laywerrobot/lib/python3.6/site-packages/tensorflow/python/framework/function.py

1242 lines
42 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Python front-end supports for functions.
NOTE: functions are currently experimental and subject to change!
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import hashlib
import sys
from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import function_pb2
from tensorflow.python import pywrap_tensorflow as c_api
from tensorflow.python.eager import context
from tensorflow.python.framework import c_api_util
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import graph_to_function_def
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import cond_v2_impl
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.util import compat
from tensorflow.python.util import tf_contextlib
from tensorflow.python.util import tf_decorator
from tensorflow.python.util import tf_inspect
# This is to avoid a circular dependency with cond_v2_impl.
cond_v2_impl._function = sys.modules[__name__] # pylint: disable=protected-access
class Defun(object):
"""Decorator used to define TensorFlow functions.
Use this decorator to make a Python function usable directly as a TensorFlow
function.
The decorated function must add ops to the default graph and return zero or
more `Tensor` objects. Call the decorator with named arguments, one for each
argument of the function to decorate, with the expected type of the argument
as value.
For example if the function to decorate accepts two `tf.float32` arguments
named `x` and `y`, call the decorator with:
@Defun(tf.float32, tf.float32)
def foo(x, y):
...
When you call the decorated function it will add `call` ops to the
default graph and adds the definition of the function into the
default graph. Because the addition of the function into the graph
is deferred, the decorator can be used anywhere in the program.
Any variables created inside of the function are hoisted into the outer graph.
Note that the variables are created in the variable scope that was active
during the first call to the function. Subsequent function calls will refer to
the same set of variables.
Definitions of functions in a graph are frozen as soon as the graph is used to
create a session. However, new functions and new calls to existing functions
may be added to the graph, with the new functions themselves becoming
immediately frozen.
Example, but also see the [How To on functions](link_needed).
```python
# Defining the function.
@tf.Defun(tf.float32, tf.float32)
def MyFunc(x, y):
return x + y, x - y
# Building the graph.
a = tf.constant([1.0])
b = tf.constant([2.0])
c, d = MyFunc(a, b, name='mycall')
```
"""
def __init__(self, *input_types, **kwargs):
"""Create a `Defun` decorator.
Args:
*input_types: A list of `tf.DType`
**kwargs: Optional keyword arguments, including
func_name - (optional). A python string, the name to use to
declare this `Function` in the graph.
grad_func - (optional). A function implementing the gradient
of the function-to-register. This is must be a
`_DefinedFunction` object. The gradient
function must satisfy the criterion defined in
function.proto:GradientDef.
python_grad_func - (optional). A function implementing the
gradient of the function python-side. This function must
take the current op and the gradients w.r.t. its outputs,
and return the gradients w.r.t. the inputs. That is it must
implement the interface expected by `tf.RegisterGradient`).
This will be called by tf.gradients to add the gradient ops
to the graph. At most one of grad_func and python_grad_func
can be specified.
out_names = (optional). A list of strings, one per output
tensor.
shape_func - (optional). A function taking the op and returning a list
of static shapes to set for the function's outputs.
"""
self._input_types = input_types
self._func_name = kwargs.pop("func_name", None)
self._grad_func = kwargs.pop("grad_func", None)
self._python_grad_func = kwargs.pop("python_grad_func", None)
self._out_names = kwargs.pop("out_names", None)
self._extra_kwargs = kwargs
def __call__(self, func):
# Various sanity checks on the callable func.
if not callable(func):
raise ValueError("func %s must be callable" % func)
# Func should not use kwargs and defaults.
argspec = tf_inspect.getargspec(func)
if argspec.keywords or argspec.defaults:
raise ValueError("Functions with argument defaults or keyword "
"arguments are not supported.")
# Computes how many arguments 'func' has.
min_args = len(argspec.args)
max_args = min_args
if argspec.varargs:
max_args = 1000000
argnames = argspec.args
if tf_inspect.ismethod(func):
# 1st argument is the "class" type.
min_args -= 1
argnames = argnames[1:]
if self._input_types:
# If Defun is given a list of types for the inputs, the number
# of input types should be compatible with 'func'.
num = len(self._input_types)
if num < min_args or num > max_args:
raise ValueError(
"The function has fewer arguments than the number of specified "
"input types.")
return _DefinedFunction(
func,
argnames,
self._input_types,
self._func_name,
self._grad_func,
self._python_grad_func,
out_names=self._out_names,
**self._extra_kwargs)
# 'func' expects no arguments and input types is an empty list.
if min_args == 0 and max_args == 0:
return _DefinedFunction(
func, [], [],
self._func_name,
self._grad_func,
self._python_grad_func,
out_names=self._out_names,
**self._extra_kwargs)
# Input types are unknown. It's an overloaded function and hence
# its definition needs to be deferred until it's called.
return _OverloadedFunction(
func,
argnames,
self._func_name,
self._grad_func,
self._python_grad_func,
out_names=self._out_names,
**self._extra_kwargs)
class _DefinedFunction(object):
"""_DefinedFunction encapsulates a function definition and its properties.
