81 lines
2.8 KiB
Python
81 lines
2.8 KiB
Python
|
# Author: Olivier Grisel <olivier.grisel@ensta.org>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
from sklearn.externals.six import b, u
|
||
|
from sklearn.utils.murmurhash import murmurhash3_32
|
||
|
from numpy.testing import assert_array_almost_equal
|
||
|
from numpy.testing import assert_array_equal
|
||
|
from sklearn.utils.testing import assert_equal, assert_true
|
||
|
|
||
|
|
||
|
def test_mmhash3_int():
|
||
|
assert_equal(murmurhash3_32(3), 847579505)
|
||
|
assert_equal(murmurhash3_32(3, seed=0), 847579505)
|
||
|
assert_equal(murmurhash3_32(3, seed=42), -1823081949)
|
||
|
|
||
|
assert_equal(murmurhash3_32(3, positive=False), 847579505)
|
||
|
assert_equal(murmurhash3_32(3, seed=0, positive=False), 847579505)
|
||
|
assert_equal(murmurhash3_32(3, seed=42, positive=False), -1823081949)
|
||
|
|
||
|
assert_equal(murmurhash3_32(3, positive=True), 847579505)
|
||
|
assert_equal(murmurhash3_32(3, seed=0, positive=True), 847579505)
|
||
|
assert_equal(murmurhash3_32(3, seed=42, positive=True), 2471885347)
|
||
|
|
||
|
|
||
|
def test_mmhash3_int_array():
|
||
|
rng = np.random.RandomState(42)
|
||
|
keys = rng.randint(-5342534, 345345, size=3 * 2 * 1).astype(np.int32)
|
||
|
keys = keys.reshape((3, 2, 1))
|
||
|
|
||
|
for seed in [0, 42]:
|
||
|
expected = np.array([murmurhash3_32(int(k), seed)
|
||
|
for k in keys.flat])
|
||
|
expected = expected.reshape(keys.shape)
|
||
|
assert_array_equal(murmurhash3_32(keys, seed), expected)
|
||
|
|
||
|
for seed in [0, 42]:
|
||
|
expected = np.array([murmurhash3_32(k, seed, positive=True)
|
||
|
for k in keys.flat])
|
||
|
expected = expected.reshape(keys.shape)
|
||
|
assert_array_equal(murmurhash3_32(keys, seed, positive=True),
|
||
|
expected)
|
||
|
|
||
|
|
||
|
def test_mmhash3_bytes():
|
||
|
assert_equal(murmurhash3_32(b('foo'), 0), -156908512)
|
||
|
assert_equal(murmurhash3_32(b('foo'), 42), -1322301282)
|
||
|
|
||
|
assert_equal(murmurhash3_32(b('foo'), 0, positive=True), 4138058784)
|
||
|
assert_equal(murmurhash3_32(b('foo'), 42, positive=True), 2972666014)
|
||
|
|
||
|
|
||
|
def test_mmhash3_unicode():
|
||
|
assert_equal(murmurhash3_32(u('foo'), 0), -156908512)
|
||
|
assert_equal(murmurhash3_32(u('foo'), 42), -1322301282)
|
||
|
|
||
|
assert_equal(murmurhash3_32(u('foo'), 0, positive=True), 4138058784)
|
||
|
assert_equal(murmurhash3_32(u('foo'), 42, positive=True), 2972666014)
|
||
|
|
||
|
|
||
|
def test_no_collision_on_byte_range():
|
||
|
previous_hashes = set()
|
||
|
for i in range(100):
|
||
|
h = murmurhash3_32(' ' * i, 0)
|
||
|
assert_true(h not in previous_hashes,
|
||
|
"Found collision on growing empty string")
|
||
|
|
||
|
|
||
|
def test_uniform_distribution():
|
||
|
n_bins, n_samples = 10, 100000
|
||
|
bins = np.zeros(n_bins, dtype=np.float64)
|
||
|
|
||
|
for i in range(n_samples):
|
||
|
bins[murmurhash3_32(i, positive=True) % n_bins] += 1
|
||
|
|
||
|
means = bins / n_samples
|
||
|
expected = np.ones(n_bins) / n_bins
|
||
|
|
||
|
assert_array_almost_equal(means / expected, np.ones(n_bins), 2)
|