1679 lines
63 KiB
Python
1679 lines
63 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""A client interface for TensorFlow."""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import functools
|
||
|
import re
|
||
|
import threading
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from tensorflow.core.protobuf import config_pb2
|
||
|
from tensorflow.python import pywrap_tensorflow as tf_session
|
||
|
from tensorflow.python.framework import device
|
||
|
from tensorflow.python.framework import errors
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.framework import sparse_tensor
|
||
|
from tensorflow.python.ops import session_ops
|
||
|
from tensorflow.python.platform import tf_logging as logging
|
||
|
from tensorflow.python.util import compat
|
||
|
from tensorflow.python.util import nest
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
class SessionInterface(object):
|
||
|
"""Base class for implementations of TensorFlow client sessions."""
|
||
|
|
||
|
@property
|
||
|
def graph(self):
|
||
|
"""The underlying TensorFlow graph, to be used in building Operations."""
|
||
|
raise NotImplementedError('graph')
|
||
|
|
||
|
@property
|
||
|
def sess_str(self):
|
||
|
"""The TensorFlow process to which this session will connect."""
|
||
|
raise NotImplementedError('sess_str')
|
||
|
|
||
|
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
|
||
|
"""Runs operations in the session. See `BaseSession.run()` for details."""
|
||
|
raise NotImplementedError('run')
|
||
|
|
||
|
def partial_run_setup(self, fetches, feeds=None):
|
||
|
"""Sets up the feeds and fetches for partial runs in the session."""
|
||
|
raise NotImplementedError('partial_run_setup')
|
||
|
|
||
|
def partial_run(self, handle, fetches, feed_dict=None):
|
||
|
"""Continues the execution with additional feeds and fetches."""
|
||
|
raise NotImplementedError('partial_run')
|
||
|
|
||
|
|
||
|
def _get_indexed_slices_value_from_fetches(fetched_vals):
|
||
|
return ops.IndexedSlicesValue(fetched_vals[0], fetched_vals[1],
|
||
|
fetched_vals[2]
|
||
|
if len(fetched_vals) == 3 else None)
|
||
|
|
||
|
|
||
|
def _get_feeds_for_indexed_slices(feed, feed_val):
|
||
|
return list(
|
||
|
zip([feed.values, feed.indices] if feed.dense_shape is None else
|
||
|
[feed.values, feed.indices, feed.dense_shape], feed_val))
|
||
|
|
||
|
|
||
|
# List of extensions supported to convert run arguments into actual fetches and
|
||
|
# feeds.
|
||
|
#
|
||
|
# Each element in the list is a tuple of (Type, fetch_fn, feed_fn1, feed_fn2),
|
||
|
# where the function signatures are:
|
||
|
# fetch_fn : Type -> (list of Tensors,
|
||
|
# lambda: list of fetched np.ndarray -> TypeVal)
|
||
|
# feed_fn1 : Type, TypeVal -> list of (Tensor, value)
|
||
|
# feed_fn2 : Type -> list of Tensors
|
||
|
#
|
||
|
# `fetch_fn` describes how to expand fetch into its
|
||
|
# component Tensors and how to contract the fetched results back into
|
||
|
# a single return value.
|
||
|
#
|
||
|
# Each feed function describes how to unpack a single fed value and map it to
|
||
|
# feeds of one or more tensors and their corresponding values: `feed_fn1` is
|
||
|
# used to feed a run, `feed_fn2` to set up a partial run.
|
||
|
#
|
||
|
# TODO(touts): We could reimplement these as specialized _FeedMapper
|
||
|
# implementations after we refactor the feed handling code to use them.
|
||
|
#
|
||
|
# Eventually, this registration could be opened up to support custom Tensor
|
||
|
# expansions.
|
||
|
# pylint: disable=g-long-lambda
|
||
|
_REGISTERED_EXPANSIONS = [
|
||
|
# SparseTensors are fetched as SparseTensorValues. They can be fed
|
||
|
# SparseTensorValues or normal tuples.
|
||
|
(sparse_tensor.SparseTensor,
|
||
|
lambda fetch: (
|
||
|
[fetch.indices, fetch.values, fetch.dense_shape],
|
||
|
lambda fetched_vals: sparse_tensor.SparseTensorValue(*fetched_vals)),
|
||
|
lambda feed, feed_val: list(zip(
|
||
|
[feed.indices, feed.values, feed.dense_shape], feed_val)),
|
||
|
lambda feed: [feed.indices, feed.values, feed.dense_shape]),
|
||
|
# IndexedSlices are fetched as IndexedSlicesValues. They can be fed
|
||
|
# IndexedSlicesValues or normal tuples.
|
||
|
(ops.IndexedSlices,
|
||
|
lambda fetch: (
|
||
|
[fetch.values, fetch.indices] if fetch.dense_shape is None
|
||
|
else [fetch.values, fetch.indices, fetch.dense_shape],
|
||
|
_get_indexed_slices_value_from_fetches),
|
||
|
_get_feeds_for_indexed_slices,
|
||
|
lambda feed: [feed.values, feed.indices] if feed.dense_shape is None
|
||
|
else [feed.values, feed.indices, feed.dense_shape]),
|
||
|
# The default catches all other types and performs no expansions.
|
||
|
(object,
|
||
|
lambda fetch: ([fetch], lambda fetched_vals: fetched_vals[0]),
|
||
|
lambda feed, feed_val: [(feed, feed_val)],
|
||
|
lambda feed: [feed])]
|
||
|
|
||
|
# pylint: enable=g-long-lambda
|
||
|
|
||
|
|
||
|
def _convert_to_numpy_obj(numpy_dtype, obj):
|
||
|
"""Explicitly convert obj based on numpy type except for string type."""
|
||
|
return numpy_dtype(obj) if numpy_dtype is not object else str(obj)
|
||
|
|
||
|
|
||
|
def register_session_run_conversion_functions(
|
||
|
tensor_type,
|
||
|
fetch_function,
|
||
|
feed_function=None,
|
||
|
feed_function_for_partial_run=None):
|
||
|
"""Register fetch and feed conversion functions for `tf.Session.run()`.
|
||
|
|
||
|
This function registers a triple of conversion functions for fetching and/or
|
||
|
feeding values of user-defined types in a call to tf.Session.run().
|
||
|
|
||
|
An example
|
||
|
|
||
|
```python
|
||
|
class SquaredTensor(object):
|
||
|
def __init__(self, tensor):
|
||
|
self.sq = tf.square(tensor)
|
||
|
#you can define conversion functions as follows:
|
||
|
fetch_function = lambda squared_tensor:([squared_tensor.sq],
|
||
|
lambda val: val[0])
|
||
|
feed_function = lambda feed, feed_val: [(feed.sq, feed_val)]
|
||
|
feed_function_for_partial_run = lambda feed: [feed.sq]
|
||
|
#then after invoking this register function, you can use as follows:
|
||
|
session.run(squared_tensor1,
|
||
|
feed_dict = {squared_tensor2 : some_numpy_array})
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
tensor_type: The type for which you want to register a conversion function.
|
||
|
fetch_function: A callable that takes an object of type `tensor_type` and
|
||
|
returns a tuple, where the first element is a list of `tf.Tensor` objects,
|
||
|
and the second element is a callable that takes a list of ndarrays and
|
||
|
returns an object of some value type that corresponds to `tensor_type`.
|
||
|
fetch_function describes how to expand fetch into its component Tensors
|
||
|
and how to contract the fetched results back into a single return value.
|
||
|
feed_function: A callable that takes feed_key and feed_value as input, and
|
||
|
returns a list of tuples (feed_tensor, feed_val), feed_key must have type
|
||
|
`tensor_type`, and feed_tensor must have type `tf.Tensor`. Each feed
|
||
|
function describes how to unpack a single fed value and map it to feeds
|
||
|
of one or more tensors and their corresponding values.
|
||
|
feed_function_for_partial_run: A callable for specifying tensor values to
|
||
|
feed when setting up a partial run, which takes a `tensor_type` type
|
||
|
object as input, and returns a list of Tensors.
|
||
|
"""
|
||
|
for conversion_function in _REGISTERED_EXPANSIONS:
|
||
|
if issubclass(conversion_function[0], tensor_type):
|
||
|
raise ValueError('%s has already been registered so ignore it.',
|
||
|
tensor_type)
|
||
|
return
|
||
|
_REGISTERED_EXPANSIONS.insert(0, (tensor_type, fetch_function, feed_function,
|
||
|
feed_function_for_partial_run))
|
||
|
|
||
|
|
||
|
class _FetchMapper(object):
|
||
|
"""Definition of the interface provided by fetch mappers.
|
||
|
|
||
|
Fetch mappers are utility classes used by the _FetchHandler to handle
|
||
|
arbitrary structures for the `fetch` argument to `Session.run()`.
|
||
|
|
||
|
The `fetch` argument can be of various shapes: single tensor or op, list of
|
||
|
fetches, tuple of fetches, namedtuple of fetches, or dict of fetches. The
|
||
|
structures can be arbitrarily nested.
|
||
|
|
||
|
The low level run() API only wants a list of tensor or op names. The various
|
||
|
`_FetchMapper` subclasses below take care of handling the different shapes:
|
||
|
uniquifying the fetches, and constructing results with the original shape.
|
||
|
"""
|
||
|
|
||
|
def unique_fetches(self):
|
||
|
"""Return the list of unique tensors or ops needed by this fetch mapper.
|
||
|
|
||
|
Returns:
|
||
|
A list of tensors or ops.
|
||
|
"""
|
||
|
raise NotImplementedError('Must be implemented by subclasses')
|
||
|
|
||
|
def build_results(self, values):
|
||
|
"""Build results that match the original shape of the fetch.