Attributes:
name: The function name.
definition: The definition of this function. A FunctionDef proto.
grad_func_name: If not None, the name of this function's gradient function.
python_grad_func: A python callable implementing the gradient of
the function python-side.
"""
def __init__(self,
func,
argnames,
input_types,
func_name=None,
grad_func=None,
python_grad_func=None,
out_names=None,
shape_func=None,
capture_by_value=False,
**kwargs):
"""Creates _DefinedFunction.
Args:
func: A python callable which constructs a tf function body.
argnames: A list of strings for function argument names.
input_types: The function's argument types. Can be a tuple, list of
tf data types.
func_name: The function name. Defaults to None, in which derives from
'func'.
grad_func: This function's gradient function, if not None. Defaults
to None.
python_grad_func: A python callable implementing the gradient of
the function python-side.
out_names: An optional list of strings for the function return value
names.
shape_func: An optional function mapping an op to a list of static
output shapes.
capture_by_value: Boolean (defaults to False). If True, captured values
will be copied into the function body.
**kwargs: The keyword arguments. **kwargs is passed to every call
site of this function.
Raises:
ValueError: The function definition is invalid.
"""
self._func = func
self._input_types = input_types
self._func_name = func_name
self._grad_func = grad_func
self._python_grad_func = python_grad_func
self._out_names = out_names
self._shape_func = shape_func
self._capture_by_value = capture_by_value
self._extra_kwargs = kwargs
# Constructed only when C API is disabled, lazily
self._definition = None
# Constructed only when C API is enabled, lazily
self._c_func = None
self._sub_functions = dict() # Constructed with _definition or _c_func
device_stack = ops.get_default_graph()._device_function_stack # pylint: disable=protected-access
# Get the innermost device if possbile.
self._caller_device = device_stack[-1] if device_stack else None
# Cached OpDef for this function. When C API is enabled, this is
# the only part of FunctionDef that we cache in Python. When C API
# is disabled the whole _definition is available and this is simply
# another reference to _definition.signature
self._op_def = None
assert isinstance(input_types, (list, tuple))
self._arg_types = input_types
self._arg_names = [argnames[i] if i < len(argnames) else ("arg%d" % i)
for i in range(len(input_types))]
@property
def name(self):
"""Function name."""
self._create_definition_if_needed()
return self._func_name
@property
def definition(self):
"""Function definition proto."""
self._create_definition_if_needed()
if self._c_func:
with c_api_util.tf_buffer() as buf:
c_api.TF_FunctionToFunctionDef(self._c_func.func, buf)
fdef = function_pb2.FunctionDef()
proto_data = c_api.TF_GetBuffer(buf)
fdef.ParseFromString(compat.as_bytes(proto_data))
return fdef
return self._definition
@property
def _signature(self):
self._create_definition_if_needed()
return self._op_def
def set_grad_func(self, grad_func):
"""Specifies the gradient function of this function."""
assert not self._grad_func
assert isinstance(grad_func, _DefinedFunction)
self._grad_func = grad_func
@property
def grad_func_name(self):
"""Its gradient function's name."""
return self._grad_func.name if self._grad_func else None
@property
def python_grad_func(self):
"""Python gradient function callable."""
return self._python_grad_func
@property
def declared_input_types(self):
"""Returns the list of data types of explicit declared inputs."""
return self._input_types
@property
def captured_inputs(self):
"""Returns the list of implicitly captured inputs."""
self._create_definition_if_needed()
return self._extra_inputs
@property
def stateful_ops(self):
"""Returns the list of stateful ops in function definition.
Returns:
A list of (op.name, op.type) pairs.
