355 lines
14 KiB
Python
355 lines
14 KiB
Python
|
from __future__ import division
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
|
||
|
from sklearn.metrics import euclidean_distances
|
||
|
|
||
|
from sklearn.random_projection import johnson_lindenstrauss_min_dim
|
||
|
from sklearn.random_projection import gaussian_random_matrix
|
||
|
from sklearn.random_projection import sparse_random_matrix
|
||
|
from sklearn.random_projection import SparseRandomProjection
|
||
|
from sklearn.random_projection import GaussianRandomProjection
|
||
|
|
||
|
from sklearn.utils.testing import assert_less
|
||
|
from sklearn.utils.testing import assert_raises
|
||
|
from sklearn.utils.testing import assert_raise_message
|
||
|
from sklearn.utils.testing import assert_array_equal
|
||
|
from sklearn.utils.testing import assert_equal
|
||
|
from sklearn.utils.testing import assert_almost_equal
|
||
|
from sklearn.utils.testing import assert_in
|
||
|
from sklearn.utils.testing import assert_array_almost_equal
|
||
|
from sklearn.utils.testing import assert_warns
|
||
|
from sklearn.exceptions import DataDimensionalityWarning
|
||
|
|
||
|
all_sparse_random_matrix = [sparse_random_matrix]
|
||
|
all_dense_random_matrix = [gaussian_random_matrix]
|
||
|
all_random_matrix = set(all_sparse_random_matrix + all_dense_random_matrix)
|
||
|
|
||
|
all_SparseRandomProjection = [SparseRandomProjection]
|
||
|
all_DenseRandomProjection = [GaussianRandomProjection]
|
||
|
all_RandomProjection = set(all_SparseRandomProjection +
|
||
|
all_DenseRandomProjection)
|
||
|
|
||
|
|
||
|
# Make some random data with uniformly located non zero entries with
|
||
|
# Gaussian distributed values
|
||
|
def make_sparse_random_data(n_samples, n_features, n_nonzeros):
|
||
|
rng = np.random.RandomState(0)
|
||
|
data_coo = sp.coo_matrix(
|
||
|
(rng.randn(n_nonzeros),
|
||
|
(rng.randint(n_samples, size=n_nonzeros),
|
||
|
rng.randint(n_features, size=n_nonzeros))),
|
||
|
shape=(n_samples, n_features))
|
||
|
return data_coo.toarray(), data_coo.tocsr()
|
||
|
|
||
|
|
||
|
def densify(matrix):
|
||
|
if not sp.issparse(matrix):
|
||
|
return matrix
|
||
|
else:
|
||
|
return matrix.toarray()
|
||
|
|
||
|
|
||
|
n_samples, n_features = (10, 1000)
|
||
|
n_nonzeros = int(n_samples * n_features / 100.)
|
||
|
data, data_csr = make_sparse_random_data(n_samples, n_features, n_nonzeros)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# test on JL lemma
|
||
|
###############################################################################
|
||
|
def test_invalid_jl_domain():
|
||
|
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 1.1)
|
||
|
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 0.0)
|
||
|
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, -0.1)
|
||
|
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 0, 0.5)
|
||
|
|
||
|
|
||
|
def test_input_size_jl_min_dim():
|
||
|
assert_raises(ValueError, johnson_lindenstrauss_min_dim,
|
||
|
3 * [100], 2 * [0.9])
|
||
|
|
||
|
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100],
|
||
|
2 * [0.9])
|
||
|
|
||
|
johnson_lindenstrauss_min_dim(np.random.randint(1, 10, size=(10, 10)),
|
||
|
0.5 * np.ones((10, 10)))
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# tests random matrix generation
|
||
|
