219 lines
7.3 KiB
Python
219 lines
7.3 KiB
Python
|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import time
|
||
|
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from tensorboard.plugins.beholder import im_util
|
||
|
from tensorboard.plugins.beholder.file_system_tools import read_pickle,\
|
||
|
write_pickle, write_file
|
||
|
from tensorboard.plugins.beholder.shared_config import PLUGIN_NAME, TAG_NAME,\
|
||
|
SUMMARY_FILENAME, DEFAULT_CONFIG, CONFIG_FILENAME, SUMMARY_COLLECTION_KEY_NAME
|
||
|
from tensorboard.plugins.beholder import video_writing
|
||
|
from tensorboard.plugins.beholder.visualizer import Visualizer
|
||
|
|
||
|
|
||
|
class Beholder(object):
|
||
|
|
||
|
def __init__(self, logdir):
|
||
|
self.PLUGIN_LOGDIR = logdir + '/plugins/' + PLUGIN_NAME
|
||
|
|
||
|
self.is_recording = False
|
||
|
self.video_writer = video_writing.VideoWriter(
|
||
|
self.PLUGIN_LOGDIR,
|
||
|
outputs=[
|
||
|
video_writing.FFmpegVideoOutput,
|
||
|
video_writing.PNGVideoOutput])
|
||
|
|
||
|
self.frame_placeholder = tf.placeholder(tf.uint8, [None, None, None])
|
||
|
self.summary_op = tf.summary.tensor_summary(TAG_NAME,
|
||
|
self.frame_placeholder,
|
||
|
collections=[
|
||
|
SUMMARY_COLLECTION_KEY_NAME
|
||
|
])
|
||
|
|
||
|
self.last_image_shape = []
|
||
|
self.last_update_time = time.time()
|
||
|
self.config_last_modified_time = -1
|
||
|
self.previous_config = dict(DEFAULT_CONFIG)
|
||
|
|
||
|
if not tf.gfile.Exists(self.PLUGIN_LOGDIR + '/config.pkl'):
|
||
|
tf.gfile.MakeDirs(self.PLUGIN_LOGDIR)
|
||
|
write_pickle(DEFAULT_CONFIG, '{}/{}'.format(self.PLUGIN_LOGDIR,
|
||
|
CONFIG_FILENAME))
|
||
|
|
||
|
self.visualizer = Visualizer(self.PLUGIN_LOGDIR)
|
||
|
|
||
|
|
||
|
def _get_config(self):
|
||
|
'''Reads the config file from disk or creates a new one.'''
|
||
|
filename = '{}/{}'.format(self.PLUGIN_LOGDIR, CONFIG_FILENAME)
|
||
|
modified_time = os.path.getmtime(filename)
|
||
|
|
||
|
if modified_time != self.config_last_modified_time:
|
||
|
config = read_pickle(filename, default=self.previous_config)
|
||
|
self.previous_config = config
|
||
|
else:
|
||
|
config = self.previous_config
|
||
|
|
||
|
self.config_last_modified_time = modified_time
|
||
|
return config
|
||
|
|
||
|
|
||
|
def _write_summary(self, session, frame):
|
||
|
'''Writes the frame to disk as a tensor summary.'''
|
||
|
summary = session.run(self.summary_op, feed_dict={
|
||
|
self.frame_placeholder: frame
|
||
|
})
|
||
|
path = '{}/{}'.format(self.PLUGIN_LOGDIR, SUMMARY_FILENAME)
|
||
|
write_file(summary, path)
|
||
|
|
||
|
|
||
|
def _get_final_image(self, session, config, arrays=None, frame=None):
|
||
|
if config['values'] == 'frames':
|
||
|
if frame is None:
|
||
|
final_image = im_util.get_image_relative_to_script('frame-missing.png')
|
||
|
else:
|
||
|
frame = frame() if callable(frame) else frame
|
||
|
final_image = im_util.scale_image_for_display(frame)
|
||
|
|
||
|
elif config['values'] == 'arrays':
|
||
|
if arrays is None:
|
||
|
final_image = im_util.get_image_relative_to_script('arrays-missing.png')
|
||
|
# TODO: hack to clear the info. Should be cleaner.
|
||
|
self.visualizer._save_section_info([], [])
|
||
|
else:
|
||
|
final_image = self.visualizer.build_frame(arrays)
|
||
|
|
||
|
elif config['values'] == 'trainable_variables':
|
||
|
arrays = [session.run(x) for x in tf.trainable_variables()]
|
||
|
final_image = self.visualizer.build_frame(arrays)
|
||
|
|
||
|
if len(final_image.shape) == 2:
|
||
|
# Map grayscale images to 3D tensors.
|
||
|
final_image = np.expand_dims(final_image, -1)
|
||
|
|
||
|
return final_image
|
||
|
|
||
|
|
||
|
def _enough_time_has_passed(self, FPS):
|
||
|
'''For limiting how often frames are computed.'''
