller than 48.
|
||
|
E.g. `(200, 200, 3)` would be one valid value.
|
||
|
pooling: Optional pooling mode for feature extraction
|
||
|
when `include_top` is `False`.
|
||
|
- `None` means that the output of the model will be
|
||
|
the 4D tensor output of the
|
||
|
last convolutional layer.
|
||
|
- `avg` means that global average pooling
|
||
|
will be applied to the output of the
|
||
|
last convolutional layer, and thus
|
||
|
the output of the model will be a 2D tensor.
|
||
|
- `max` means that global max pooling will
|
||
|
be applied.
|
||
|
classes: optional number of classes to classify images
|
||
|
into, only to be specified if `include_top` is True, and
|
||
|
if no `weights` argument is specified.
|
||
|
|
||
|
Returns:
|
||
|
A Keras model instance.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: in case of invalid argument for `weights`,
|
||
|
or invalid input shape.
|
||
|
"""
|
||
|
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||
|
raise ValueError('The `weights` argument should be either '
|
||
|
'`None` (random initialization), `imagenet` '
|
||
|
'(pre-training on ImageNet), '
|
||
|
'or the path to the weights file to be loaded.')
|
||
|
|
||
|
if weights == 'imagenet' and include_top and classes != 1000:
|
||
|
raise ValueError('If using `weights` as imagenet with `include_top`'
|
||
|
' as true, `classes` should be 1000')
|
||
|
# Determine proper input shape
|
||
|
input_shape = _obtain_input_shape(
|
||
|
input_shape,
|
||
|
default_size=224,
|
||
|
min_size=48,
|
||
|
data_format=K.image_data_format(),
|
||
|
require_flatten=include_top,
|
||
|
weights=weights)
|
||
|
|
||
|
if input_tensor is None:
|
||
|
img_input = Input(shape=input_shape)
|
||
|
else:
|
||
|
if not K.is_keras_tensor(input_tensor):
|
||
|
img_input = Input(tensor=input_tensor, shape=input_shape)
|
||
|
else:
|
||
|
img_input = input_tensor
|
||
|
# Block 1
|
||
|
x = Conv2D(
|
||
|
64, (3, 3), activation='relu', padding='same', name='block1_conv1')(
|
||
|
img_input)
|
||
|
x = Conv2D(
|
||
|
64, (3, 3), activation='relu', padding='same', name='block1_conv2')(
|
||
|
x)
|
||
|
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
|
||
|
|
||
|
# Block 2
|
||
|
x = Conv2D(
|
||
|
128, (3, 3), activation='relu', padding='same', name='block2_conv1')(
|
||
|
x)
|
||
|
x = Conv2D(
|
||
|
128, (3, 3), activation='relu', padding='same', name='block2_conv2')(
|
||
|
x)
|
||
|
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
|
||
|
|
||
|
# Block 3
|
||
|
x = Conv2D(
|
||
|
256, (3, 3), activation='relu', padding='same', name='block3_conv1')(
|
||
|
x)
|
||
|
x = Conv2D(
|
||
|
256, (3, 3), activation='relu', padding='same', name='block3_conv2')(
|
||
|
x)
|
||
|
x = Conv2D(
|
||
|
256, (3, 3), activation='relu', padding='same', name='block3_conv3')(
|
||
|
x)
|
||
|
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
|
||
|
|
||
|
# Block 4
|
||
|
x = Conv2D(
|
||
|
512, (3, 3), activation='relu', padding='same', name='block4_conv1')(
|
||
|
x)
|
||
|
x = Conv2D(
|
||
|
512, (3, 3), activation='relu', padding='same', name='block4_conv2')(
|
||
|
x)
|
||
|
x = Conv2D(
|
||
|
512, (3, 3), activation='relu', padding='same', name='block4_conv3')(
|
||
|
x)
|
||
|
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
|
||
|
|
||
|
# Block 5
|
||
|
x = Conv2D(
|
||
|
512, (3, 3), activation='relu', padding='same', name='block5_conv1')(
|
||
|
x)
|
||
|
x = Conv2D(
|
||
|
512, (3, 3), activation='relu', padding='same', name='block5_conv2')(
|
||
|
x)
|
||
|
x = Conv2D(
|
||
|
512, (3, 3), activation='relu', padding='same', name='block5_conv3')(
|
||
|
x)
|
||
|
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
|
||
|
|
||
|
if include_top:
|
||
|
# Classification block
|
||
|
x = Flatten(name='flatten')(x)
|
||
|
x = Dense(4096, activation='relu', name='fc1')(x)
|
||
|
x = Dense(4096, activation='relu', name='fc2')(x)
|
||
|
x = Dense(classes, activation='softmax', name='predictions')(x)
|
||
|
else:
|
||
|
if pooling == 'avg':
|
||
|
x = GlobalAveragePooling2D()(x)
|
||
|
elif pooling == 'max':
|
||
|
x = GlobalMaxPooling2D()(x)
|
||
|
|
||
|
# Ensure that the model takes into account
|
||
|
# any potential predecessors of `input_tensor`.
|
||
|
if input_tensor is not None:
|
||
|
inputs = layer_utils.get_source_inputs(input_tensor)
|
||
|
else:
|
||
|
inputs = img_input
|
||
|
# Create model.
|
||
|
model = Model(inputs, x, name='vgg16')
|
||
|
|
||
|
# load weights
|
||
|
if weights == 'imagenet':
|
||
|
if include_top:
|
||
|
weights_path = get_file(
|
||
|
'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
|
||
|
WEIGHTS_PATH,
|
||
|
cache_subdir='models',
|
||
|
file_hash='64373286793e3c8b2b4e3219cbf3544b')
|
||
|
else:
|
||
|
weights_path = get_file(
|
||
|
'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
||
|
WEIGHTS_PATH_NO_TOP,
|
||
|
cache_subdir='models',
|
||
|
file_hash='6d6bbae143d832006294945121d1f1fc')
|
||
|
model.load_weights(weights_path)
|
||
|
|
||
|
elif weights is not None:
|
||
|
model.load_weights(weights)
|
||
|
|
||
|
return model
|