|
||
|
|
||
|
Args:
|
||
|
values: List of values returned by run(). The values correspond
|
||
|
exactly to the list tensors or ops returned by unique_fetches().
|
||
|
|
||
|
Returns:
|
||
|
A struct of the same shape as the original fetch object handled by
|
||
|
this fetch mapper. In the returned struct, the original fetches are
|
||
|
replaced by their fetched values.
|
||
|
"""
|
||
|
raise NotImplementedError('Must be implemented by subclasses')
|
||
|
|
||
|
@staticmethod
|
||
|
def for_fetch(fetch):
|
||
|
"""Creates fetch mapper that handles the structure of `fetch`.
|
||
|
|
||
|
The default graph must be the one from which we want to fetch values when
|
||
|
this function is called.
|
||
|
|
||
|
Args:
|
||
|
fetch: An arbitrary fetch structure: singleton, list, tuple,
|
||
|
namedtuple, or dict.
|
||
|
|
||
|
Returns:
|
||
|
An instance of a subclass of `_FetchMapper` that handles the shape.
|
||
|
"""
|
||
|
if fetch is None:
|
||
|
raise TypeError('Fetch argument %r has invalid type %r' % (fetch,
|
||
|
type(fetch)))
|
||
|
elif isinstance(fetch, (list, tuple)):
|
||
|
# NOTE(touts): This is also the code path for namedtuples.
|
||
|
return _ListFetchMapper(fetch)
|
||
|
elif isinstance(fetch, dict):
|
||
|
return _DictFetchMapper(fetch)
|
||
|
else:
|
||
|
# Look for a handler in the registered expansions.
|
||
|
for tensor_type, fetch_fn, _, _ in _REGISTERED_EXPANSIONS:
|
||
|
if isinstance(fetch, tensor_type):
|
||
|
fetches, contraction_fn = fetch_fn(fetch)
|
||
|
return _ElementFetchMapper(fetches, contraction_fn)
|
||
|
# Did not find anything.
|
||
|
raise TypeError('Fetch argument %r has invalid type %r' % (fetch,
|
||
|
type(fetch)))
|
||
|
|
||
|
|
||
|
class _ElementFetchMapper(_FetchMapper):
|
||
|
"""Fetch mapper for singleton tensors and ops."""
|
||
|
|
||
|
def __init__(self, fetches, contraction_fn):
|
||
|
"""Creates an _ElementFetchMapper.
|
||
|
|
||
|
This is the fetch mapper used for leaves in the fetch struct. Because of
|
||
|
the expansions mechanism, a leaf can actually fetch more than one tensor.
|
||
|
|
||
|
Also note that the fetches here can be just strings (tensor or op names) or
|
||
|
any other object that the graph knows how to convert to a tensor, such as a
|
||
|
Variable. So we have to run each fetch through `as_graph_element()` to get
|
||
|
the corresponding tensor or op.
|
||
|
|
||
|
Args:
|
||
|
fetches: List of objects, as returned by a fetch_fn defined
|
||
|
in _REGISTERED_EXPANSIONS.
|
||
|
contraction_fn: Callable as returned by a fetch_fn.
|
||
|
"""
|
||
|
self._unique_fetches = []
|
||
|
for fetch in fetches:
|
||
|
try:
|
||
|
self._unique_fetches.append(ops.get_default_graph().as_graph_element(
|
||
|
fetch, allow_tensor=True, allow_operation=True))
|
||
|
except TypeError as e:
|
||
|
raise TypeError('Fetch argument %r has invalid type %r, '
|
||
|
'must be a string or Tensor. (%s)' %
|
||
|
(fetch, type(fetch), str(e)))
|
||
|
except ValueError as e:
|
||
|
raise ValueError('Fetch argument %r cannot be interpreted as a '
|
||
|
'Tensor. (%s)' % (fetch, str(e)))
|
||
|
except KeyError as e:
|
||
|
raise ValueError('Fetch argument %r cannot be interpreted as a '
|
||
|
'Tensor. (%s)' % (fetch, str(e)))
|
||
|
self._contraction_fn = contraction_fn
|
||
|
|
||
|
def unique_fetches(self):
|
||
|
return self._unique_fetches
|
||
|
|
||
|
def build_results(self, values):
|
||
|
if not values:
|
||
|
# 'Operation' case
|
||
|
return None
|
||
|
else:
|
||
|
return self._contraction_fn(values)
|
||
|
|
||
|
|
||
|
def _uniquify_fetches(fetch_mappers):
|
||
|
"""Uniquifies fetches from a list of fetch_mappers.
|
||
|
|
||
|
This is a utility function used by _ListFetchMapper and _DictFetchMapper. It
|
||
|
gathers all the unique fetches from a list of mappers and builds a list
|
||
|
containing all of them but without duplicates (unique_fetches).
|
||
|
|
||
|
It also returns a 2-D list of integers (values_indices) indicating at which
|
||
|
index in unique_fetches the fetches of the mappers are located.
|
||
|
|
||
|
This list is as follows:
|
||
|
values_indices[mapper_index][mapper_fetch_index] = unique_fetches_index
|
||
|
|
||
|
Args:
|
||
|
fetch_mappers: list of fetch mappers.
|
||
|
|
||
|
Returns:
|
||
|
A list of fetches.
|
||
|
A 2-D list of integers.
|
||
|
"""
|
||
|
unique_fetches = []
|
||
|
value_indices = []
|
||
|
seen_fetches = {}
|
||
|
for m in fetch_mappers:
|
||
|
m_value_indices = []
|
||
|
for f in m.unique_fetches():
|
||
|
j = seen_fetches.get(f)
|
||
|
if j is None:
|
||
|
j = len(seen_fetches)
|
||
|
seen_fetches[f] = j
|
||
|
unique_fetches.append(f)
|
||
|
m_value_indices.append(j)
|
||
|
value_indices.append(m_value_indices)
|
||
|
return unique_fetches, value_indices
|
||
|
|
||
|
|
||
|
class _ListFetchMapper(_FetchMapper):
|
||
|
"""Fetch mapper for lists, tuples, and namedtuples."""
|
||
|
|
||
|
def __init__(self, fetches):
|
||
|
"""Creates a _ListFetchMapper.
|
||
|
|
||
|
Args:
|
||
|
fetches: List, tuple, or namedtuple of fetches.
|
||
|
"""
|
||
|
self._fetch_type = type(fetches)
|
||
|
self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches]
|
||
|
self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers)
|
||
|
|
||
|
def unique_fetches(self):
|
||
|
return self._unique_fetches
|
||
|
|
||
|
def build_results(self, values):
|
||
|
# Create the list of results for each mapper.
|
||
|
results = []
|
||
|
for m, vi in zip(self._mappers, self._value_indices):
|
||
|
results.append(m.build_results([values[j] for j in vi]))
|
||
|
# Return a value of the original type of the fetches.
|
||
|
if issubclass(self._fetch_type, list):
|
||
|
return results
|
||
|
elif self._fetch_type == tuple:
|
||
|
return tuple(results)
|
||
|
else:
|
||
|
# This is the code path for namedtuple.
|
||
|
return self._fetch_type(*results)
|
||
|
|
||
|
|
||
|
class _DictFetchMapper(_FetchMapper):
|
||
|
"""Fetch mapper for dicts."""
|
||
|
|
||
|
def __init__(self, fetches):
|
||
|
"""Creates a _DictFetchMapper.
|
||
|
|
||
|
Args:
|
||
|
fetches: Dict of fetches.
|
||
|
"""
|
||
|
self._fetch_type = type(fetches)
|
||
|
self._keys = fetches.keys()
|
||
|
self._mappers = [
|
||
|
_FetchMapper.for_fetch(fetch) for fetch in fetches.values()
|
||
|
]
|
||
|
self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers)
|
||
|
|
||
|
def unique_fetches(self):
|
||
|
return self._unique_fetches
|
||
|
|
||
|
def build_results(self, values):
|
||
|
results = self._fetch_type()
|
||
|
for k, m, vi in zip(self._keys, self._mappers, self._value_indices):
|
||
|
results[k] = m.build_results([values[j] for j in vi])
|
||
|
return results
|
||
|
|
||
|
|
||
|
class _FetchHandler(object):
|
||
|
"""Handler for structured fetches.
|
||
|
|
||
|
Given a graph, a user-provided structure for fetches, and a feed dict, this
|
||
|
class takes care of generating a list of tensor names to fetch and op names
|
||
|
to run for a low level `run()` call.
|
||
|
|
||
|
Given the results of the low level run call, this class can also rebuild a
|
||
|
result structure matching the user-provided structure for fetches, but
|
||
|
containing the corresponding results.
|
||
|
"""
|
||
|
|
||
|
# TODO(touts): Make this class also take care of destructuring the feed
|
||
|
# dict instead of doing it in the callers.
|
||
|
|
||
|
def __init__(self, graph, fetches, feeds, feed_handles=None):
|
||
|
"""Creates a fetch handler.
|
||
|
|
||
|
Args:
|
||
|
graph: Graph of the fetches. Used to check for fetchability
|
||
|
and to convert all fetches to tensors or ops as needed.
|
||
|
fetches: An arbitrary fetch structure: singleton, list, tuple,
|
||
|
namedtuple, or dict.
|
||
|
feeds: A feed dict where keys are Tensors.
|
||
|
feed_handles: A dict from feed Tensors to TensorHandle objects used as
|
||
|
direct feeds.