"""
self._create_definition_if_needed()
return self._stateful_ops
def _create_definition_if_needed(self):
"""Creates the function definition if it's not created yet."""
with context.graph_mode():
self._create_definition_if_needed_impl()
def _create_definition_if_needed_impl(self):
"""This is not what you want, see _create_definition_if_needed."""
if self._definition is not None or self._c_func is not None:
return
temp_graph = func_graph_from_py_func(
self._func, self._arg_names, self._arg_types, self._func_name,
self._capture_by_value, self._caller_device)
self._extra_inputs = temp_graph.extra_inputs
# pylint: disable=protected-access
self._sub_functions = temp_graph._functions
# pylint: enable=protected-access
# Extra kwargs are treated as attrs on the function def.
if self._func_name:
base_func_name = self._func_name
else:
base_func_name = _get_func_name(self._func)
if self._grad_func:
base_func_name += ("_%s" % self._grad_func.name)
kwargs_attr = _parse_kwargs_as_attrs(base_func_name, **self._extra_kwargs)
if not temp_graph._c_graph: # pylint: disable=protected-access
# Build the FunctionDef
self._definition = graph_to_function_def.graph_to_function_def(
temp_graph,
temp_graph.get_operations(),
temp_graph.inputs,
temp_graph.outputs,
out_names=self._out_names)
for k in kwargs_attr:
self._definition.attr[k].CopyFrom(kwargs_attr[k])
# Hash the definition and its dependencies.
self._hash_str = self._create_hash_str(
self._definition.signature.input_arg,
self._definition.signature.output_arg, self._definition.node_def)
# Finally, we decide the function name to use. If not specified,
# make up something which is almost certainly unique (but deterministic).
if not self._func_name:
self._func_name = "_".join([base_func_name, self._hash_str])
self._definition.signature.name = self._func_name
if self._func.__doc__:
self._definition.signature.description = self._func.__doc__
self._op_def = self._definition.signature
else: # C API is enabled
output_names = ([compat.as_bytes(x) for x in self._out_names]
if self._out_names else [])
description = self._func.__doc__ or None
# pylint: disable=protected-access
c_func = c_api.TF_GraphToFunction_wrapper(
temp_graph._c_graph,
base_func_name,
self._func_name is None, # append_hash_to_fn_name
None, # opers
[t._as_tf_output() for t in temp_graph.inputs],
[t._as_tf_output() for t in temp_graph.outputs],
output_names,
None, # opts
description)
self._c_func = c_api_util.ScopedTFFunction(c_func)
# pylint: enable=protected-access
self._set_c_attrs(kwargs_attr)
# Set cached fields: _op_def and _func_name (if not already set)
self._op_def = self.definition.signature
if self._func_name:
assert self._func_name == self._op_def.name
else:
self._func_name = compat.as_str(self._op_def.name)
self._stateful_ops = [(op.name, op.type)
for op in temp_graph.get_operations()
if op.op_def.is_stateful]
def _set_c_attrs(self, attrs):
"""Sets `attrs` as attributes of self._c_func.
Requires that self._c_func is not None.
Args:
attrs: a dictionary from attribute name to attribute proto value
"""
for name, attr_value in attrs.items():
serialized = attr_value.SerializeToString()
# TODO(skyewm): this creates and deletes a new TF_Status for every attr.
# It might be worth creating a convenient way to re-use the same status.
c_api.TF_FunctionSetAttrValueProto(self._c_func.func, compat.as_str(name),
serialized)
def _create_hash_str(self, input_arg, output_arg, node_def):
"""Creates an 8-character string unique to this input.
Args:
input_arg: the input_arg field of an OpDef
(e.g. self._definition.signature.input_arg)
output_arg: the output_arg field of an OpDef
(e.g. self._definition.signature.output_arg)
node_def: the node_def field of a FunctionDef
(e.g. self._definition.node_def)
Returns:
The unique string for this input
"""
hasher = hashlib.sha1()
def update_num(n):
hasher.update(compat.as_bytes("%x" % n))
def update_str(s):
update_num(len(s))
hasher.update(compat.as_bytes(s))
def update_strs(slist):
update_num(len(slist))
for s in slist:
update_str(s)
for adef in input_arg:
update_str(adef.SerializeToString())
for adef in output_arg:
update_str(adef.SerializeToString())
for n in sorted(node_def, key=lambda n: n.name):
update_str(n.name)
update_str(n.op)
update_strs(n.input)
update_num(len(n.attr))
# NOTE: protobuf map serialization does not guarantee ordering.
for k in sorted(n.attr):
update_str(k)
update_str(n.attr[k].SerializeToString())
return hasher.hexdigest()[:8]
def add_to_graph(self, g):
"""Adds this function into the graph g."""