###############################################################################
|
||
|
def check_input_size_random_matrix(random_matrix):
|
||
|
assert_raises(ValueError, random_matrix, 0, 0)
|
||
|
assert_raises(ValueError, random_matrix, -1, 1)
|
||
|
assert_raises(ValueError, random_matrix, 1, -1)
|
||
|
assert_raises(ValueError, random_matrix, 1, 0)
|
||
|
assert_raises(ValueError, random_matrix, -1, 0)
|
||
|
|
||
|
|
||
|
def check_size_generated(random_matrix):
|
||
|
assert_equal(random_matrix(1, 5).shape, (1, 5))
|
||
|
assert_equal(random_matrix(5, 1).shape, (5, 1))
|
||
|
assert_equal(random_matrix(5, 5).shape, (5, 5))
|
||
|
assert_equal(random_matrix(1, 1).shape, (1, 1))
|
||
|
|
||
|
|
||
|
def check_zero_mean_and_unit_norm(random_matrix):
|
||
|
# All random matrix should produce a transformation matrix
|
||
|
# with zero mean and unit norm for each columns
|
||
|
|
||
|
A = densify(random_matrix(10000, 1, random_state=0))
|
||
|
|
||
|
assert_array_almost_equal(0, np.mean(A), 3)
|
||
|
assert_array_almost_equal(1.0, np.linalg.norm(A), 1)
|
||
|
|
||
|
|
||
|
def check_input_with_sparse_random_matrix(random_matrix):
|
||
|
n_components, n_features = 5, 10
|
||
|
|
||
|
for density in [-1., 0.0, 1.1]:
|
||
|
assert_raises(ValueError,
|
||
|
random_matrix, n_components, n_features, density=density)
|
||
|
|
||
|
|
||
|
def test_basic_property_of_random_matrix():
|
||
|
# Check basic properties of random matrix generation
|
||
|
for random_matrix in all_random_matrix:
|
||
|
yield check_input_size_random_matrix, random_matrix
|
||
|
yield check_size_generated, random_matrix
|
||
|
yield check_zero_mean_and_unit_norm, random_matrix
|
||
|
|
||
|
for random_matrix in all_sparse_random_matrix:
|
||
|
yield check_input_with_sparse_random_matrix, random_matrix
|
||
|
|
||
|
random_matrix_dense = \
|
||
|
lambda n_components, n_features, random_state: random_matrix(
|
||
|
n_components, n_features, random_state=random_state,
|
||
|
density=1.0)
|
||
|
yield check_zero_mean_and_unit_norm, random_matrix_dense
|
||
|
|
||
|
|
||
|
def test_gaussian_random_matrix():
|
||
|
# Check some statical properties of Gaussian random matrix
|
||
|
# Check that the random matrix follow the proper distribution.
|
||
|
# Let's say that each element of a_{ij} of A is taken from
|
||
|
# a_ij ~ N(0.0, 1 / n_components).
|
||
|
#
|
||
|
n_components = 100
|
||
|
n_features = 1000
|
||
|
A = gaussian_random_matrix(n_components, n_features, random_state=0)
|
||
|
|
||
|
assert_array_almost_equal(0.0, np.mean(A), 2)
|
||
|
assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1)
|
||
|
|
||
|
|
||
|
def test_sparse_random_matrix():
|
||
|
# Check some statical properties of sparse random matrix
|
||
|
n_components = 100
|
||
|
n_features = 500
|
||
|
|
||
|
for density in [0.3, 1.]:
|
||
|
s = 1 / density
|
||
|
|
||
|
A = sparse_random_matrix(n_components,
|
||
|
n_features,
|
||
|
density=density,
|
||
|
random_state=0)
|
||
|
A = densify(A)
|
||
|
|
||
|
# Check possible values
|
||
|
values = np.unique(A)
|
||
|
assert_in(np.sqrt(s) / np.sqrt(n_components), values)
|
||
|
assert_in(- np.sqrt(s) / np.sqrt(n_components), values)
|
||
|
|
||
|
if density == 1.0:
|
||
|
assert_equal(np.size(values), 2)
|
||
|
else:
|
||
|
assert_in(0., values)
|
||
|
assert_equal(np.size(values), 3)