|
||
|
"""
|
||
|
with graph.as_default():
|
||
|
self._fetch_mapper = _FetchMapper.for_fetch(fetches)
|
||
|
self._fetches = []
|
||
|
self._targets = []
|
||
|
self._feeds = feeds
|
||
|
self._feed_handles = feed_handles or {}
|
||
|
self._ops = []
|
||
|
self._fetch_handles = {}
|
||
|
for fetch in self._fetch_mapper.unique_fetches():
|
||
|
if isinstance(fetch, ops.Operation):
|
||
|
self._assert_fetchable(graph, fetch)
|
||
|
self._targets.append(fetch)
|
||
|
self._ops.append(True)
|
||
|
else:
|
||
|
self._assert_fetchable(graph, fetch.op)
|
||
|
self._fetches.append(fetch)
|
||
|
self._ops.append(False)
|
||
|
# Remember the fetch if it is for a tensor handle.
|
||
|
if (isinstance(fetch, ops.Tensor) and
|
||
|
(fetch.op.type == 'GetSessionHandle' or
|
||
|
fetch.op.type == 'GetSessionHandleV2')):
|
||
|
self._fetch_handles[fetch] = fetch.op.inputs[0].dtype
|
||
|
self._final_fetches = [x for x in self._fetches if x not in feeds]
|
||
|
|
||
|
def _assert_fetchable(self, graph, op):
|
||
|
if not graph.is_fetchable(op):
|
||
|
raise ValueError(
|
||
|
'Operation %r has been marked as not fetchable.' % op.name)
|
||
|
|
||
|
def fetches(self):
|
||
|
"""Return the unique names of tensors to fetch.
|
||
|
|
||
|
Returns:
|
||
|
A list of strings.
|
||
|
"""
|
||
|
return self._final_fetches
|
||
|
|
||
|
def targets(self):
|
||
|
"""Return the unique names of ops to run.
|
||
|
|
||
|
Returns:
|
||
|
A list of strings.
|
||
|
"""
|
||
|
return self._targets
|
||
|
|
||
|
def build_results(self, session, tensor_values):
|
||
|
"""Build results matching the original fetch shape.
|
||
|
|
||
|
`tensor_values` must be a list of the same length as
|
||
|
the one returned by `fetches()`, and holding the requested
|
||
|
fetch values.
|
||
|
|
||
|
This method builds a struct with the same shape as the original `fetches`
|
||
|
passed to the constructor, in which the fetches are replaced by their
|
||
|
fetched value.
|
||
|
|
||
|
Args:
|
||
|
session: The enclosing session. Used for tensor handles.
|
||
|
tensor_values: List of values matching the list returned
|
||
|
by fetches().
|
||
|
|
||
|
Returns:
|
||
|
A structure of the same shape as the original `fetches` argument but
|
||
|
containing tensors or None (for fetched ops).
|
||
|
"""
|
||
|
full_values = []
|
||
|
assert len(self._final_fetches) == len(tensor_values)
|
||
|
i = 0
|
||
|
j = 0
|
||
|
for is_op in self._ops:
|
||
|
if is_op:
|
||
|
full_values.append(None)
|
||
|
else:
|
||
|
# If the fetch was in the feeds, use the fed value, otherwise
|
||
|
# use the returned value.
|
||
|
if self._fetches[i] in self._feed_handles:
|
||
|
# A fetch had a corresponding direct TensorHandle feed. Call eval()
|
||
|
# to obtain the Tensor value from the TensorHandle.
|
||
|
value = self._feed_handles[self._fetches[i]].eval()
|
||
|
else:
|
||
|
value = self._feeds.get(self._fetches[i])
|
||
|
if value is None:
|
||
|
value = tensor_values[j]
|
||
|
j += 1
|
||
|
dtype = self._fetch_handles.get(self._fetches[i])
|
||
|
if dtype:
|
||
|
full_values.append(session_ops.TensorHandle(value, dtype, session))
|
||
|
else:
|
||
|
full_values.append(value)
|
||
|
i += 1
|
||
|
assert j == len(tensor_values)
|
||
|
return self._fetch_mapper.build_results(full_values)
|
||
|
|
||
|
|
||
|
def _name_list(tensor_list):
|
||
|
"""Utility function for transitioning to the new session API.
|
||
|
|
||
|
Args:
|
||
|
tensor_list: a list of `Tensor`s.
|
||
|
|
||
|
Returns:
|
||
|
A list of each `Tensor`s name (as byte arrays).
|
||
|
"""
|
||
|
return [compat.as_bytes(t.name) for t in tensor_list]
|
||
|
|
||
|
|
||
|
class _DeviceAttributes(object):
|
||
|
"""Struct-like object describing a device's attributes.
|
||
|
|
||
|
Each device has 3 key properties:
|
||
|
- name: the fully-qualified TensorFlow path to the device. For
|
||
|
example: /job:worker/replica:0/task:3/device:CPU:0
|
||
|
- device_type: the type of the device (e.g. CPU, GPU, TPU, etc.)
|
||
|
- memory_limit_bytes: the maximum amount of memory available on the device
|
||
|
(in bytes).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, name, device_type, memory_limit_bytes):
|
||
|
self._name = device.canonical_name(name)
|
||
|
self._device_type = device_type
|
||
|
self._memory_limit_bytes = memory_limit_bytes
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
return self._name
|
||
|
|
||
|
@property
|
||
|
def device_type(self):
|
||
|
return self._device_type
|
||
|
|
||
|
@property
|
||
|
def memory_limit_bytes(self):
|
||
|
return self._memory_limit_bytes
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '_DeviceAttributes(%s, %s, %d)' % (
|
||
|
self.name,
|
||
|
self.device_type,
|
||
|
self.memory_limit_bytes,
|
||
|
)
|
||
|
|
||
|
|
||
|
class BaseSession(SessionInterface):
|
||
|
"""A class for interacting with a TensorFlow computation.
|
||
|
|
||
|
The BaseSession enables incremental graph building with inline
|
||
|
execution of Operations and evaluation of Tensors.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, target='', graph=None, config=None):
|
||
|
"""Constructs a new TensorFlow session.
|
||
|
|
||
|
Args:
|
||
|
target: (Optional) The TensorFlow execution engine to connect to.
|
||
|
graph: (Optional) The graph to be used. If this argument is None,
|
||
|
the default graph will be used.
|
||
|
config: (Optional) ConfigProto proto used to configure the session.
|
||
|
|
||
|
Raises:
|
||
|
tf.errors.OpError: Or one of its subclasses if an error occurs while
|
||
|
creating the TensorFlow session.
|
||
|
TypeError: If one of the arguments has the wrong type.
|
||
|
"""
|
||
|
if graph is None:
|
||
|
self._graph = ops.get_default_graph()
|
||
|
else:
|
||
|
if not isinstance(graph, ops.Graph):
|
||
|
raise TypeError('graph must be a tf.Graph, but got %s' % type(graph))
|
||
|
self._graph = graph
|
||
|
|
||
|
self._opened = False
|
||
|
self._closed = False
|
||
|
|
||
|
self._current_version = 0
|
||
|
self._extend_lock = threading.Lock()
|
||
|
if target is not None:
|
||
|
try:
|
||
|
self._target = compat.as_bytes(target)
|
||
|
except TypeError:
|
||
|
raise TypeError('target must be a string, but got %s' % type(target))
|
||
|
else:
|
||
|
self._target = None
|
||
|
|
||
|
self._delete_lock = threading.Lock()
|
||
|
self._dead_handles = []
|
||
|
|
||
|
if config is not None:
|
||
|
if not isinstance(config, config_pb2.ConfigProto):
|
||
|
raise TypeError(
|
||
|
'config must be a tf.ConfigProto, but got %s' % type(config))
|
||
|
self._config = config
|
||
|
self._add_shapes = config.graph_options.infer_shapes
|
||
|
else:
|
||
|
self._config = None
|
||
|
self._add_shapes = False
|
||
|
|
||
|
self._session = None
|
||
|
opts = tf_session.TF_NewSessionOptions(target=self._target, config=config)
|
||
|
try:
|
||
|
# pylint: disable=protected-access
|
||
|
self._session = tf_session.TF_NewSession(self._graph._c_graph, opts)
|
||
|
# pylint: enable=protected-access
|
||
|
finally:
|
||
|
tf_session.TF_DeleteSessionOptions(opts)
|
||
|
|
||
|
def list_devices(self):
|
||
|
"""Lists available devices in this session.
|
||
|
|
||
|
```python
|
||
|
devices = sess.list_devices()
|
||
|
for d in devices:
|
||
|
print(d.name)
|
||
|
```
|
||
|
|
||
|
Each element in the list has the following properties:
|
||
|
- `name`: A string with the full name of the device. ex:
|
||
|
`/job:worker/replica:0/task:3/device:CPU:0`
|
||
|
- `device_type`: The type of the device (e.g. `CPU`, `GPU`, `TPU`.)
|
||
|
- `memory_limit`: The maximum amount of memory available on the device.
|
||
|
Note: depending on the device, it is possible the usable memory could
|
||
|
be substantially less.
|
||
|
Raises:
|
||
|
tf.errors.OpError: If it encounters an error (e.g. session is in an
|
||
|
invalid state, or network errors occur).
|
||
|
|
||
|
Returns:
|
||
|
A list of devices in the session.
|
||
|
"""
|
||
|
raw_device_list = tf_session.TF_SessionListDevices(self._session)
|
||
|
device_list = []
|
||
|
size = tf_session.TF_DeviceListCount(raw_device_list)
|
||
|
for i in range(size):
|
||
|
name = tf_session.TF_DeviceListName(raw_device_list, i)
|
||
|
device_type = tf_session.TF_DeviceListType(raw_device_list, i)
|
||
|
memory = tf_session.TF_DeviceListMemoryBytes(raw_device_list, i)
|
||
|
device_list.append(_DeviceAttributes(name, device_type, memory))
|
||
|
tf_session.TF_DeleteDeviceList(raw_device_list)
|
||
|
return device_list
|
||
|
|
||
|
def close(self):
|
||
|
"""Closes this session.
