76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
|
import numpy as np
|
||
|
from scipy import sparse as sp
|
||
|
|
||
|
from sklearn.svm.bounds import l1_min_c
|
||
|
from sklearn.svm import LinearSVC
|
||
|
from sklearn.linear_model.logistic import LogisticRegression
|
||
|
|
||
|
from sklearn.utils.testing import assert_true, raises
|
||
|
from sklearn.utils.testing import assert_raise_message
|
||
|
|
||
|
|
||
|
dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]]
|
||
|
sparse_X = sp.csr_matrix(dense_X)
|
||
|
|
||
|
Y1 = [0, 1, 1, 1]
|
||
|
Y2 = [2, 1, 0, 0]
|
||
|
|
||
|
|
||
|
def test_l1_min_c():
|
||
|
losses = ['squared_hinge', 'log']
|
||
|
Xs = {'sparse': sparse_X, 'dense': dense_X}
|
||
|
Ys = {'two-classes': Y1, 'multi-class': Y2}
|
||
|
intercepts = {'no-intercept': {'fit_intercept': False},
|
||
|
'fit-intercept': {'fit_intercept': True,
|
||
|
'intercept_scaling': 10}}
|
||
|
|
||
|
for loss in losses:
|
||
|
for X_label, X in Xs.items():
|
||
|
for Y_label, Y in Ys.items():
|
||
|
for intercept_label, intercept_params in intercepts.items():
|
||
|
check = lambda: check_l1_min_c(X, Y, loss,
|
||
|
**intercept_params)
|
||
|
check.description = ('Test l1_min_c loss=%r %s %s %s' %
|
||
|
(loss, X_label, Y_label,
|
||
|
intercept_label))
|
||
|
yield check
|
||
|
|
||
|
# loss='l2' should raise ValueError
|
||
|
assert_raise_message(ValueError, "loss type not in",
|
||
|
l1_min_c, dense_X, Y1, "l2")
|
||
|
|
||
|
|
||
|
def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None):
|
||
|
min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling)
|
||
|
|
||
|
clf = {
|
||
|
'log': LogisticRegression(penalty='l1'),
|
||
|
'squared_hinge': LinearSVC(loss='squared_hinge',
|
||
|
penalty='l1', dual=False),
|
||
|
}[loss]
|
||
|
|
||
|
clf.fit_intercept = fit_intercept
|
||
|
clf.intercept_scaling = intercept_scaling
|
||
|
|
||
|
clf.C = min_c
|
||
|
clf.fit(X, y)
|
||
|
assert_true((np.asarray(clf.coef_) == 0).all())
|
||
|
assert_true((np.asarray(clf.intercept_) == 0).all())
|
||
|
|
||
|
clf.C = min_c * 1.01
|
||
|
clf.fit(X, y)
|
||
|
assert_true((np.asarray(clf.coef_) != 0).any() or
|
||
|
(np.asarray(clf.intercept_) != 0).any())
|
||
|
|
||
|
|
||
|
@raises(ValueError)
|
||
|
def test_ill_posed_min_c():
|
||
|
X = [[0, 0], [0, 0]]
|
||
|
y = [0, 1]
|
||
|
l1_min_c(X, y)
|
||
|
|
||
|
|
||
|
@raises(ValueError)
|
||
|
def test_unsupported_loss():
|
||
|
l1_min_c(dense_X, Y1, 'l1')
|