self._create_definition_if_needed()
# Adds this function into 'g'.
# pylint: disable=protected-access
if context.executing_eagerly():
context.context().add_function_def(self.definition)
else:
g._add_function(self)
# pylint: enable=protected-access
# Ensures related sub-routines are defined in 'g', too.
for f in self._sub_functions.values():
f.add_to_graph(g)
# Adds its gradient function, too.
if self._grad_func:
self._grad_func.add_to_graph(g)
def __call__(self, *args, **kwargs):
self.add_to_graph(ops.get_default_graph())
args = [ops.convert_to_tensor(_) for _ in args] + self._extra_inputs
ret, op = _call(self._signature, *args, **kwargs)
# Set a hidden attr in 'op' so that gradients_impl can refer back
# to this _DefinedFunction instance to access python_grad_func.
assert isinstance(op, ops.Operation)
setattr(op, "__defun", self)
if self._shape_func is not None:
shapes = self._shape_func(op)
if len(shapes) != len(op.outputs):
raise ValueError("shape_func produced %d shapes for %d outputs" %
(len(shapes), len(op.outputs)))
for (t, shape) in zip(op.outputs, shapes):
t.set_shape(shape)
return ret
class _OverloadedFunction(object):
"""_OverloadedFunction encapsulates an overloaded function.
_OverloadedFunction maintains a mapping from input types to
instantiated _DefinedFunction in self._overload.
"""
def __init__(self,
func,
argnames,
func_name=None,
grad_func=None,
python_grad_func=None,
out_names=None,
**kwargs):
"""Creates _DefinedFunction.
Args:
func: A python callable which constructs a tf function body.
argnames: A list of strings for function argument names.
func_name: The function name. Defaults to None, in which derives from
'func'.
grad_func: This function's gradient function, if not None. Defaults
to None.
python_grad_func: A python callable implementing the gradient of
the function python-side.
out_names: A list of strings for the function return value names.
**kwargs: The keyword arguments. **kwargs is passed to every call
site of this function.
Raises:
ValueError: The function definition is invalid.
"""
self._func = func
self._argnames = argnames
self._func_name = func_name
assert grad_func is None or isinstance(grad_func, _OverloadedFunction)
self._grad_func = grad_func
self._python_grad_func = python_grad_func
self._out_names = out_names
self._extra_kwargs = kwargs
self._overload = {}
def instantiate(self, input_types):
"""Instantiate this function given input argument types.
Args:
input_types: A list of data types for the inputs.
Returns:
_DefinedFunction for the given input types.
"""
# Stringify the type list.
key = _type_list_to_str(input_types)
defined = self._overload.get(key)
if not defined:
# If not defined yet, define the function given the input types.
name = self._func_name
if name is not None:
name = "_".join([name, key])
defined = _DefinedFunction(
self._func,
self._argnames,
input_types,
name,
None,
self._python_grad_func,
out_names=self._out_names,
**self._extra_kwargs)
_ = defined.name # Fully instantiate the function definition.
if self._grad_func:
# If _grad_func is given, it is another
# _OverloadedFunction. We need to instantiate it with the
# right input types.
output_types = [
dtypes.DType(_.type) for _ in defined._signature.output_arg # pylint: disable=protected-access
]
# pylint: disable=protected-access
defined._grad_func = self._grad_func.instantiate(input_types +
output_types)
# pylint: enable=protected-access
self._overload[key] = defined
return defined
def __call__(self, *args, **kwargs):
input_types = []
args = list(args)
for (i, x) in enumerate(args):
x = ops.convert_to_tensor(x)
if not isinstance(x, ops.Tensor):
raise ValueError("Expect a Tensor but get ", x)
input_types.append(x.dtype)
args[i] = x
return self.instantiate(input_types)(*args, **kwargs)
class _FuncGraph(ops.Graph):
"""A helper for constructing a function.
_FuncGraph overrides ops.Graph's create_op() so that we can keep
track of all inputs into every op created inside the function. If
any input is from other graphs, we keep track of it in self.capture
and substitute the input with a place holder.
Each captured input's corresponding place holder is converted into a
function argument and the caller passes in the captured tensor.
"""
def __init__(self, name, capture_by_value, *args, **kwargs):
super(_FuncGraph, self).__init__(*args, **kwargs)
self._capture_by_value = capture_by_value
self._building_function = True
self._outer_graph = ops.get_default_graph()
self._vscope = vs.get_variable_scope()
self._old_custom_getter = self._vscope.custom_getter
# The name of the function.
self.name = name
# Placeholder tensors representing the inputs to this function. The tensors
# are in this _FuncGraph.
self.inputs = []
# Tensors that will be returned this function. The tensors are in this
# _FuncGraph.
self.outputs = []
# Maps external tensor -> internal tensor (e.g. input placeholder).
self._captured = {}
# The external tensors that have been captured as inputs and must be passed
# to this function (empty if capturing by value, otherwise these are the
# keys of _captured).
self.extra_inputs = []
# Input placeholders that been added for captured values (empty if capturing
# by value).
self.extra_args = []
# Captured variables.
# TODO(skyewm): is this needed?
self.extra_vars = []
# pylint: disable=g-doc-return-or-yield
@tf_contextlib.contextmanager
def container(self, container_name):
"""Returns a context manager that specifies the resource container to use.
