155 lines
4.2 KiB
Python
155 lines
4.2 KiB
Python
|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from tensorboard import util
|
||
|
from tensorboard.plugins.beholder import colormaps
|
||
|
|
||
|
|
||
|
# pylint: disable=not-context-manager
|
||
|
|
||
|
def global_extrema(arrays):
|
||
|
return min([x.min() for x in arrays]), max([x.max() for x in arrays])
|
||
|
|
||
|
|
||
|
def scale_sections(sections, scaling_scope):
|
||
|
'''
|
||
|
input: unscaled sections.
|
||
|
returns: sections scaled to [0, 255]
|
||
|
'''
|
||
|
new_sections = []
|
||
|
|
||
|
if scaling_scope == 'layer':
|
||
|
for section in sections:
|
||
|
new_sections.append(scale_image_for_display(section))
|
||
|
|
||
|
elif scaling_scope == 'network':
|
||
|
global_min, global_max = global_extrema(sections)
|
||
|
|
||
|
for section in sections:
|
||
|
new_sections.append(scale_image_for_display(section,
|
||
|
global_min,
|
||
|
global_max))
|
||
|
return new_sections
|
||
|
|
||
|
|
||
|
def scale_image_for_display(image, minimum=None, maximum=None):
|
||
|
image = image.astype(float)
|
||
|
|
||
|
minimum = image.min() if minimum is None else minimum
|
||
|
image -= minimum
|
||
|
|
||
|
maximum = image.max() if maximum is None else maximum
|
||
|
|
||
|
if maximum == 0:
|
||
|
return image
|
||
|
else:
|
||
|
image *= 255 / maximum
|
||
|
return image.astype(np.uint8)
|
||
|
|
||
|
|
||
|
def pad_to_shape(array, shape, constant=245):
|
||
|
padding = []
|
||
|
|
||
|
for actual_dim, target_dim in zip(array.shape, shape):
|
||
|
start_padding = 0
|
||
|
end_padding = target_dim - actual_dim
|
||
|
|
||
|
padding.append((start_padding, end_padding))
|
||
|
|
||
|
return np.pad(array, padding, mode='constant', constant_values=constant)
|
||
|
|
||
|
|
||
|
def apply_colormap(image, colormap='magma'):
|
||
|
if colormap == 'grayscale':
|
||
|
return image
|
||
|
cm = getattr(colormaps, colormap)
|
||
|
return image if cm is None else cm[image]
|
||
|
|
||
|
|
||
|
class PNGDecoder(util.PersistentOpEvaluator):
|
||
|
|
||
|
def __init__(self):
|
||
|
super(PNGDecoder, self).__init__()
|
||
|
self._image_placeholder = None
|
||
|
self._decode_op = None
|
||
|
|
||
|
|
||
|
def initialize_graph(self):
|
||
|
self._image_placeholder = tf.placeholder(dtype=tf.string)
|
||
|
self._decode_op = tf.image.decode_png(self._image_placeholder)
|
||
|
|
||
|
|
||
|
# pylint: disable=arguments-differ
|
||
|
def run(self, image):
|
||
|
return self._decode_op.eval(feed_dict={
|
||
|
self._image_placeholder: image,
|
||
|
})
|
||
|
|
||
|
|
||
|
class Resizer(util.PersistentOpEvaluator):
|
||
|
|
||
|
def __init__(self):
|
||
|
super(Resizer, self).__init__()
|
||
|
self._image_placeholder = None
|
||
|
self._size_placeholder = None
|
||
|
self._resize_op = None
|
||
|
|
||
|
|
||
|
def initialize_graph(self):
|
||
|
self._image_placeholder = tf.placeholder(dtype=tf.float32)
|
||
|
self._size_placeholder = tf.placeholder(dtype=tf.int32)
|
||
|
self._resize_op = tf.image.resize_nearest_neighbor(self._image_placeholder,
|
||
|
self._size_placeholder)
|
||
|
|
||
|
# pylint: disable=arguments-differ
|
||
|
def run(self, image, height, width):
|
||
|
if len(image.shape) == 2:
|
||
|
image = image.reshape([image.shape[0], image.shape[1], 1])
|
||
|
|
||
|
resized = np.squeeze(self._resize_op.eval(feed_dict={
|
||
|
self._image_placeholder: [image],
|
||
|
self._size_placeholder: [height, width]
|
||
|
}))
|
||
|
|
||
|
return resized
|
||
|
|
||
|
|
||
|
decode_png = PNGDecoder()
|
||
|
resize = Resizer()
|
||
|
|
||
|
def read_image(filename):
|
||
|
with tf.gfile.Open(filename, 'rb') as image_file:
|
||
|
return np.array(decode_png(image_file.read()))
|
||
|
|
||
|
|
||
|
def write_image(array, filename):
|
||
|
with tf.gfile.Open(filename, 'w') as image_file:
|
||
|
image_file.write(util.encode_png(array))
|
||
|
|
||
|
|
||
|
def get_image_relative_to_script(filename):
|
||
|
script_directory = os.path.dirname(__file__)
|
||
|
filename = os.path.join(script_directory, 'resources', filename)
|
||
|
|
||
|
return read_image(filename)
|