laywerrobot/lib/python3.6/site-packages/tensorflow/contrib/optimizer_v2/adadelta.py

114 lines
4.3 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Adadelta for TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.optimizer_v2 import optimizer_v2
from tensorflow.python.training import training_ops
class AdadeltaOptimizer(optimizer_v2.OptimizerV2):
"""Optimizer that implements the Adadelta algorithm.
See [M. D. Zeiler](http://arxiv.org/abs/1212.5701)
([pdf](http://arxiv.org/pdf/1212.5701v1.pdf))
"""
def __init__(self, learning_rate=0.001, rho=0.95, epsilon=1e-8,
use_locking=False, name="Adadelta"):
"""Construct a new Adadelta optimizer.
Some of the args below are hyperparameters, where a hyperparameter is
defined as a scalar Tensor, a regular Python value or a callable (which
will be evaluated when `apply_gradients` is called) returning a scalar
Tensor or a Python value.
Args:
learning_rate: A float hyperparameter. The learning rate.
To match the exact form in the original paper use 1.0.
rho: A float hyperparameter. The decay rate.
epsilon: A float hyperparameter. A constant epsilon used to better
condition the grad update.
use_locking: If `True` use locks for update operations.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "Adadelta".
"""
super(AdadeltaOptimizer, self).__init__(use_locking, name)
self._set_hyper("learning_rate", learning_rate)
self._set_hyper("rho", rho)
self._set_hyper("epsilon", epsilon)
def _create_vars(self, var_list, state):
for v in var_list:
state.zeros_slot(v, "accum")
state.zeros_slot(v, "accum_update")
def _apply_dense(self, grad, var, state):
accum = state.get_slot(var, "accum")
accum_update = state.get_slot(var, "accum_update")
return training_ops.apply_adadelta(
var,
accum,
accum_update,
state.get_hyper("learning_rate", var.dtype.base_dtype),
state.get_hyper("rho", var.dtype.base_dtype),
state.get_hyper("epsilon", var.dtype.base_dtype),
grad,
use_locking=self._use_locking)
def _resource_apply_dense(self, grad, var, state):
accum = state.get_slot(var, "accum")
accum_update = state.get_slot(var, "accum_update")
return training_ops.resource_apply_adadelta(
var.handle,
accum.handle,
accum_update.handle,
state.get_hyper("learning_rate", var.dtype.base_dtype),
state.get_hyper("rho", var.dtype.base_dtype),
state.get_hyper("epsilon", var.dtype.base_dtype),
grad,
use_locking=self._use_locking)
def _apply_sparse(self, grad, var, state):
accum = state.get_slot(var, "accum")
accum_update = state.get_slot(var, "accum_update")
return training_ops.sparse_apply_adadelta(
var,
accum,
accum_update,
state.get_hyper("learning_rate", var.dtype.base_dtype),
state.get_hyper("rho", var.dtype.base_dtype),
state.get_hyper("epsilon", var.dtype.base_dtype),
grad.values,
grad.indices,
use_locking=self._use_locking)
def _resource_apply_sparse(self, grad, var, indices, state):
accum = state.get_slot(var, "accum")
accum_update = state.get_slot(var, "accum_update")
return training_ops.resource_sparse_apply_adadelta(
var.handle,
accum.handle,
accum_update.handle,
state.get_hyper("learning_rate", var.dtype.base_dtype),
state.get_hyper("rho", var.dtype.base_dtype),
state.get_hyper("epsilon", var.dtype.base_dtype),
grad,
indices,
use_locking=self._use_locking)