Overridden from @{tf.Graph} to update both the init_scope container
and the present inner container. This is necessary to make sure setting
containers applies correctly both to created variables and to stateful
ops.
Args:
container_name: container name string.
Returns:
A context manager for defining resource containers for stateful ops,
yields the container name.
"""
original_container = self._container
# pylint: disable=protected-access
with ops.init_scope():
original_init_container = ops.get_default_graph()._container
try:
self._container = container_name
with ops.init_scope():
ops.get_default_graph()._container = container_name
yield self._container
finally:
self._container = original_container
with ops.init_scope():
ops.get_default_graph()._container = original_init_container
# pylint: enable=protected-access
# pylint: enable=g-doc-return-or-yield
def getvar(
self,
getter,
name,
shape=None,
dtype=None,
initializer=None,
reuse=None,
trainable=True,
collections=None, # pylint: disable=redefined-outer-name
use_resource=None,
**kwargs):
"""A custom variable getter."""
# Here, we switch the default graph to the outer graph and ask the
# variable scope in which the function is defined to give us the
# variable. The variable is stashed in extra_vars and returned to
# the caller.
#
# We capture these variables so that the variable definition is
# hoisted upward to the outer most graph.
with self._outer_graph.as_default():
# pylint: disable=protected-access
var = self._vscope.get_variable(
vs._get_default_variable_store(),
name,
shape=shape,
dtype=dtype,
initializer=initializer,
reuse=reuse,
trainable=trainable,
collections=collections,
use_resource=use_resource)
self.extra_vars.append(var)
if isinstance(var, resource_variable_ops.ResourceVariable):
# For resource-based variables read the variable outside the function
# and pass in the value. This ensures that the function is pure and
# differentiable. TODO(apassos) this may have performance problems if
# the function will only do embedding lookups on the variable.
return var.value()
return var
def create_op(self, op_type, inputs, data_types, **kwargs):
for i, x in enumerate(inputs):
if isinstance(x, ops.EagerTensor) or x.graph is not self:
inputs[i] = self.capture(x)
return super(_FuncGraph, self).create_op(op_type, inputs, data_types,
**kwargs)
def capture(self, tensor, name=None):
"""Adds the given tensor to this graph and returns the captured tensor."""
if tensor in self._captured:
# Captured already.
return self._captured[tensor]
elif self._capture_by_value:
return self._add_tensor_and_parents(tensor)
else:
return self._capture_tensor_as_extra_input(tensor, name)
def _capture_tensor_as_extra_input(self, tensor, name=None):
# Substitute with a placeholder.
self.extra_inputs.append(tensor)
# Hoist the new input placeholder out of any control flow context
# we're currently in.
with ops.control_dependencies(None):
ph = array_ops.placeholder(
tensor.dtype, shape=tensor.get_shape(), name=name)
# pylint: disable=protected-access
if ops._USE_C_SHAPES:
if isinstance(tensor, ops.EagerTensor):
handle_data = tensor._handle_data
if handle_data:
handle_data = handle_data.SerializeToString()
else:
handle_data = c_api.GetResourceHandleShapeAndType(
tensor.graph._c_graph, tensor._as_tf_output())
if handle_data:
c_api.SetResourceHandleShapeAndType(ph.graph._c_graph,
ph._as_tf_output(),
compat.as_bytes(handle_data))
else:
ph._handle_data = tensor._handle_data
# pylint: enable=protected-access
self.inputs.append(ph)
self._captured[tensor] = ph
self.extra_args.append(ph)
if _is_guaranteed_const(tensor):
with ops.control_dependencies(None):
return array_ops.guarantee_const(ph)
else:
return ph
def _add_tensor_and_parents(self, tensor):
op = self._add_op_and_parents(tensor.op)
return op.outputs[tensor.value_index]
def _add_op_and_parents(self, op):
# pylint: disable=protected-access
op_def = graph_to_function_def._get_op_def(op)
# pylint: enable=protected-access
if op_def.is_stateful:
raise ValueError("Cannot capture a stateful node (name:%s, type:%s) "
"by value." % (op.name, op.type))
elif op.type in ("Placeholder", "PlaceholderV2"):
raise ValueError("Cannot capture a placeholder (name:%s, type:%s) "
"by value." % (op.name, op.type))
captured_inputs = [self._add_tensor_and_parents(x) for x in op.inputs]
captured_op = self.create_op(
op.type,
captured_inputs, [o.dtype for o in op.outputs],
name=op.name,
attrs=op.node_def.attr,
op_def=op_def)
for t, captured_t in zip(op.outputs, captured_op.outputs):
self._captured[t] = captured_t
return captured_op
def func_graph_from_py_func(func, arg_names, arg_types, name=None,
capture_by_value=False, device=None,
colocation_stack=None, container=None,
collections_ref=None):
"""Returns a _FuncGraph generated from `func`.
