laywerrobot/lib/python3.6/site-packages/tensorboard/plugins/custom_scalar/summary.py

78 lines
2.8 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains summaries related to laying out the custom scalars dashboard.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorboard.plugins.custom_scalar import layout_pb2
from tensorboard.plugins.custom_scalar import metadata
def op(scalars_layout, collections=None):
"""Creates a summary that contains a layout.
When users navigate to the custom scalars dashboard, they will see a layout
based on the proto provided to this function.
Args:
scalars_layout: The scalars_layout_pb2.Layout proto that specifies the
layout.
collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults to
`[Graph Keys.SUMMARIES]`.
Returns:
A tensor summary op that writes the layout to disk.
"""
assert isinstance(scalars_layout, layout_pb2.Layout)
return tf.summary.tensor_summary(name=metadata.CONFIG_SUMMARY_TAG,
tensor=tf.constant(
scalars_layout.SerializeToString(),
dtype=tf.string),
collections=collections,
summary_metadata=_create_summary_metadata())
def pb(scalars_layout):
"""Creates a summary that contains a layout.
When users navigate to the custom scalars dashboard, they will see a layout
based on the proto provided to this function.
Args:
scalars_layout: The scalars_layout_pb2.Layout proto that specifies the
layout.
Returns:
A summary proto containing the layout.
"""
assert isinstance(scalars_layout, layout_pb2.Layout)
tensor = tf.make_tensor_proto(
scalars_layout.SerializeToString(), dtype=tf.string)
summary = tf.Summary()
summary.value.add(tag=metadata.CONFIG_SUMMARY_TAG,
metadata=_create_summary_metadata(),
tensor=tensor)
return summary
def _create_summary_metadata():
return tf.SummaryMetadata(
plugin_data=tf.SummaryMetadata.PluginData(
plugin_name=metadata.PLUGIN_NAME))