346 lines
12 KiB
Python
346 lines
12 KiB
Python
|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""The TensorBoard Text plugin."""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import json
|
||
|
import textwrap
|
||
|
import threading
|
||
|
import time
|
||
|
|
||
|
# pylint: disable=g-bad-import-order
|
||
|
# Necessary for an internal test with special behavior for numpy.
|
||
|
import numpy as np
|
||
|
# pylint: enable=g-bad-import-order
|
||
|
|
||
|
import six
|
||
|
import tensorflow as tf
|
||
|
from werkzeug import wrappers
|
||
|
|
||
|
from tensorboard import plugin_util
|
||
|
from tensorboard.backend import http_util
|
||
|
from tensorboard.plugins import base_plugin
|
||
|
from tensorboard.plugins.text import metadata
|
||
|
|
||
|
# HTTP routes
|
||
|
TAGS_ROUTE = '/tags'
|
||
|
TEXT_ROUTE = '/text'
|
||
|
|
||
|
|
||
|
WARNING_TEMPLATE = textwrap.dedent("""\
|
||
|
**Warning:** This text summary contained data of dimensionality %d, but only \
|
||
|
2d tables are supported. Showing a 2d slice of the data instead.""")
|
||
|
|
||
|
|
||
|
def make_table_row(contents, tag='td'):
|
||
|
"""Given an iterable of string contents, make a table row.
|
||
|
|
||
|
Args:
|
||
|
contents: An iterable yielding strings.
|
||
|
tag: The tag to place contents in. Defaults to 'td', you might want 'th'.
|
||
|
|
||
|
Returns:
|
||
|
A string containing the content strings, organized into a table row.
|
||
|
|
||
|
Example: make_table_row(['one', 'two', 'three']) == '''
|
||
|
<tr>
|
||
|
<td>one</td>
|
||
|
<td>two</td>
|
||
|
<td>three</td>
|
||
|
</tr>'''
|
||
|
"""
|
||
|
columns = ('<%s>%s</%s>\n' % (tag, s, tag) for s in contents)
|
||
|
return '<tr>\n' + ''.join(columns) + '</tr>\n'
|
||
|
|
||
|
|
||
|
def make_table(contents, headers=None):
|
||
|
"""Given a numpy ndarray of strings, concatenate them into a html table.
|
||
|
|
||
|
Args:
|
||
|
contents: A np.ndarray of strings. May be 1d or 2d. In the 1d case, the
|
||
|
table is laid out vertically (i.e. row-major).
|
||
|
headers: A np.ndarray or list of string header names for the table.
|
||
|
|
||
|
Returns:
|
||
|
A string containing all of the content strings, organized into a table.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If contents is not a np.ndarray.
|
||
|
ValueError: If contents is not 1d or 2d.
|
||
|
ValueError: If contents is empty.
|
||
|
ValueError: If headers is present and not a list, tuple, or ndarray.
|
||
|
ValueError: If headers is not 1d.
|
||
|
ValueError: If number of elements in headers does not correspond to number
|
||
|
of columns in contents.
|
||
|
"""
|
||
|
if not isinstance(contents, np.ndarray):
|
||
|
raise ValueError('make_table contents must be a numpy ndarray')
|
||
|
|
||
|
if contents.ndim not in [1, 2]:
|
||
|
raise ValueError('make_table requires a 1d or 2d numpy array, was %dd' %
|
||
|
contents.ndim)
|
||
|
|
||
|
if headers:
|
||
|
if isinstance(headers, (list, tuple)):
|
||
|
headers = np.array(headers)
|
||
|
if not isinstance(headers, np.ndarray):
|
||
|
raise ValueError('Could not convert headers %s into np.ndarray' % headers)
|
||
|
if headers.ndim != 1:
|
||
|
raise ValueError('Headers must be 1d, is %dd' % headers.ndim)
|
||
|
expected_n_columns = contents.shape[1] if contents.ndim == 2 else 1
|
||
|
if headers.shape[0] != expected_n_columns:
|
||
|
raise ValueError('Number of headers %d must match number of columns %d' %
|
||
|
(headers.shape[0], expected_n_columns))
|
||
|
header = '<thead>\n%s</thead>\n' % make_table_row(headers, tag='th')
|
||
|
else:
|
||
|
header = ''
|
||
|
|
||
|
n_rows = contents.shape[0]
|
||
|
if contents.ndim == 1:
|
||
|
# If it's a vector, we need to wrap each element in a new list, otherwise
|
||
|
# we would turn the string itself into a row (see test code)
|
||
|
rows = (make_table_row([contents[i]]) for i in range(n_rows))
|
||
|
else:
|
||
|
rows = (make_table_row(contents[i, :]) for i in range(n_rows))
|
||
|
|
||
|
return '<table>\n%s<tbody>\n%s</tbody>\n</table>' % (header, ''.join(rows))
|
||
|
|
||
|
|
||
|
def reduce_to_2d(arr):
|
||
|
"""Given a np.npdarray with nDims > 2, reduce it to 2d.