Args:
func: A Python callable which constructs a TF function body. The arguments
must correspond to `arg_types`. Returns a value or list/tuple of values.
No returned value can be None.
arg_names: A sequence of strings for the function argument names.
arg_types: A sequence of the function's argument types.
name: The function name. If None, the name is derived from `func`.
capture_by_value: boolean. If True, captured values will be copied into the
function body.
device: device name or function.
colocation_stack: A colocation stack (list) the _FuncGraph should use.
container: A container name the _FuncGraph should start with.
collections_ref: A reference to a collections dict the _FuncGraph should
use internally.
Returns:
A _FuncGraph.
Raises:
ValueError: if func returns None.
"""
if not name:
name = _get_func_name(func)
func_graph = _FuncGraph(name, capture_by_value)
with func_graph.as_default(), ops.device(device):
# pylint: disable=protected-access
if collections_ref is not None:
func_graph._collections = collections_ref
if container is not None:
func_graph._container = container
if colocation_stack is not None:
func_graph._colocation_stack = colocation_stack
# pylint: enable=protected-access
# Create placeholders for the function arguments.
for (argname, argtype) in zip(arg_names, arg_types):
argholder = array_ops.placeholder(argtype, name=argname)
func_graph.inputs.append(argholder)
# Call func and gather the output tensors.
with vs.variable_scope("", custom_getter=func_graph.getvar):
outputs = func(*func_graph.inputs)
# There is no way of distinguishing between a function not returning
# anything and a function returning None in Python.
# We need to allow the former and ideally want to forbid the latter as
# it is most likely user error.
# TODO(iga): Consider adding a @NoOutput decorator on top of @Defun to
# allow users to explicitly mark the function as not returning anything.
# For now, we allow a single None return and interpret it as a function
# with no output.
if outputs is None:
outputs = []
else:
# If func only returned one value, make it a tuple.
if not isinstance(outputs, (list, tuple)):
outputs = (outputs,)
if any([_ is None for _ in outputs]):
raise ValueError("Function can not return None.")
# Ensures each output is a Tensor in the function graph.
outputs = [ops.convert_to_tensor(t) for t in outputs]
outputs = [func_graph.capture(t) if t.graph is not func_graph else t
for t in outputs]
func_graph.outputs = outputs
return func_graph
def _is_guaranteed_const(tensor):
"""Determines whether `tensor` is guaranteed to be a constant.
A tensor is guaranteed to be a constant if either it was produced by
a `GuaranteeConst` op or if all of its children are guaranteed to be
constants.
Args:
tensor: The tensor for which to determine const-ness.
Returns:
True if `tensor` is guaranteed to be a constant, False otherwise.
"""
if isinstance(tensor, ops.EagerTensor):
return False
class Work(object):
def __init__(self, op, leaving):
self.op = op
self.leaving = leaving
is_guaranteed_const = lambda op: op.node_def.op == "GuaranteeConst"
constants = set([])
def all_inputs_const(op):
# If all inputs of an op are guaranteed constants, then we can infer that
# the op produces a constant as well.
return op.inputs and all(inp.op in constants for inp in op.inputs)
visited = set([])
stack = [Work(tensor.op, leaving=False)]
while stack:
work = stack.pop()
if work.leaving:
if all_inputs_const(work.op):
constants.add(work.op)
continue
visited.add(work.op)
if is_guaranteed_const(work.op):
constants.add(work.op)
continue
# This op will be revisited after all its inputs are checked for const-ness.
stack.append(Work(work.op, leaving=True))
for inp in work.op.inputs:
if inp.op not in visited:
stack.append(Work(inp.op, leaving=False))
return tensor.op in constants
def _call(sig, *inputs, **kwargs):
"""Adds a node calling a function.
This adds a `call` op to the default graph that calls the function
of signature `sig`, passing the tensors in `inputs` as arguments.
It returns the outputs of the call, which are one or more tensors.
`sig` is OpDefArg.a `_DefinedFunction` object.
You can pass an optional keyword parameter `name=string` to name the
added operation.