|
||
|
|
||
|
# Check that the random matrix follow the proper distribution.
|
||
|
# Let's say that each element of a_{ij} of A is taken from
|
||
|
#
|
||
|
# - -sqrt(s) / sqrt(n_components) with probability 1 / 2s
|
||
|
# - 0 with probability 1 - 1 / s
|
||
|
# - +sqrt(s) / sqrt(n_components) with probability 1 / 2s
|
||
|
#
|
||
|
assert_almost_equal(np.mean(A == 0.0),
|
||
|
1 - 1 / s, decimal=2)
|
||
|
assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)),
|
||
|
1 / (2 * s), decimal=2)
|
||
|
assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)),
|
||
|
1 / (2 * s), decimal=2)
|
||
|
|
||
|
assert_almost_equal(np.var(A == 0.0, ddof=1),
|
||
|
(1 - 1 / s) * 1 / s, decimal=2)
|
||
|
assert_almost_equal(np.var(A == np.sqrt(s) / np.sqrt(n_components),
|
||
|
ddof=1),
|
||
|
(1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2)
|
||
|
assert_almost_equal(np.var(A == - np.sqrt(s) / np.sqrt(n_components),
|
||
|
ddof=1),
|
||
|
(1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# tests on random projection transformer
|
||
|
###############################################################################
|
||
|
def test_sparse_random_projection_transformer_invalid_density():
|
||
|
for RandomProjection in all_SparseRandomProjection:
|
||
|
assert_raises(ValueError,
|
||
|
RandomProjection(density=1.1).fit, data)
|
||
|
|
||
|
assert_raises(ValueError,
|
||
|
RandomProjection(density=0).fit, data)
|
||
|
|
||
|
assert_raises(ValueError,
|
||
|
RandomProjection(density=-0.1).fit, data)
|
||
|
|
||
|
|
||
|
def test_random_projection_transformer_invalid_input():
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
assert_raises(ValueError,
|
||
|
RandomProjection(n_components='auto').fit, [[0, 1, 2]])
|
||
|
|
||
|
assert_raises(ValueError,
|
||
|
RandomProjection(n_components=-10).fit, data)
|
||
|
|
||
|
|
||
|
def test_try_to_transform_before_fit():
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
assert_raises(ValueError,
|
||
|
RandomProjection(n_components='auto').transform, data)
|
||
|
|
||
|
|
||
|
def test_too_many_samples_to_find_a_safe_embedding():
|
||
|
data, _ = make_sparse_random_data(1000, 100, 1000)
|
||
|
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
rp = RandomProjection(n_components='auto', eps=0.1)
|
||
|
expected_msg = (
|
||
|
'eps=0.100000 and n_samples=1000 lead to a target dimension'
|
||
|
' of 5920 which is larger than the original space with'
|
||
|
' n_features=100')
|
||
|
assert_raise_message(ValueError, expected_msg, rp.fit, data)
|
||
|
|
||
|
|
||
|
def test_random_projection_embedding_quality():
|
||
|
data, _ = make_sparse_random_data(8, 5000, 15000)
|
||
|
eps = 0.2
|
||
|
|
||
|
original_distances = euclidean_distances(data, squared=True)
|
||
|
original_distances = original_distances.ravel()
|
||
|
non_identical = original_distances != 0.0
|
||
|
|
||
|
# remove 0 distances to avoid division by 0
|
||
|
original_distances = original_distances[non_identical]
|
||
|
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
rp = RandomProjection(n_components='auto', eps=eps, random_state=0)
|
||
|
projected = rp.fit_transform(data)
|
||
|
|
||
|
projected_distances = euclidean_distances(projected, squared=True)
|
||
|
projected_distances = projected_distances.ravel()
|
||
|
|
||
|
# remove 0 distances to avoid division by 0
|
||
|
projected_distances = projected_distances[non_identical]
|
||
|
|
||
|
distances_ratio = projected_distances / original_distances
|
||
|
|
||
|
# check that the automatically tuned values for the density respect the
|
||
|
# contract for eps: pairwise distances are preserved according to the
|
||
|
# Johnson-Lindenstrauss lemma
|