|
||
|
|
||
|
Calling this method frees all resources associated with the session.
|
||
|
|
||
|
Raises:
|
||
|
tf.errors.OpError: Or one of its subclasses if an error occurs while
|
||
|
closing the TensorFlow session.
|
||
|
"""
|
||
|
if self._session and not self._closed:
|
||
|
self._closed = True
|
||
|
tf_session.TF_CloseSession(self._session)
|
||
|
|
||
|
def __del__(self):
|
||
|
# cleanly ignore all exceptions
|
||
|
try:
|
||
|
self.close()
|
||
|
except Exception: # pylint: disable=broad-except
|
||
|
pass
|
||
|
if self._session is not None:
|
||
|
try:
|
||
|
tf_session.TF_DeleteSession(self._session)
|
||
|
except AttributeError:
|
||
|
# At shutdown, `c_api_util` or `tf_session` may have been garbage
|
||
|
# collected, causing the above method calls to fail. In this case,
|
||
|
# silently leak since the program is about to terminate anyway.
|
||
|
pass
|
||
|
self._session = None
|
||
|
|
||
|
@property
|
||
|
def graph(self):
|
||
|
"""The graph that was launched in this session."""
|
||
|
return self._graph
|
||
|
|
||
|
@property
|
||
|
def graph_def(self):
|
||
|
"""A serializable version of the underlying TensorFlow graph.
|
||
|
|
||
|
Returns:
|
||
|
A graph_pb2.GraphDef proto containing nodes for all of the Operations in
|
||
|
the underlying TensorFlow graph.
|
||
|
"""
|
||
|
return self._graph.as_graph_def(add_shapes=self._add_shapes)
|
||
|
|
||
|
@property
|
||
|
def sess_str(self):
|
||
|
return self._target
|
||
|
|
||
|
def as_default(self):
|
||
|
"""Returns a context manager that makes this object the default session.
|
||
|
|
||
|
Use with the `with` keyword to specify that calls to
|
||
|
@{tf.Operation.run} or @{tf.Tensor.eval} should be executed in
|
||
|
this session.
|
||
|
|
||
|
```python
|
||
|
c = tf.constant(..)
|
||
|
sess = tf.Session()
|
||
|
|
||
|
with sess.as_default():
|
||
|
assert tf.get_default_session() is sess
|
||
|
print(c.eval())
|
||
|
```
|
||
|
|
||
|
To get the current default session, use @{tf.get_default_session}.
|
||
|
|
||
|
*N.B.* The `as_default` context manager *does not* close the
|
||
|
session when you exit the context, and you must close the session
|
||
|
explicitly.
|
||
|
|
||
|
```python
|
||
|
c = tf.constant(...)
|
||
|
sess = tf.Session()
|
||
|
with sess.as_default():
|
||
|
print(c.eval())
|
||
|
# ...
|
||
|
with sess.as_default():
|
||
|
print(c.eval())
|
||
|
|
||
|
sess.close()
|
||
|
```
|
||
|
|
||
|
Alternatively, you can use `with tf.Session():` to create a
|
||
|
session that is automatically closed on exiting the context,
|
||
|
including when an uncaught exception is raised.
|
||
|
|
||
|
*N.B.* The default session is a property of the current thread. If you
|
||
|
create a new thread, and wish to use the default session in that
|
||
|
thread, you must explicitly add a `with sess.as_default():` in that
|
||
|
thread's function.
|
||
|
|
||
|
*N.B.* Entering a `with sess.as_default():` block does not affect
|
||
|
the current default graph. If you are using multiple graphs, and
|
||
|
`sess.graph` is different from the value of @{tf.get_default_graph},
|
||
|
you must explicitly enter a `with sess.graph.as_default():` block
|
||
|
to make `sess.graph` the default graph.
|
||
|
|
||
|
Returns:
|
||
|
A context manager using this session as the default session.
|
||
|
"""
|
||
|
return ops.default_session(self)
|
||
|
|
||
|
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
|
||
|
"""Runs operations and evaluates tensors in `fetches`.
|
||
|
|
||
|
This method runs one "step" of TensorFlow computation, by
|
||
|
running the necessary graph fragment to execute every `Operation`
|
||
|
and evaluate every `Tensor` in `fetches`, substituting the values in
|
||
|
`feed_dict` for the corresponding input values.
|
||
|
|
||
|
The `fetches` argument may be a single graph element, or an arbitrarily
|
||
|
nested list, tuple, namedtuple, dict, or OrderedDict containing graph
|
||
|
elements at its leaves. A graph element can be one of the following types:
|
||
|
|
||
|
* An @{tf.Operation}.
|
||
|
The corresponding fetched value will be `None`.
|
||
|
* A @{tf.Tensor}.
|
||
|
The corresponding fetched value will be a numpy ndarray containing the
|
||
|
value of that tensor.
|
||
|
* A @{tf.SparseTensor}.
|
||
|
The corresponding fetched value will be a
|
||
|
@{tf.SparseTensorValue}
|
||
|
containing the value of that sparse tensor.
|
||
|
* A `get_tensor_handle` op. The corresponding fetched value will be a
|
||
|
numpy ndarray containing the handle of that tensor.
|
||
|
* A `string` which is the name of a tensor or operation in the graph.
|
||
|
|
||
|
The value returned by `run()` has the same shape as the `fetches` argument,
|
||
|
where the leaves are replaced by the corresponding values returned by
|
||
|
TensorFlow.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
a = tf.constant([10, 20])
|
||
|
b = tf.constant([1.0, 2.0])
|
||
|
# 'fetches' can be a singleton
|
||
|
v = session.run(a)
|
||
|
# v is the numpy array [10, 20]
|
||
|
# 'fetches' can be a list.
|
||
|
v = session.run([a, b])
|
||
|
# v is a Python list with 2 numpy arrays: the 1-D array [10, 20] and the
|
||
|
# 1-D array [1.0, 2.0]
|
||
|
# 'fetches' can be arbitrary lists, tuples, namedtuple, dicts:
|
||
|
MyData = collections.namedtuple('MyData', ['a', 'b'])
|
||
|
v = session.run({'k1': MyData(a, b), 'k2': [b, a]})
|
||
|
# v is a dict with
|
||
|
# v['k1'] is a MyData namedtuple with 'a' (the numpy array [10, 20]) and
|
||
|
# 'b' (the numpy array [1.0, 2.0])
|
||
|
# v['k2'] is a list with the numpy array [1.0, 2.0] and the numpy array
|
||
|
# [10, 20].
|
||
|
```
|
||
|
|
||
|
The optional `feed_dict` argument allows the caller to override
|
||
|
the value of tensors in the graph. Each key in `feed_dict` can be
|
||
|
one of the following types:
|
||
|
|
||
|
* If the key is a @{tf.Tensor}, the
|
||
|
value may be a Python scalar, string, list, or numpy ndarray
|
||
|
that can be converted to the same `dtype` as that
|
||
|
tensor. Additionally, if the key is a
|
||
|
@{tf.placeholder}, the shape of
|
||
|
the value will be checked for compatibility with the placeholder.
|
||
|
* If the key is a
|
||
|
@{tf.SparseTensor},
|
||
|
the value should be a
|
||
|
@{tf.SparseTensorValue}.
|
||
|
* If the key is a nested tuple of `Tensor`s or `SparseTensor`s, the value
|
||
|
should be a nested tuple with the same structure that maps to their
|
||
|
corresponding values as above.
|
||
|
|
||
|
Each value in `feed_dict` must be convertible to a numpy array of the dtype
|
||
|
of the corresponding key.
|
||
|
|
||
|
The optional `options` argument expects a [`RunOptions`] proto. The options
|
||
|
allow controlling the behavior of this particular step (e.g. turning tracing
|
||
|
on).
|
||
|
|
||
|
The optional `run_metadata` argument expects a [`RunMetadata`] proto. When
|
||
|
appropriate, the non-Tensor output of this step will be collected there. For
|
||
|
example, when users turn on tracing in `options`, the profiled info will be
|
||
|
collected into this argument and passed back.
|
||
|
|
||
|
Args:
|
||
|
fetches: A single graph element, a list of graph elements,
|
||
|
or a dictionary whose values are graph elements or lists of graph
|
||
|
elements (described above).
|
||
|
feed_dict: A dictionary that maps graph elements to values
|
||
|
(described above).
|
||
|
options: A [`RunOptions`] protocol buffer
|
||
|
run_metadata: A [`RunMetadata`] protocol buffer
|
||
|
|
||
|
Returns:
|
||
|
Either a single value if `fetches` is a single graph element, or
|
||
|
a list of values if `fetches` is a list, or a dictionary with the
|
||
|
same keys as `fetches` if that is a dictionary (described above).
|
||
|
Order in which `fetches` operations are evaluated inside the call
|
||
|
is undefined.
|
||
|
|
||
|
Raises:
|
||
|
RuntimeError: If this `Session` is in an invalid state (e.g. has been
|
||
|
closed).
|
||
|
TypeError: If `fetches` or `feed_dict` keys are of an inappropriate type.
|
||
|
ValueError: If `fetches` or `feed_dict` keys are invalid or refer to a
|
||
|
`Tensor` that doesn't exist.