|
||
|
if FPS == 0:
|
||
|
return False
|
||
|
else:
|
||
|
earliest_time = self.last_update_time + (1.0 / FPS)
|
||
|
return time.time() >= earliest_time
|
||
|
|
||
|
|
||
|
def _update_frame(self, session, arrays, frame, config):
|
||
|
final_image = self._get_final_image(session, config, arrays, frame)
|
||
|
self._write_summary(session, final_image)
|
||
|
self.last_image_shape = final_image.shape
|
||
|
|
||
|
return final_image
|
||
|
|
||
|
|
||
|
def _update_recording(self, frame, config):
|
||
|
'''Adds a frame to the current video output.'''
|
||
|
# pylint: disable=redefined-variable-type
|
||
|
should_record = config['is_recording']
|
||
|
|
||
|
if should_record:
|
||
|
if not self.is_recording:
|
||
|
self.is_recording = True
|
||
|
tf.logging.info(
|
||
|
'Starting recording using %s',
|
||
|
self.video_writer.current_output().name())
|
||
|
self.video_writer.write_frame(frame)
|
||
|
elif self.is_recording:
|
||
|
self.is_recording = False
|
||
|
self.video_writer.finish()
|
||
|
tf.logging.info('Finished recording')
|
||
|
|
||
|
|
||
|
# TODO: blanket try and except for production? I don't someone's script to die
|
||
|
# after weeks of running because of a visualization.
|
||
|
def update(self, session, arrays=None, frame=None):
|
||
|
'''Creates a frame and writes it to disk.
|
||
|
|
||
|
Args:
|
||
|
arrays: a list of np arrays. Use the "custom" option in the client.
|
||
|
frame: a 2D np array. This way the plugin can be used for video of any
|
||
|
kind, not just the visualization that comes with the plugin.
|
||
|
|
||
|
frame can also be a function, which only is evaluated when the
|
||
|
"frame" option is selected by the client.
|
||
|
'''
|
||
|
new_config = self._get_config()
|
||
|
|
||
|
if self._enough_time_has_passed(self.previous_config['FPS']):
|
||
|
self.visualizer.update(new_config)
|
||
|
self.last_update_time = time.time()
|
||
|
final_image = self._update_frame(session, arrays, frame, new_config)
|
||
|
self._update_recording(final_image, new_config)
|
||
|
|
||
|
|
||
|
##############################################################################
|
||
|
|
||
|
@staticmethod
|
||
|
def gradient_helper(optimizer, loss, var_list=None):
|
||
|
'''A helper to get the gradients out at each step.
|
||
|
|
||
|
Args:
|
||
|
optimizer: the optimizer op.
|
||
|
loss: the op that computes your loss value.
|
||
|
|
||
|
Returns: the gradient tensors and the train_step op.
|
||
|
'''
|
||
|
if var_list is None:
|
||
|
var_list = tf.trainable_variables()
|
||
|
|
||
|
grads_and_vars = optimizer.compute_gradients(loss, var_list=var_list)
|
||
|
grads = [pair[0] for pair in grads_and_vars]
|
||
|
|
||
|
return grads, optimizer.apply_gradients(grads_and_vars)
|
||
|
|
||
|
|
||
|
class BeholderHook(tf.train.SessionRunHook):
|
||
|
"""SessionRunHook implementation that runs Beholder every step.
|
||
|
|
||
|
Convenient when using tf.train.MonitoredSession:
|
||
|
```python
|
||
|
beholder_hook = BeholderHook(LOG_DIRECTORY)
|
||
|
with MonitoredSession(..., hooks=[beholder_hook]) as sess:
|
||
|
sess.run(train_op)
|
||
|
```
|
||
|
"""
|
||
|
def __init__(self, logdir):
|
||
|
"""Creates new Hook instance
|
||
|
|
||
|
Args:
|
||
|
logdir: Directory where Beholder should write data.
|
||
|
"""
|
||
|
self._logdir = logdir
|
||
|
self.beholder = None
|
||
|
|
||
|
def begin(self):
|
||
|
self.beholder = Beholder(self._logdir)
|
||
|
|
||
|
def after_run(self, run_context, unused_run_values):
|
||
|
self.beholder.update(run_context.session)
|