|
||
|
|
||
|
It does this by selecting the zeroth coordinate for every dimension greater
|
||
|
than two.
|
||
|
|
||
|
Args:
|
||
|
arr: a numpy ndarray of dimension at least 2.
|
||
|
|
||
|
Returns:
|
||
|
A two-dimensional subarray from the input array.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the argument is not a numpy ndarray, or the dimensionality
|
||
|
is too low.
|
||
|
"""
|
||
|
if not isinstance(arr, np.ndarray):
|
||
|
raise ValueError('reduce_to_2d requires a numpy.ndarray')
|
||
|
|
||
|
ndims = len(arr.shape)
|
||
|
if ndims < 2:
|
||
|
raise ValueError('reduce_to_2d requires an array of dimensionality >=2')
|
||
|
# slice(None) is equivalent to `:`, so we take arr[0,0,...0,:,:]
|
||
|
slices = ([0] * (ndims - 2)) + [slice(None), slice(None)]
|
||
|
return arr[slices]
|
||
|
|
||
|
|
||
|
def text_array_to_html(text_arr):
|
||
|
"""Take a numpy.ndarray containing strings, and convert it into html.
|
||
|
|
||
|
If the ndarray contains a single scalar string, that string is converted to
|
||
|
html via our sanitized markdown parser. If it contains an array of strings,
|
||
|
the strings are individually converted to html and then composed into a table
|
||
|
using make_table. If the array contains dimensionality greater than 2,
|
||
|
all but two of the dimensions are removed, and a warning message is prefixed
|
||
|
to the table.
|
||
|
|
||
|
Args:
|
||
|
text_arr: A numpy.ndarray containing strings.
|
||
|
|
||
|
Returns:
|
||
|
The array converted to html.
|
||
|
"""
|
||
|
if not text_arr.shape:
|
||
|
# It is a scalar. No need to put it in a table, just apply markdown
|
||
|
return plugin_util.markdown_to_safe_html(np.asscalar(text_arr))
|
||
|
warning = ''
|
||
|
if len(text_arr.shape) > 2:
|
||
|
warning = plugin_util.markdown_to_safe_html(WARNING_TEMPLATE
|
||
|
% len(text_arr.shape))
|
||
|
text_arr = reduce_to_2d(text_arr)
|
||
|
|
||
|
html_arr = [plugin_util.markdown_to_safe_html(x)
|
||
|
for x in text_arr.reshape(-1)]
|
||
|
html_arr = np.array(html_arr).reshape(text_arr.shape)
|
||
|
|
||
|
return warning + make_table(html_arr)
|
||
|
|
||
|
|
||
|
def process_string_tensor_event(event):
|
||
|
"""Convert a TensorEvent into a JSON-compatible response."""
|
||
|
string_arr = tf.make_ndarray(event.tensor_proto)
|
||
|
html = text_array_to_html(string_arr)
|
||
|
return {
|
||
|
'wall_time': event.wall_time,
|
||
|
'step': event.step,
|
||
|
'text': html,
|
||
|
}
|
||
|
|
||
|
|
||
|
class TextPlugin(base_plugin.TBPlugin):
|
||
|
"""Text Plugin for TensorBoard."""
|
||
|
|
||
|
plugin_name = metadata.PLUGIN_NAME
|
||
|
|
||
|
def __init__(self, context):
|
||
|
"""Instantiates TextPlugin via TensorBoard core.
|
||
|
|
||
|
Args:
|
||
|
context: A base_plugin.TBContext instance.
|
||
|
"""
|
||
|
self._multiplexer = context.multiplexer
|
||
|
|
||
|
# Cache the last result of index_impl() so that methods that depend on it
|
||
|
# can return without blocking (while kicking off a background thread to
|
||
|
# recompute the current index).
|
||
|
self._index_cached = None
|
||
|
|
||
|
# Lock that ensures that only one thread attempts to compute index_impl()
|
||
|
# at a given time, since it's expensive.
|
||
|
self._index_impl_lock = threading.Lock()
|
||
|
|
||
|
# Pointer to the current thread computing index_impl(), if any. This is
|
||
|
# stored on TextPlugin only to facilitate testing.
|
||
|
self._index_impl_thread = None
|
||
|
|
||
|
def is_active(self):
|
||
|
"""Determines whether this plugin is active.
|
||
|
|
||
|
This plugin is only active if TensorBoard sampled any text summaries.
|
||
|
|
||
|
Returns:
|
||
|
Whether this plugin is active.