|
||
|
"""
|
||
|
options_ptr = tf_session.TF_NewBufferFromString(
|
||
|
compat.as_bytes(options.SerializeToString())) if options else None
|
||
|
run_metadata_ptr = tf_session.TF_NewBuffer() if run_metadata else None
|
||
|
|
||
|
try:
|
||
|
result = self._run(None, fetches, feed_dict, options_ptr,
|
||
|
run_metadata_ptr)
|
||
|
if run_metadata:
|
||
|
proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
|
||
|
run_metadata.ParseFromString(compat.as_bytes(proto_data))
|
||
|
finally:
|
||
|
if run_metadata_ptr:
|
||
|
tf_session.TF_DeleteBuffer(run_metadata_ptr)
|
||
|
if options:
|
||
|
tf_session.TF_DeleteBuffer(options_ptr)
|
||
|
return result
|
||
|
|
||
|
def partial_run(self, handle, fetches, feed_dict=None):
|
||
|
"""Continues the execution with more feeds and fetches.
|
||
|
|
||
|
This is EXPERIMENTAL and subject to change.
|
||
|
|
||
|
To use partial execution, a user first calls `partial_run_setup()` and
|
||
|
then a sequence of `partial_run()`. `partial_run_setup` specifies the
|
||
|
list of feeds and fetches that will be used in the subsequent
|
||
|
`partial_run` calls.
|
||
|
|
||
|
The optional `feed_dict` argument allows the caller to override
|
||
|
the value of tensors in the graph. See run() for more information.
|
||
|
|
||
|
Below is a simple example:
|
||
|
|
||
|
```python
|
||
|
a = array_ops.placeholder(dtypes.float32, shape=[])
|
||
|
b = array_ops.placeholder(dtypes.float32, shape=[])
|
||
|
c = array_ops.placeholder(dtypes.float32, shape=[])
|
||
|
r1 = math_ops.add(a, b)
|
||
|
r2 = math_ops.multiply(r1, c)
|
||
|
|
||
|
h = sess.partial_run_setup([r1, r2], [a, b, c])
|
||
|
res = sess.partial_run(h, r1, feed_dict={a: 1, b: 2})
|
||
|
res = sess.partial_run(h, r2, feed_dict={c: res})
|
||
|
```
|
||
|
|
||
|
Args:
|
||
|
handle: A handle for a sequence of partial runs.
|
||
|
fetches: A single graph element, a list of graph elements,
|
||
|
or a dictionary whose values are graph elements or lists of graph
|
||
|
elements (see documentation for `run`).
|
||
|
feed_dict: A dictionary that maps graph elements to values
|
||
|
(described above).
|
||
|
|
||
|
Returns:
|
||
|
Either a single value if `fetches` is a single graph element, or
|
||
|
a list of values if `fetches` is a list, or a dictionary with the
|
||
|
same keys as `fetches` if that is a dictionary
|
||
|
(see documentation for `run`).
|
||
|
|
||
|
Raises:
|
||
|
tf.errors.OpError: Or one of its subclasses on error.
|
||
|
"""
|
||
|
# TODO(touts): Support feeding and fetching the same tensor.
|
||
|
return self._run(handle, fetches, feed_dict, None, None)
|
||
|
|
||
|
def partial_run_setup(self, fetches, feeds=None):
|
||
|
"""Sets up a graph with feeds and fetches for partial run.
|
||
|
|
||
|
This is EXPERIMENTAL and subject to change.
|
||
|
|
||
|
Note that contrary to `run`, `feeds` only specifies the graph elements.
|
||
|
The tensors will be supplied by the subsequent `partial_run` calls.
|
||
|
|
||
|
Args:
|
||
|
fetches: A single graph element, or a list of graph elements.
|
||
|
feeds: A single graph element, or a list of graph elements.
|
||
|
|
||
|
Returns:
|
||
|
A handle for partial run.
|
||
|
|
||
|
Raises:
|
||
|
RuntimeError: If this `Session` is in an invalid state (e.g. has been
|
||
|
closed).
|
||
|
TypeError: If `fetches` or `feed_dict` keys are of an inappropriate type.
|
||
|
tf.errors.OpError: Or one of its subclasses if a TensorFlow error happens.
|
||
|
"""
|
||
|
|
||
|
def _feed_fn(feed):
|
||
|
for tensor_type, _, _, feed_fn in _REGISTERED_EXPANSIONS:
|
||
|
if isinstance(feed, tensor_type):
|
||
|
return feed_fn(feed)
|
||
|
raise TypeError('Feed argument %r has invalid type %r' % (feed,
|
||
|
type(feed)))
|
||
|
|
||
|
# Check session.
|
||
|
if self._closed:
|
||
|
raise RuntimeError('Attempted to use a closed Session.')
|
||
|
if self.graph.version == 0:
|
||
|
raise RuntimeError('The Session graph is empty. Add operations to the '
|
||
|
'graph before calling run().')
|
||
|
|
||
|
if feeds is None:
|
||
|
feeds = []
|
||
|
# Create request.
|
||
|
feed_list = []
|
||
|
|
||
|
# Validate and process feed_list.
|
||
|
is_list_feed = isinstance(feeds, (list, tuple))
|
||
|
if not is_list_feed:
|
||
|
feeds = [feeds]
|
||
|
for feed in feeds:
|
||
|
for subfeed in _feed_fn(feed):
|
||
|
try:
|
||
|
subfeed_t = self.graph.as_graph_element(
|
||
|
subfeed, allow_tensor=True, allow_operation=False)
|
||
|
# pylint: disable=protected-access
|
||
|
feed_list.append(subfeed_t._as_tf_output())
|
||
|
# pylint: enable=protected-access
|
||
|
except Exception as e:
|
||
|
e.message = ('Cannot interpret feed_list key as Tensor: ' + e.message)
|
||
|
e.args = (e.message,)
|
||
|
raise e
|
||
|
|
||
|
# Validate and process fetches.
|
||
|
# TODO(touts): Support feeding and fetching the same tensor.
|
||
|
fetch_handler = _FetchHandler(self._graph, fetches, {})
|
||
|
|
||
|
# Set up a graph with feeds and fetches for partial run.
|
||
|
def _setup_fn(session, feed_list, fetch_list, target_list):
|
||
|
self._extend_graph()
|
||
|
return tf_session.TF_SessionPRunSetup_wrapper(
|
||
|
session, feed_list, fetch_list, target_list)
|
||
|
|
||
|
# pylint: disable=protected-access
|
||
|
final_fetches = [t._as_tf_output() for t in fetch_handler.fetches()]
|
||
|
final_targets = [op._c_op for op in fetch_handler.targets()]
|
||
|
# pylint: enable=protected-access
|
||
|
|
||
|
return self._do_call(_setup_fn, self._session, feed_list, final_fetches,
|
||
|
final_targets)
|
||
|
|
||
|
def _run(self, handle, fetches, feed_dict, options, run_metadata):
|
||
|
"""Perform either run or partial_run, depending the presence of `handle`."""
|
||
|
|
||
|
def _feed_fn(feed, feed_val):
|
||
|
for tensor_type, _, feed_fn, _ in _REGISTERED_EXPANSIONS:
|
||
|
if isinstance(feed, tensor_type):
|
||
|
return feed_fn(feed, feed_val)
|
||
|
raise TypeError('Feed argument %r has invalid type %r' % (feed,
|
||
|
type(feed)))
|
||
|
|
||
|
# Check session.
|
||
|
if self._closed:
|
||
|
raise RuntimeError('Attempted to use a closed Session.')
|
||
|
if self.graph.version == 0:
|
||
|
raise RuntimeError('The Session graph is empty. Add operations to the '
|
||
|
'graph before calling run().')
|
||
|
|
||
|
# Create request.
|
||
|
feed_dict_tensor = {}
|
||
|
feed_map = {}
|
||
|
|
||
|
# Validate and process feed_dict.
|
||
|
feed_handles = {}
|
||
|
if feed_dict:
|
||
|
feed_dict = nest.flatten_dict_items(feed_dict)
|
||
|
for feed, feed_val in feed_dict.items():
|
||
|
for subfeed, subfeed_val in _feed_fn(feed, feed_val):
|
||
|
try:
|
||
|
subfeed_t = self.graph.as_graph_element(
|
||
|
subfeed, allow_tensor=True, allow_operation=False)
|
||
|
except Exception as e:
|
||
|
raise TypeError(
|
||
|
'Cannot interpret feed_dict key as Tensor: ' + e.args[0])
|
||
|
|
||
|
if isinstance(subfeed_val, ops.Tensor):
|
||
|
raise TypeError('The value of a feed cannot be a tf.Tensor object. '
|
||
|
'Acceptable feed values include Python scalars, '
|
||
|
'strings, lists, numpy ndarrays, or TensorHandles.'
|
||
|
'For reference, the tensor object was ' +
|
||
|
str(feed_val) + ' which was passed to the '
|
||
|
'feed with key ' + str(feed) + '.')
|
||
|
|
||
|
subfeed_dtype = subfeed_t.dtype.as_numpy_dtype
|
||
|
if isinstance(subfeed_val, int) and _convert_to_numpy_obj(
|
||
|
subfeed_dtype, subfeed_val) != subfeed_val:
|
||
|
raise TypeError(
|
||
|
'Type of feed value ' + str(subfeed_val) + ' with type ' + str(
|
||
|
type(subfeed_val)) +
|
||
|
' is not compatible with Tensor type ' + str(subfeed_dtype) +
|
||
|
'. Try explicitly setting the type of the feed tensor'
|
||
|
' to a larger type (e.g. int64).')