||
|
assert_less(distances_ratio.max(), 1 + eps)
|
||
|
assert_less(1 - eps, distances_ratio.min())
|
||
|
|
||
|
|
||
|
def test_SparseRandomProjection_output_representation():
|
||
|
for SparseRandomProjection in all_SparseRandomProjection:
|
||
|
# when using sparse input, the projected data can be forced to be a
|
||
|
# dense numpy array
|
||
|
rp = SparseRandomProjection(n_components=10, dense_output=True,
|
||
|
random_state=0)
|
||
|
rp.fit(data)
|
||
|
assert isinstance(rp.transform(data), np.ndarray)
|
||
|
|
||
|
sparse_data = sp.csr_matrix(data)
|
||
|
assert isinstance(rp.transform(sparse_data), np.ndarray)
|
||
|
|
||
|
# the output can be left to a sparse matrix instead
|
||
|
rp = SparseRandomProjection(n_components=10, dense_output=False,
|
||
|
random_state=0)
|
||
|
rp = rp.fit(data)
|
||
|
# output for dense input will stay dense:
|
||
|
assert isinstance(rp.transform(data), np.ndarray)
|
||
|
|
||
|
# output for sparse output will be sparse:
|
||
|
assert sp.issparse(rp.transform(sparse_data))
|
||
|
|
||
|
|
||
|
def test_correct_RandomProjection_dimensions_embedding():
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
rp = RandomProjection(n_components='auto',
|
||
|
random_state=0,
|
||
|
eps=0.5).fit(data)
|
||
|
|
||
|
# the number of components is adjusted from the shape of the training
|
||
|
# set
|
||
|
assert_equal(rp.n_components, 'auto')
|
||
|
assert_equal(rp.n_components_, 110)
|
||
|
|
||
|
if RandomProjection in all_SparseRandomProjection:
|
||
|
assert_equal(rp.density, 'auto')
|
||
|
assert_almost_equal(rp.density_, 0.03, 2)
|
||
|
|
||
|
assert_equal(rp.components_.shape, (110, n_features))
|
||
|
|
||
|
projected_1 = rp.transform(data)
|
||
|
assert_equal(projected_1.shape, (n_samples, 110))
|
||
|
|
||
|
# once the RP is 'fitted' the projection is always the same
|
||
|
projected_2 = rp.transform(data)
|
||
|
assert_array_equal(projected_1, projected_2)
|
||
|
|
||
|
# fit transform with same random seed will lead to the same results
|
||
|
rp2 = RandomProjection(random_state=0, eps=0.5)
|
||
|
projected_3 = rp2.fit_transform(data)
|
||
|
assert_array_equal(projected_1, projected_3)
|
||
|
|
||
|
# Try to transform with an input X of size different from fitted.
|
||
|
assert_raises(ValueError, rp.transform, data[:, 1:5])
|
||
|
|
||
|
# it is also possible to fix the number of components and the density
|
||
|
# level
|
||
|
if RandomProjection in all_SparseRandomProjection:
|
||
|
rp = RandomProjection(n_components=100, density=0.001,
|
||
|
random_state=0)
|
||
|
projected = rp.fit_transform(data)
|
||
|
assert_equal(projected.shape, (n_samples, 100))
|
||
|
assert_equal(rp.components_.shape, (100, n_features))
|
||
|
assert_less(rp.components_.nnz, 115) # close to 1% density
|
||
|
assert_less(85, rp.components_.nnz) # close to 1% density
|
||
|
|
||
|
|
||
|
def test_warning_n_components_greater_than_n_features():
|
||
|
n_features = 20
|
||
|
data, _ = make_sparse_random_data(5, n_features, int(n_features / 4))
|
||
|
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
assert_warns(DataDimensionalityWarning,
|
||
|
RandomProjection(n_components=n_features + 1).fit, data)
|
||
|
|
||
|
|
||
|
def test_works_with_sparse_data():
|
||
|
n_features = 20
|
||
|
data, _ = make_sparse_random_data(5, n_features, int(n_features / 4))
|
||
|
|
||
|
for RandomProjection in all_RandomProjection:
|
||
|
rp_dense = RandomProjection(n_components=3,
|
||
|
random_state=1).fit(data)
|
||
|
rp_sparse = RandomProjection(n_components=3,
|
||
|
random_state=1).fit(sp.csr_matrix(data))
|
||
|
assert_array_almost_equal(densify(rp_dense.components_),
|
||
|
densify(rp_sparse.components_))
|