You can pass an optional keyword parameter `noinline=True|False` to
instruct the runtime not to inline the function body into the call
site.
Args:
sig: OpDefArg. The signature of the function.
*inputs: arguments to the function.
**kwargs: Optional keyword arguments. Can only contain 'name' or
'noinline'.
Returns:
A 2-element tuple. First element: a Tensor if the function returns a single
value; a list of Tensors if the function returns multiple value; the
Operation if the function returns no values. Second element: the Operation.
Raises:
ValueError: if the arguments are invalid.
"""
if len(inputs) != len(sig.input_arg):
raise ValueError("Expected number of arguments: %d, received: %d" % (len(
sig.input_arg), len(inputs)))
name = kwargs.pop("name", None)
g = ops.get_default_graph()
func_name = sig.name
attrs = _parse_kwargs_as_attrs(func_name, **kwargs)
output_types = [dtypes.DType(x.type) for x in sig.output_arg]
with ops.name_scope(name, func_name, inputs) as name:
op = g.create_op(
func_name,
list(inputs),
output_types,
name=name,
attrs=attrs,
op_def=sig,
compute_shapes=False)
if op.outputs:
if len(op.outputs) == 1:
ret = op.outputs[0]
else:
ret = tuple(op.outputs)
else:
ret = op
return ret, op
def _from_definition(fdef, grad_func=None):
"""Creates a _DefinedFunction initialized from a FunctionDef proto.
Args:
fdef: a FunctionDef
grad_func: a _DefinedFunction or None
Returns:
A _DefinedFunction representing fdef
"""
# TODO(iga): This method does major surgery on _DefinedFunction.
# Make it a named constructor using @classmethod of _DefinedFunction.
# The Python callable is only needed to create a FunctionDef. Since we have
# the FunctionDef here, we don't need to set _DefinedFunction._func (nor do we
# have access to such a callable here).
func = None
argnames = [arg.name for arg in fdef.signature.input_arg]
input_types = tuple(
dtypes.as_dtype(arg.type) for arg in fdef.signature.input_arg)
func_name = fdef.signature.name
# Note: FunctionDefs do not include python gradient functions, so if the
# original _DefinedFunction included one it will not be reflected here.
python_grad_func = None
out_names = [arg.name for arg in fdef.signature.output_arg]
result = _DefinedFunction(func, argnames, input_types, func_name, grad_func,
python_grad_func, out_names)
# pylint: disable=protected-access
if ops._USE_C_API:
serialized = fdef.SerializeToString()
c_func = c_api.TF_FunctionImportFunctionDef(serialized)
result._c_func = c_api_util.ScopedTFFunction(c_func)
result._extra_inputs = []
else:
result._definition = fdef
# Captured inputs are added as regular inputs to a function when it's
# serialized, i.e. any extra inputs from the original function are now
# included in `result`._args
result._extra_inputs = []
result._hash_str = result._create_hash_str(
result._definition.signature.input_arg,
result._definition.signature.output_arg, result._definition.node_def)
# pylint: enable=protected-access
return result
def _from_library(lib):
"""Creates _DefinedFunctions initialized from a FunctionDefLibrary proto.
This method handles assigning the correct gradient functions to each
function.
Args:
lib: a FunctionDefLibrary
Returns:
A list of _DefinedFunctions
Raises:
ValueError: `lib` is invalid
"""
if not lib.function and not lib.gradient:
return []
# function name -> FunctionDef proto
funcs = {fdef.signature.name: fdef for fdef in lib.function}
# Validate that all references function names have function defs
for g in lib.gradient:
if g.function_name not in funcs:
raise ValueError("FunctionDefLibrary missing '%s' FunctionDef\n%s" %
(g.function_name, str(lib)))
if g.gradient_func not in funcs:
raise ValueError("FunctionDefLibrary missing '%s' FunctionDef\n%s" %
(g.gradient_func, str(lib)))
# function name -> gradient function name
func_to_grad = collections.defaultdict(lambda: None)
# gradient function name -> names of functions having that grad function
grad_to_funcs = collections.defaultdict(list)
for gdef in lib.gradient:
func_to_grad[gdef.function_name] = gdef.gradient_func
grad_to_funcs[gdef.gradient_func].append(gdef.function_name)
# Start with functions without gradients
ready = [
fdef for fdef in lib.function if func_to_grad[fdef.signature.name] is None
]
if not ready:
raise ValueError(
"FunctionDefLibrary contains cyclic gradient functions!\n" + str(lib))
# function name -> _DefinedFunction
initialized = {}
while ready:
fdef = ready.pop()
name = fdef.signature.name
grad = initialized.get(func_to_grad[name])
if func_to_grad[name]:
assert grad
defined_func = _from_definition(fdef, grad_func=grad)
initialized[name] = defined_func
ready.extend(funcs[f] for f in grad_to_funcs[name])
return initialized.values()
def _parse_kwargs_as_attrs(func_name, **kwargs):
"""Parses **kwargs into a node's attributes."""