|
||
|
|
||
|
is_tensor_handle_feed = isinstance(subfeed_val,
|
||
|
session_ops.TensorHandle)
|
||
|
if is_tensor_handle_feed:
|
||
|
np_val = subfeed_val.to_numpy_array()
|
||
|
feed_handles[subfeed_t] = subfeed_val
|
||
|
else:
|
||
|
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
|
||
|
|
||
|
if (not is_tensor_handle_feed and
|
||
|
not subfeed_t.get_shape().is_compatible_with(np_val.shape)):
|
||
|
raise ValueError('Cannot feed value of shape %r for Tensor %r, '
|
||
|
'which has shape %r' %
|
||
|
(np_val.shape, subfeed_t.name,
|
||
|
str(subfeed_t.get_shape())))
|
||
|
if not self.graph.is_feedable(subfeed_t):
|
||
|
raise ValueError('Tensor %s may not be fed.' % subfeed_t)
|
||
|
|
||
|
feed_dict_tensor[subfeed_t] = np_val
|
||
|
feed_map[compat.as_bytes(subfeed_t.name)] = (subfeed_t, subfeed_val)
|
||
|
|
||
|
# Create a fetch handler to take care of the structure of fetches.
|
||
|
fetch_handler = _FetchHandler(
|
||
|
self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
|
||
|
|
||
|
# Run request and get response.
|
||
|
# We need to keep the returned movers alive for the following _do_run().
|
||
|
# These movers are no longer needed when _do_run() completes, and
|
||
|
# are deleted when `movers` goes out of scope when this _run() ends.
|
||
|
# TODO(yuanbyu, keveman): Revisit whether we should just treat feeding
|
||
|
# of a handle from a different device as an error.
|
||
|
_ = self._update_with_movers(feed_dict_tensor, feed_map)
|
||
|
final_fetches = fetch_handler.fetches()
|
||
|
final_targets = fetch_handler.targets()
|
||
|
# We only want to really perform the run if fetches or targets are provided,
|
||
|
# or if the call is a partial run that specifies feeds.
|
||
|
if final_fetches or final_targets or (handle and feed_dict_tensor):
|
||
|
results = self._do_run(handle, final_targets, final_fetches,
|
||
|
feed_dict_tensor, options, run_metadata)
|
||
|
else:
|
||
|
results = []
|
||
|
return fetch_handler.build_results(self, results)
|
||
|
|
||
|
def make_callable(self, fetches, feed_list=None, accept_options=False):
|
||
|
"""Returns a Python callable that runs a particular step.
|
||
|
|
||
|
The returned callable will take `len(feed_list)` arguments whose types
|
||
|
must be compatible feed values for the respective elements of `feed_list`.
|
||
|
For example, if element `i` of `feed_list` is a `tf.Tensor`, the `i`th
|
||
|
argument to the returned callable must be a numpy ndarray (or something
|
||
|
convertible to an ndarray) with matching element type and shape. See
|
||
|
@{tf.Session.run} for details of the allowable feed key and value types.
|
||
|
|
||
|
The returned callable will have the same return type as
|
||
|
`tf.Session.run(fetches, ...)`. For example, if `fetches` is a `tf.Tensor`,
|
||
|
the callable will return a numpy ndarray; if `fetches` is a `tf.Operation`,
|
||
|
it will return `None`.
|
||
|
|
||
|
Args:
|
||
|
fetches: A value or list of values to fetch. See @{tf.Session.run}
|
||
|
for details of the allowable fetch types.
|
||
|
feed_list: (Optional.) A list of `feed_dict` keys. See
|
||
|
@{tf.Session.run} for details of the allowable feed key types.
|
||
|
accept_options: (Optional.) Iff `True`, the returned `Callable` will be
|
||
|
able to accept @{tf.RunOptions} and @{tf.RunMetadata} as optional
|
||
|
keyword arguments `options` and `run_metadata`, respectively, with
|
||
|
the same syntax and semantics as @{tf.Session.run}, which is useful
|
||
|
for certain use cases (profiling and debugging) but will result in
|
||
|
measurable slowdown of the `Callable`'s performance. Default: `False`.
|
||
|
|
||
|
Returns:
|
||
|
A function that when called will execute the step defined by
|
||
|
`feed_list` and `fetches` in this session.
|
||
|
|
||
|
Raises:
|
||
|
TypeError: If `fetches` or `feed_list` cannot be interpreted
|
||
|
as arguments to @{tf.Session.run}.
|
||
|
"""
|
||
|
if feed_list is not None:
|
||
|
if not isinstance(feed_list, (list, tuple)):
|
||
|
raise TypeError('`feed_list` must be a list or tuple.')
|
||
|
# Delegate any non-empty feed lists to the existing `run()` logic.
|
||
|
# TODO(mrry): Refactor the feed handling logic from
|
||
|
# `Session._run()` so that we can convert the feeds to a list of
|
||
|
# strings here.
|
||
|
def _generic_run(*feed_args, **kwargs):
|
||
|
feed_dict = {
|
||
|
feed: feed_val
|
||
|
for feed, feed_val in zip(feed_list, feed_args)
|
||
|
}
|
||
|
return self.run(fetches, feed_dict=feed_dict, **kwargs)
|
||
|
|
||
|
return _generic_run
|
||
|
|
||
|
# Ensure any changes to the graph are reflected in the runtime.
|
||
|
# Note that we don't need to do this on subsequent calls to the
|
||
|
# returned object, because the arguments to `fetches` must already be
|
||
|
# in the graph.
|
||
|
self._extend_graph()
|
||
|
|
||
|
# Create a fetch handler to take care of the structure of fetches.
|
||
|
fetch_handler = _FetchHandler(self._graph, fetches, {})
|
||
|
# pylint: disable=protected-access
|
||
|
fetch_list = [t._as_tf_output() for t in fetch_handler.fetches()]
|
||
|
target_list = [op._c_op for op in fetch_handler.targets()]
|
||
|
# pylint: enable=protected-access
|
||
|
|
||
|
def _callable_template_with_options_and_metadata(fetch_list,
|
||
|
target_list,
|
||
|
fetch_handler,
|
||
|
options=None,
|
||
|
run_metadata=None):
|
||
|
"""Template callable that accepts RunOptions and RunMetadata."""
|
||
|
options_ptr = tf_session.TF_NewBufferFromString(
|
||
|
compat.as_bytes(options.SerializeToString())) if options else None
|
||
|
run_metadata_ptr = tf_session.TF_NewBuffer() if run_metadata else None
|
||
|
try:
|
||
|
results = self._call_tf_sessionrun(
|
||
|
options_ptr, {}, fetch_list, target_list, run_metadata_ptr)
|
||
|
if fetch_handler:
|
||
|
results = fetch_handler.build_results(self, results)
|
||
|
else:
|
||
|
results = results[0] if results else None
|
||
|
if run_metadata:
|
||
|
proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
|
||
|
run_metadata.ParseFromString(compat.as_bytes(proto_data))
|
||
|
finally:
|
||
|
if run_metadata_ptr:
|
||
|
tf_session.TF_DeleteBuffer(run_metadata_ptr)
|
||
|
if options:
|
||
|
tf_session.TF_DeleteBuffer(options_ptr)
|
||
|
return results
|
||
|
|
||
|
if accept_options:
|
||
|
return functools.partial(_callable_template_with_options_and_metadata,
|
||
|
fetch_list, target_list, fetch_handler)
|
||
|
elif isinstance(fetches, ops.Operation):
|
||
|
# Special case for fetching a single operation, because the
|
||
|
# function will have no return value.
|
||
|
assert not fetch_list
|
||
|
assert len(target_list) == 1
|
||
|
|
||
|
def _single_operation_run():
|
||
|
self._call_tf_sessionrun(None, {}, [], target_list, None)
|
||
|
|
||
|
return _single_operation_run
|
||
|
elif isinstance(fetches, ops.Tensor):
|
||
|
# Special case for fetching a single tensor, because the
|
||
|
# function can return the result of `TF_Run()` directly.
|
||
|
assert len(fetch_list) == 1
|
||
|
assert not target_list
|
||
|
|
||
|
def _single_tensor_run():
|
||
|
results = self._call_tf_sessionrun(None, {}, fetch_list, [], None)
|
||
|
return results[0]
|
||
|
|
||
|
return _single_tensor_run
|
||
|
else:
|
||
|
# In all other cases, we must use `fetch_handler` to build the
|
||
|
# results for us.
|
||
|
def _fetch_handler_run():
|
||
|
results = self._call_tf_sessionrun(
|
||
|
None, {}, fetch_list, target_list, None)
|
||
|
return fetch_handler.build_results(self, results)
|
||
|
|
||
|
return _fetch_handler_run
|
||
|
|
||
|
# Captures the name of a node in an error status.
|
||
|
_NODEDEF_NAME_RE = re.compile(r'\[\[Node: ([^ ]*?) =')
|
||
|
|
||
|
def _do_run(self, handle, target_list, fetch_list, feed_dict, options,
|
||
|
run_metadata):
|
||
|
"""Runs a step based on the given fetches and feeds.
|
||
|
|
||
|
Args:
|
||
|
handle: a handle for partial_run. None if this is just a call to run().
|
||
|
target_list: A list of operations to be run, but not fetched.
|
||
|
fetch_list: A list of tensors to be fetched.
|
||
|
feed_dict: A dictionary that maps tensors to numpy ndarrays.
|
||
|
options: A (pointer to a) [`RunOptions`] protocol buffer, or None
|
||
|
run_metadata: A (pointer to a) [`RunMetadata`] protocol buffer, or None
|
||
|
|
||
|
Returns:
|
||
|
A list of numpy ndarrays, corresponding to the elements of
|
||
|
`fetch_list`. If the ith element of `fetch_list` contains the
|
||
|
name of an operation, the first Tensor output of that operation
|
||
|
will be returned for that element.
|
||
|
|
||
|
Raises:
|
||
|
tf.errors.OpError: Or one of its subclasses on error.
