27 lines
1 KiB
Python
27 lines
1 KiB
Python
|
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import sparse
|
||
|
|
||
|
from sklearn.utils.graph import graph_laplacian
|
||
|
from sklearn.utils.testing import ignore_warnings
|
||
|
|
||
|
|
||
|
@ignore_warnings(category=DeprecationWarning)
|
||
|
def test_graph_laplacian():
|
||
|
for mat in (np.arange(10) * np.arange(10)[:, np.newaxis],
|
||
|
np.ones((7, 7)),
|
||
|
np.eye(19),
|
||
|
np.vander(np.arange(4)) + np.vander(np.arange(4)).T,):
|
||
|
sp_mat = sparse.csr_matrix(mat)
|
||
|
for normed in (True, False):
|
||
|
laplacian = graph_laplacian(mat, normed=normed)
|
||
|
n_nodes = mat.shape[0]
|
||
|
if not normed:
|
||
|
np.testing.assert_array_almost_equal(laplacian.sum(axis=0),
|
||
|
np.zeros(n_nodes))
|
||
|
np.testing.assert_array_almost_equal(laplacian.T, laplacian)
|
||
|
np.testing.assert_array_almost_equal(
|
||
|
laplacian, graph_laplacian(sp_mat, normed=normed).toarray())
|