attrs = {}
noinline = kwargs.pop("noinline", None)
if noinline is not None:
attrs["_noinline"] = attr_value_pb2.AttrValue(b=bool(noinline))
compiled = kwargs.pop("compiled", None)
separate_compiled_gradients = kwargs.pop("separate_compiled_gradients", None)
if compiled is not None:
attrs["_XlaCompile"] = attr_value_pb2.AttrValue(b=bool(compiled))
attrs["_XlaSeparateCompiledGradients"] = attr_value_pb2.AttrValue(
b=bool(separate_compiled_gradients))
# Forward _XlaScope from enclosing context (if set), otherwise create new.
# pylint: disable=protected-access
if "_XlaScope" in ops.get_default_graph()._attr_scope_map:
attrs["_XlaScope"] = ops.get_default_graph()._attr_scope_map["_XlaScope"]
else:
attrs["_XlaScope"] = attr_value_pb2.AttrValue(
s=("function_%s" % func_name).encode())
# pylint: enable=protected-access
kwargs_keys = list(kwargs.keys())
for key in kwargs_keys:
if key.startswith("experimental_"):
attrs[key] = attr_value_pb2.AttrValue(s=compat.as_bytes(kwargs[key]))
del kwargs[key]
if kwargs:
raise ValueError("Unknown keyword arguments: %s" % kwargs.keys())
return attrs
def _get_func_name(func):
_, func = tf_decorator.unwrap(func)
if callable(func):
if tf_inspect.isfunction(func):
return func.__name__
elif tf_inspect.ismethod(func):
return "%s.%s" % (func.__self__.__name__, func.__name__)
else: # Probably a class instance with __call__
return type(func)
else:
raise ValueError("Argument must be callable")
def get_extra_vars():
"""Returns the captured variables by the function.
Returns:
If the default graph is being used to define a function, the
returned list of variables are those created inside the function
body so far. Otherwise, returns an empty list.
"""
g = ops.get_default_graph()
if isinstance(g, _FuncGraph):
return g.extra_vars
else:
return []
def get_extra_inputs():
"""Returns the captured input tensors by the function.
Returns:
If the default graph is being used to define a function, the
returned list of tensors are those accessed inside the function body
but defined outside the function body so far. Otherwise, returns an
empty list.
"""
g = ops.get_default_graph()
if isinstance(g, _FuncGraph):
return g.extra_inputs
else:
return []
def get_extra_args():
"""Returns the corresponding function arguments for the captured inputs.
Returns:
If the default graph is being used to define a function, the
returned list of place holders are those used inside the function
body corresponding those returned by get_extra_inputs(). Otherwise,
returns an empty list.
"""
g = ops.get_default_graph()
if isinstance(g, _FuncGraph):
return g.extra_args
else:
return []
def _type_list_to_str(types):
if any([_ not in _DTYPE_TO_STR for _ in types]):
raise ValueError("Unsupported dtypes: %s" % types)
return "".join([_DTYPE_TO_STR[_] for _ in types])
# NOTE: The list needs to be extended when more data types are added.
_DTYPE_TO_STR = {
dtypes.float16: "f16",
dtypes.float32: "f32",
dtypes.float64: "f64",
dtypes.int32: "i32",
dtypes.uint8: "i8",
dtypes.uint16: "u16",
dtypes.uint32: "u32",
dtypes.uint64: "u64",
dtypes.int16: "i16",
dtypes.int8: "i8",
dtypes.string: "s",
dtypes.complex64: "c64",
dtypes.complex128: "c128",
dtypes.int64: "i64",
dtypes.bool: "b",
dtypes.qint8: "qi8",
dtypes.quint8: "qu8",
dtypes.qint16: "qi16",
dtypes.quint16: "qu16",
dtypes.qint32: "qi32",
dtypes.bfloat16: "b16"
}
def function_def_from_tf_function(c_func):
"""Converts a SWIG-wrapped TF_Function* to a FunctionDef proto."""
with c_api_util.tf_buffer() as buf:
c_api.TF_FunctionToFunctionDef(c_func, buf)
data = c_api.TF_GetBuffer(buf)
fdef = function_pb2.FunctionDef()
fdef.ParseFromString(compat.as_bytes(data))
return fdef