|
||
|
"""
|
||
|
# pylint: disable=protected-access
|
||
|
feeds = dict((t._as_tf_output(), v) for t, v in feed_dict.items())
|
||
|
fetches = [t._as_tf_output() for t in fetch_list]
|
||
|
targets = [op._c_op for op in target_list]
|
||
|
# pylint: enable=protected-access
|
||
|
|
||
|
def _run_fn(feed_dict, fetch_list, target_list, options, run_metadata):
|
||
|
# Ensure any changes to the graph are reflected in the runtime.
|
||
|
self._extend_graph()
|
||
|
return self._call_tf_sessionrun(
|
||
|
options, feed_dict, fetch_list, target_list, run_metadata)
|
||
|
|
||
|
def _prun_fn(handle, feed_dict, fetch_list):
|
||
|
if target_list:
|
||
|
raise RuntimeError('partial_run() requires empty target_list.')
|
||
|
return self._call_tf_sessionprun(handle, feed_dict, fetch_list)
|
||
|
|
||
|
if handle is None:
|
||
|
return self._do_call(_run_fn, feeds, fetches, targets, options,
|
||
|
run_metadata)
|
||
|
else:
|
||
|
return self._do_call(_prun_fn, handle, feeds, fetches)
|
||
|
|
||
|
def _do_call(self, fn, *args):
|
||
|
try:
|
||
|
return fn(*args)
|
||
|
except errors.OpError as e:
|
||
|
message = compat.as_text(e.message)
|
||
|
m = BaseSession._NODEDEF_NAME_RE.search(message)
|
||
|
node_def = None
|
||
|
op = None
|
||
|
if m is not None:
|
||
|
node_name = m.group(1)
|
||
|
try:
|
||
|
op = self._graph.get_operation_by_name(node_name)
|
||
|
node_def = op.node_def
|
||
|
except KeyError:
|
||
|
pass
|
||
|
raise type(e)(node_def, op, message)
|
||
|
|
||
|
def _extend_graph(self):
|
||
|
with self._graph._session_run_lock(): # pylint: disable=protected-access
|
||
|
tf_session.ExtendSession(self._session)
|
||
|
|
||
|
# The threshold to run garbage collection to delete dead tensors.
|
||
|
_DEAD_HANDLES_THRESHOLD = 10
|
||
|
|
||
|
def _register_dead_handle(self, handle):
|
||
|
# Register a dead handle in the session. Delete the dead tensors when
|
||
|
# the number of dead tensors exceeds certain threshold.
|
||
|
tensors_to_delete = None
|
||
|
with self._delete_lock:
|
||
|
self._dead_handles.append(handle)
|
||
|
if len(self._dead_handles) == BaseSession._DEAD_HANDLES_THRESHOLD:
|
||
|
tensors_to_delete = self._dead_handles
|
||
|
self._dead_handles = []
|
||
|
# Delete the dead tensors.
|
||
|
if tensors_to_delete:
|
||
|
feeds = {}
|
||
|
fetches = []
|
||
|
for deleter_key, tensor_handle in enumerate(tensors_to_delete):
|
||
|
holder, deleter = session_ops._get_handle_deleter(
|
||
|
self.graph, deleter_key, tensor_handle)
|
||
|
feeds[holder] = tensor_handle
|
||
|
fetches.append(deleter)
|
||
|
self.run(fetches, feed_dict=feeds)
|
||
|
|
||
|
def _update_with_movers(self, feed_dict, feed_map):
|
||
|
# If a tensor handle that is fed to a device incompatible placeholder,
|
||
|
# we move the tensor to the right device, generate a new tensor handle,
|
||
|
# and update `feed_dict` to use the new handle.
|
||
|
handle_movers = []
|
||
|
for feed_name, val in feed_map.items():
|
||
|
mover = session_ops._get_handle_mover(self.graph, *val)
|
||
|
if mover:
|
||
|
handle_movers.append((feed_name, val[1], mover))
|
||
|
# Transfer a tensor to the right device if needed.
|
||
|
if not handle_movers:
|
||
|
return []
|
||
|
else:
|
||
|
feeds = {}
|
||
|
fetches = []
|
||
|
for _, handle, mover in handle_movers:
|
||
|
feeds[mover[0]] = handle
|
||
|
fetches.append(mover[1])
|
||
|
handles = self.run(fetches, feed_dict=feeds)
|
||
|
for handle_mover, handle in zip(handle_movers, handles):
|
||
|
np_val = np.array(handle.handle, dtype=np.object)
|
||
|
feed_name = handle_mover[0]
|
||
|
feed_tensor = feed_map[feed_name][0]
|
||
|
feed_dict[feed_tensor] = np_val
|
||
|
return handles
|
||
|
|
||
|
def _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list,
|
||
|
run_metadata):
|
||
|
return tf_session.TF_SessionRun_wrapper(
|
||
|
self._session, options, feed_dict, fetch_list, target_list,
|
||
|
run_metadata)
|
||
|
|
||
|
def _call_tf_sessionprun(self, handle, feed_dict, fetch_list):
|
||
|
return tf_session.TF_SessionPRun_wrapper(
|
||
|
self._session, handle, feed_dict, fetch_list)
|
||
|
|
||
|
# pylint: disable=protected-access
|
||
|
class _Callable(object):
|
||
|
"""Experimental wrapper for the C++ `Session::MakeCallable()` API."""
|
||
|
|
||
|
def __init__(self, session, callable_options):
|
||
|
self._session = session
|
||
|
self._handle = None
|
||
|
options_ptr = tf_session.TF_NewBufferFromString(
|
||
|
compat.as_bytes(callable_options.SerializeToString()))
|
||
|
try:
|
||
|
with errors.raise_exception_on_not_ok_status() as status:
|
||
|
self._handle = tf_session.TF_SessionMakeCallable(
|
||
|
session._session, options_ptr, status)
|
||
|
finally:
|
||
|
tf_session.TF_DeleteBuffer(options_ptr)
|
||
|
|
||
|
def __call__(self, *args, **kwargs):
|
||
|
# TODO(b/74355905): Support argument and return value nested structures,
|
||
|
# and tensor-like objects such as SparseTensors.
|
||
|
run_metadata = kwargs.get('run_metadata', None)
|
||
|
try:
|
||
|
run_metadata_ptr = tf_session.TF_NewBuffer() if run_metadata else None
|
||
|
# TODO(mrry): Switch to raising an exception from the SWIG wrapper.
|
||
|
with errors.raise_exception_on_not_ok_status() as status:
|
||
|
ret = tf_session.TF_SessionRunCallable(
|
||
|
self._session._session, self._handle, args, status,
|
||
|
run_metadata_ptr)
|
||
|
if run_metadata:
|
||
|
proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
|
||
|
run_metadata.ParseFromString(compat.as_bytes(proto_data))
|
||
|
finally:
|
||
|
if run_metadata_ptr:
|
||
|
tf_session.TF_DeleteBuffer(run_metadata_ptr)
|
||
|
return ret
|
||
|
|
||
|
def __del__(self):
|
||
|
# NOTE(mrry): It is possible that `self._session.__del__()` could be
|
||
|
# called before this destructor, in which case `self._session._session`
|
||
|
# will be `None`.
|
||
|
if self._handle is not None and self._session._session is not None:
|
||
|
with errors.raise_exception_on_not_ok_status() as status:
|
||
|
tf_session.TF_SessionReleaseCallable(
|
||
|
self._session._session, self._handle, status)
|
||
|
# pylint: enable=protected-access
|
||
|
|
||
|
# TODO(b/74355905): Reimplement `Session.make_callable()` using this method
|
||
|
# where possible.
|
||
|
def _make_callable_from_options(self, callable_options):
|
||
|
"""Returns a handle to a "callable" with the given options.
|
||
|
|
||
|
Args:
|
||
|
callable_options: A `CallableOptions` protocol buffer message describing
|
||
|
the computation that will be performed by the callable.
|
||
|
|
||
|
Returns:
|
||
|
A handle to the new callable.
|
||
|
"""
|
||
|
self._extend_graph()
|
||
|
return BaseSession._Callable(self, callable_options)
|
||
|
|
||
|
|
||
|
@tf_export('Session')
|
||
|
class Session(BaseSession):
|
||
|
"""A class for running TensorFlow operations.
|
||
|
|
||
|
A `Session` object encapsulates the environment in which `Operation`
|
||
|
objects are executed, and `Tensor` objects are evaluated. For
|
||
|
example:
|
||
|
|
||
|
```python
|
||
|
# Build a graph.
|
||
|
a = tf.constant(5.0)
|
||
|
b = tf.constant(6.0)
|
||
|
c = a * b
|
||
|
|
||
|
# Launch the graph in a session.
|
||
|
sess = tf.Session()
|
||
|
|
||
|
# Evaluate the tensor `c`.
|
||
|
print(sess.run(c))
|
||
|
```
|
||
|
|
||
|
A session may own resources, such as
|
||
|
@{tf.Variable}, @{tf.QueueBase},
|
||
|
and @{tf.ReaderBase}. It is important to release
|
||
|
these resources when they are no longer required. To do this, either
|
||
|
invoke the @{tf.Session.close} method on the session, or use
|
||
|
the session as a context manager. The following two examples are
|
||
|
equivalent:
|
||
|
|
||
|
```python
|
||
|
# Using the `close()` method.
|
||
|
sess = tf.Session()
|
||
|
sess.run(...)
|
||
|
sess.close()
|
||
|
|
||
|
# Using the context manager.
|
||
|
with tf.Session() as sess:
|
||
|
sess.run(...)
|
||
|
```
|
||
|
|
||
|
The
|
||
|
[`ConfigProto`](https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto)
|
||
|
protocol buffer exposes various configuration options for a
|
||
|
session. For example, to create a session that uses soft constraints
|
||
|
for device placement, and log the resulting placement decisions,
|
||
|
create a session as follows:
|
||
|
|
||
|
```python
|
||
|
# Launch the graph in a session that allows soft device placement and
|
||
|
# logs the placement decisions.
|
||
|
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
|
||
|
log_device_placement=True))
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(self, target='', graph=None, config=None):
|
||
|
"""Creates a new TensorFlow session.
