laywerrobot/lib/python3.6/site-packages/tensorflow/contrib/checkpoint/python/containers.py

81 lines
2.9 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
"""Checkpointable data structures."""
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.training.checkpointable import base as checkpointable_lib
from tensorflow.python.training.checkpointable import data_structures
class UniqueNameTracker(data_structures.CheckpointableDataStructure):
"""Adds dependencies on checkpointable objects with name hints.
Useful for creating dependencies with locally unique names.
Example usage:
```python
class SlotManager(tf.contrib.checkpoint.Checkpointable):
def __init__(self):
# Create a dependency named "slotdeps" on the container.
self.slotdeps = tf.contrib.checkpoint.UniqueNameTracker()
slotdeps = self.slotdeps
slots = []
slots.append(slotdeps.track(tfe.Variable(3.), "x")) # Named "x"
slots.append(slotdeps.track(tfe.Variable(4.), "y"))
slots.append(slotdeps.track(tfe.Variable(5.), "x")) # Named "x_1"
```
"""
def __init__(self):
super(UniqueNameTracker, self).__init__()
self._maybe_initialize_checkpointable()
self._name_counts = {}
def track(self, checkpointable, base_name):
"""Add a dependency on `checkpointable`.
Args:
checkpointable: An object to add a checkpoint dependency on.
base_name: A name hint, which is uniquified to determine the dependency
name.
Returns:
`checkpointable`, for chaining.
Raises:
ValueError: If `checkpointable` is not a checkpointable object.
"""
if not isinstance(checkpointable, checkpointable_lib.CheckpointableBase):
raise ValueError(
("Expected a checkpointable value, got %s which does not inherit "
"from CheckpointableBase.") % (checkpointable,))
def _format_name(prefix, number):
if number > 0:
return "%s_%d" % (prefix, number)
else:
return prefix
count = self._name_counts.get(base_name, 0)
candidate = _format_name(base_name, count)
while self._lookup_dependency(candidate) is not None:
count += 1
candidate = _format_name(base_name, count)
self._name_counts[base_name] = count + 1
self._track_value(checkpointable, name=candidate)
return checkpointable