114 lines
4.3 KiB
Python
114 lines
4.3 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
"""Adadelta for TensorFlow."""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from tensorflow.contrib.optimizer_v2 import optimizer_v2
|
||
|
from tensorflow.python.training import training_ops
|
||
|
|
||
|
|
||
|
class AdadeltaOptimizer(optimizer_v2.OptimizerV2):
|
||
|
"""Optimizer that implements the Adadelta algorithm.
|
||
|
|
||
|
See [M. D. Zeiler](http://arxiv.org/abs/1212.5701)
|
||
|
([pdf](http://arxiv.org/pdf/1212.5701v1.pdf))
|
||
|
"""
|
||
|
|
||
|
def __init__(self, learning_rate=0.001, rho=0.95, epsilon=1e-8,
|
||
|
use_locking=False, name="Adadelta"):
|
||
|
"""Construct a new Adadelta optimizer.
|
||
|
|
||
|
Some of the args below are hyperparameters, where a hyperparameter is
|
||
|
defined as a scalar Tensor, a regular Python value or a callable (which
|
||
|
will be evaluated when `apply_gradients` is called) returning a scalar
|
||
|
Tensor or a Python value.
|
||
|
|
||
|
Args:
|
||
|
learning_rate: A float hyperparameter. The learning rate.
|
||
|
To match the exact form in the original paper use 1.0.
|
||
|
rho: A float hyperparameter. The decay rate.
|
||
|
epsilon: A float hyperparameter. A constant epsilon used to better
|
||
|
condition the grad update.
|
||
|
use_locking: If `True` use locks for update operations.
|
||
|
name: Optional name prefix for the operations created when applying
|
||
|
gradients. Defaults to "Adadelta".
|
||
|
"""
|
||
|
super(AdadeltaOptimizer, self).__init__(use_locking, name)
|
||
|
self._set_hyper("learning_rate", learning_rate)
|
||
|
self._set_hyper("rho", rho)
|
||
|
self._set_hyper("epsilon", epsilon)
|
||
|
|
||
|
def _create_vars(self, var_list, state):
|
||
|
for v in var_list:
|
||
|
state.zeros_slot(v, "accum")
|
||
|
state.zeros_slot(v, "accum_update")
|
||
|
|
||
|
def _apply_dense(self, grad, var, state):
|
||
|
accum = state.get_slot(var, "accum")
|
||
|
accum_update = state.get_slot(var, "accum_update")
|
||
|
return training_ops.apply_adadelta(
|
||
|
var,
|
||
|
accum,
|
||
|
accum_update,
|
||
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
||
|
state.get_hyper("rho", var.dtype.base_dtype),
|
||
|
state.get_hyper("epsilon", var.dtype.base_dtype),
|
||
|
grad,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _resource_apply_dense(self, grad, var, state):
|
||
|
accum = state.get_slot(var, "accum")
|
||
|
accum_update = state.get_slot(var, "accum_update")
|
||
|
return training_ops.resource_apply_adadelta(
|
||
|
var.handle,
|
||
|
accum.handle,
|
||
|
accum_update.handle,
|
||
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
||
|
state.get_hyper("rho", var.dtype.base_dtype),
|
||
|
state.get_hyper("epsilon", var.dtype.base_dtype),
|
||
|
grad,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _apply_sparse(self, grad, var, state):
|
||
|
accum = state.get_slot(var, "accum")
|
||
|
accum_update = state.get_slot(var, "accum_update")
|
||
|
return training_ops.sparse_apply_adadelta(
|
||
|
var,
|
||
|
accum,
|
||
|
accum_update,
|
||
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
||
|
state.get_hyper("rho", var.dtype.base_dtype),
|
||
|
state.get_hyper("epsilon", var.dtype.base_dtype),
|
||
|
grad.values,
|
||
|
grad.indices,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _resource_apply_sparse(self, grad, var, indices, state):
|
||
|
accum = state.get_slot(var, "accum")
|
||
|
accum_update = state.get_slot(var, "accum_update")
|
||
|
return training_ops.resource_sparse_apply_adadelta(
|
||
|
var.handle,
|
||
|
accum.handle,
|
||
|
accum_update.handle,
|
||
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
||
|
state.get_hyper("rho", var.dtype.base_dtype),
|
||
|
state.get_hyper("epsilon", var.dtype.base_dtype),
|
||
|
grad,
|
||
|
indices,
|
||
|
use_locking=self._use_locking)
|