|
||
|
|
||
|
If no `graph` argument is specified when constructing the session,
|
||
|
the default graph will be launched in the session. If you are
|
||
|
using more than one graph (created with `tf.Graph()` in the same
|
||
|
process, you will have to use different sessions for each graph,
|
||
|
but each graph can be used in multiple sessions. In this case, it
|
||
|
is often clearer to pass the graph to be launched explicitly to
|
||
|
the session constructor.
|
||
|
|
||
|
Args:
|
||
|
target: (Optional.) The execution engine to connect to.
|
||
|
Defaults to using an in-process engine. See
|
||
|
@{$distributed$Distributed TensorFlow}
|
||
|
for more examples.
|
||
|
graph: (Optional.) The `Graph` to be launched (described above).
|
||
|
config: (Optional.) A
|
||
|
[`ConfigProto`](https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto)
|
||
|
protocol buffer with configuration options for the session.
|
||
|
|
||
|
"""
|
||
|
super(Session, self).__init__(target, graph, config=config)
|
||
|
# NOTE(mrry): Create these on first `__enter__` to avoid a reference cycle.
|
||
|
self._default_graph_context_manager = None
|
||
|
self._default_session_context_manager = None
|
||
|
|
||
|
def __enter__(self):
|
||
|
if self._default_graph_context_manager is None:
|
||
|
self._default_graph_context_manager = self.graph.as_default()
|
||
|
else:
|
||
|
raise RuntimeError('Session context managers are not re-entrant. '
|
||
|
'Use `Session.as_default()` if you want to enter '
|
||
|
'a session multiple times.')
|
||
|
if self._default_session_context_manager is None:
|
||
|
self._default_session_context_manager = self.as_default()
|
||
|
self._default_graph_context_manager.__enter__()
|
||
|
return self._default_session_context_manager.__enter__()
|
||
|
|
||
|
def __exit__(self, exec_type, exec_value, exec_tb):
|
||
|
if exec_type is errors.OpError:
|
||
|
logging.error('Session closing due to OpError: %s', (exec_value,))
|
||
|
try:
|
||
|
self._default_session_context_manager.__exit__(exec_type, exec_value,
|
||
|
exec_tb)
|
||
|
except RuntimeError as error:
|
||
|
if error == exec_value:
|
||
|
# NOTE(skyewm): for some reason, in Python3,
|
||
|
# _default_session_context_manager.__exit__ will re-raise the "not
|
||
|
# re-entrant" exception raised in __enter__ above (note that if we're
|
||
|
# here, we're in the outer session context manager, since __exit__ is
|
||
|
# not called when __enter__ raises an exception). We still want to
|
||
|
# continue cleaning up this context manager before the exception is
|
||
|
# further propagated, so we ignore it here (note that it'll continue
|
||
|
# being propagated after this method completes).
|
||
|
pass
|
||
|
else:
|
||
|
raise
|
||
|
self._default_graph_context_manager.__exit__(exec_type, exec_value, exec_tb)
|
||
|
|
||
|
self._default_session_context_manager = None
|
||
|
self._default_graph_context_manager = None
|
||
|
|
||
|
self.close()
|
||
|
|
||
|
@staticmethod
|
||
|
def reset(target, containers=None, config=None):
|
||
|
"""Resets resource containers on `target`, and close all connected sessions.
|
||
|
|
||
|
A resource container is distributed across all workers in the
|
||
|
same cluster as `target`. When a resource container on `target`
|
||
|
is reset, resources associated with that container will be cleared.
|
||
|
In particular, all Variables in the container will become undefined:
|
||
|
they lose their values and shapes.
|
||
|
|
||
|
NOTE:
|
||
|
(i) reset() is currently only implemented for distributed sessions.
|
||
|
(ii) Any sessions on the master named by `target` will be closed.
|
||
|
|
||
|
If no resource containers are provided, all containers are reset.
|
||
|
|
||
|
Args:
|
||
|
target: The execution engine to connect to.
|
||
|
containers: A list of resource container name strings, or `None` if all of
|
||
|
all the containers are to be reset.
|
||
|
config: (Optional.) Protocol buffer with configuration options.
|
||
|
|
||
|
Raises:
|
||
|
tf.errors.OpError: Or one of its subclasses if an error occurs while
|
||
|
resetting containers.
|
||
|
"""
|
||
|
if target is not None:
|
||
|
target = compat.as_bytes(target)
|
||
|
if containers is not None:
|
||
|
containers = [compat.as_bytes(c) for c in containers]
|
||
|
else:
|
||
|
containers = []
|
||
|
tf_session.TF_Reset(target, containers, config)
|
||
|
|
||
|
|
||
|
@tf_export('InteractiveSession')
|
||
|
class InteractiveSession(BaseSession):
|
||
|
"""A TensorFlow `Session` for use in interactive contexts, such as a shell.
|
||
|
|
||
|
The only difference with a regular `Session` is that an `InteractiveSession`
|
||
|
installs itself as the default session on construction.
|
||
|
The methods @{tf.Tensor.eval}
|
||
|
and @{tf.Operation.run}
|
||
|
will use that session to run ops.
|
||
|
|
||
|
This is convenient in interactive shells and [IPython
|
||
|
notebooks](http://ipython.org), as it avoids having to pass an explicit
|
||
|
`Session` object to run ops.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
```python
|
||
|
sess = tf.InteractiveSession()
|
||
|
a = tf.constant(5.0)
|
||
|
b = tf.constant(6.0)
|
||
|
c = a * b
|
||
|
# We can just use 'c.eval()' without passing 'sess'
|
||
|
print(c.eval())
|
||
|
sess.close()
|
||
|
```
|
||
|
|
||
|
Note that a regular session installs itself as the default session when it
|
||
|
is created in a `with` statement. The common usage in non-interactive
|
||
|
programs is to follow that pattern:
|
||
|
|
||
|
```python
|
||
|
a = tf.constant(5.0)
|
||
|
b = tf.constant(6.0)
|
||
|
c = a * b
|
||
|
with tf.Session():
|
||
|
# We can also use 'c.eval()' here.
|
||
|
print(c.eval())
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
_count_lock = threading.Lock()
|
||
|
_active_session_count = 0 # GUARDED_BY(_count_lock)
|
||
|
|
||
|
def __init__(self, target='', graph=None, config=None):
|
||
|
"""Creates a new interactive TensorFlow session.
|
||
|
|
||
|
If no `graph` argument is specified when constructing the session,
|
||
|
the default graph will be launched in the session. If you are
|
||
|
using more than one graph (created with `tf.Graph()` in the same
|
||
|
process, you will have to use different sessions for each graph,
|
||
|
but each graph can be used in multiple sessions. In this case, it
|
||
|
is often clearer to pass the graph to be launched explicitly to
|
||
|
the session constructor.
|
||
|
|
||
|
Args:
|
||
|
target: (Optional.) The execution engine to connect to.
|
||
|
Defaults to using an in-process engine.
|
||
|
graph: (Optional.) The `Graph` to be launched (described above).
|
||
|
config: (Optional) `ConfigProto` proto used to configure the session.
|
||
|
"""
|
||
|
if not config:
|
||
|
# If config is not provided, choose some reasonable defaults for
|
||
|
# interactive use:
|
||
|
#
|
||
|
# - Grow GPU memory as needed at the cost of fragmentation.
|
||
|
gpu_options = config_pb2.GPUOptions(allow_growth=True)
|
||
|
config = config_pb2.ConfigProto(gpu_options=gpu_options)
|
||
|
# Interactive sessions always place pruned graphs.
|
||
|
config.graph_options.place_pruned_graph = True
|
||
|
|
||
|
super(InteractiveSession, self).__init__(target, graph, config)
|
||
|
with InteractiveSession._count_lock:
|
||
|
if InteractiveSession._active_session_count > 0:
|
||
|
warnings.warn('An interactive session is already active. This can '
|
||
|
'cause out-of-memory errors in some cases. You must '
|
||
|
'explicitly call `InteractiveSession.close()` to release '
|
||
|
'resources held by the other session(s).')
|
||
|
InteractiveSession._active_session_count += 1
|
||
|
# NOTE(mrry): We do not use `Session._closed` here because it has unhelpful
|
||
|
# semantics (in particular, it is not set to true if `Session.close()` is
|
||
|
# called on a session that has not been "opened" by running a step) and we
|
||
|
# cannot change those semantics without breaking existing code.
|
||
|
self._explicitly_closed = False
|
||
|
|
||
|
self._default_session = self.as_default()
|
||
|
self._default_session.enforce_nesting = False
|
||
|
self._default_session.__enter__()
|
||
|
self._explicit_graph = graph
|
||
|
if self._explicit_graph is not None:
|
||
|
self._default_graph = graph.as_default()
|
||
|
self._default_graph.enforce_nesting = False
|
||
|
self._default_graph.__enter__()
|
||
|
|
||
|
def close(self):
|
||
|
"""Closes an `InteractiveSession`."""
|
||
|
super(InteractiveSession, self).close()
|
||
|
with InteractiveSession._count_lock:
|
||
|
if not self._explicitly_closed:
|
||
|
InteractiveSession._active_session_count -= 1
|
||
|
self._explicitly_closed = True
|
||
|
else:
|
||
|
return
|
||
|
if self._explicit_graph is not None:
|
||
|
self._default_graph.__exit__(None, None, None)
|
||
|
self._default_graph = None
|
||
|
self._default_session.__exit__(None, None, None)
|
||
|
self._default_session = None
|