|
||
|
"""
|
||
|
if not self._multiplexer:
|
||
|
return False
|
||
|
|
||
|
if self._index_cached is not None:
|
||
|
# If we already have computed the index, use it to determine whether
|
||
|
# the plugin should be active, and if so, return immediately.
|
||
|
if any(self._index_cached.values()):
|
||
|
return True
|
||
|
|
||
|
if self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME):
|
||
|
# Text data is present in the multiplexer. No need to further check for
|
||
|
# data stored via the outdated plugin assets method.
|
||
|
return True
|
||
|
|
||
|
# We haven't conclusively determined if the plugin should be active. Launch
|
||
|
# a thread to compute index_impl() and return False to avoid blocking.
|
||
|
self._maybe_launch_index_impl_thread()
|
||
|
|
||
|
return False
|
||
|
|
||
|
def _maybe_launch_index_impl_thread(self):
|
||
|
"""Attempts to launch a thread to compute index_impl().
|
||
|
|
||
|
This may not launch a new thread if one is already running to compute
|
||
|
index_impl(); in that case, this function is a no-op.
|
||
|
"""
|
||
|
# Try to acquire the lock for computing index_impl(), without blocking.
|
||
|
if self._index_impl_lock.acquire(False):
|
||
|
# We got the lock. Start the thread, which will unlock the lock when done.
|
||
|
self._index_impl_thread = threading.Thread(
|
||
|
target=self._async_index_impl,
|
||
|
name='TextPluginIndexImplThread')
|
||
|
self._index_impl_thread.start()
|
||
|
|
||
|
def _async_index_impl(self):
|
||
|
"""Computes index_impl() asynchronously on a separate thread."""
|
||
|
start = time.time()
|
||
|
tf.logging.info('TextPlugin computing index_impl() in a new thread')
|
||
|
self._index_cached = self.index_impl()
|
||
|
self._index_impl_thread = None
|
||
|
self._index_impl_lock.release()
|
||
|
elapsed = time.time() - start
|
||
|
tf.logging.info(
|
||
|
'TextPlugin index_impl() thread ending after %0.3f sec', elapsed)
|
||
|
|
||
|
def index_impl(self):
|
||
|
run_to_series = self._fetch_run_to_series_from_multiplexer()
|
||
|
|
||
|
# A previous system of collecting and serving text summaries involved
|
||
|
# storing the tags of text summaries within tensors.json files. See if we
|
||
|
# are currently using that system. We do not want to drop support for that
|
||
|
# use case.
|
||
|
name = 'tensorboard_text'
|
||
|
run_to_assets = self._multiplexer.PluginAssets(name)
|
||
|
for run, assets in run_to_assets.items():
|
||
|
if run in run_to_series:
|
||
|
# When runs conflict, the summaries created via the new method override.
|
||
|
continue
|
||
|
|
||
|
if 'tensors.json' in assets:
|
||
|
tensors_json = self._multiplexer.RetrievePluginAsset(
|
||
|
run, name, 'tensors.json')
|
||
|
tensors = json.loads(tensors_json)
|
||
|
run_to_series[run] = tensors
|
||
|
else:
|
||
|
# The mapping should contain all runs among its keys.
|
||
|
run_to_series[run] = []
|
||
|
|
||
|
return run_to_series
|
||
|
|
||
|
def _fetch_run_to_series_from_multiplexer(self):
|
||
|
# TensorBoard is obtaining summaries related to the text plugin based on
|
||
|
# SummaryMetadata stored within Value protos.
|
||
|
mapping = self._multiplexer.PluginRunToTagToContent(
|
||
|
metadata.PLUGIN_NAME)
|
||
|
return {
|
||
|
run: list(tag_to_content.keys())
|
||
|
for (run, tag_to_content)
|
||
|
in six.iteritems(mapping)
|
||
|
}
|
||
|
|
||
|
def tags_impl(self):
|
||
|
# Recompute the index on demand whenever tags are requested, but do it
|
||
|
# in a separate thread to avoid blocking.
|
||
|
self._maybe_launch_index_impl_thread()
|
||
|
|
||
|
# Use the cached index if present. If it's not, just return the result based
|
||
|
# on data from the multiplexer, requiring no disk read.
|
||
|
if self._index_cached:
|
||
|
return self._index_cached
|
||
|
else:
|
||
|
return self._fetch_run_to_series_from_multiplexer()
|
||
|
|
||
|
@wrappers.Request.application
|
||
|
def tags_route(self, request):
|
||
|
response = self.tags_impl()
|
||
|
return http_util.Respond(request, response, 'application/json')
|
||
|
|
||
|
def text_impl(self, run, tag):
|
||
|
try:
|
||
|
text_events = self._multiplexer.Tensors(run, tag)
|
||
|
except KeyError:
|
||
|
text_events = []
|
||
|
responses = [process_string_tensor_event(ev) for ev in text_events]
|
||
|
return responses
|
||
|
|
||
|
@wrappers.Request.application
|
||
|
def text_route(self, request):
|
||
|
run = request.args.get('run')
|
||
|
tag = request.args.get('tag')
|
||
|
response = self.text_impl(run, tag)
|
||
|
return http_util.Respond(request, response, 'application/json')
|
||
|
|
||
|
def get_plugin_apps(self):
|
||
|
return {
|
||
|
TAGS_ROUTE: self.tags_route,
|
||
|
TEXT_ROUTE: self.text_route,
|
||
|
}
|