194 lines
7.3 KiB
Python
194 lines
7.3 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Nearest Centroid Classification
|
||
|
"""
|
||
|
|
||
|
# Author: Robert Layton <robertlayton@gmail.com>
|
||
|
# Olivier Grisel <olivier.grisel@ensta.org>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
from scipy import sparse as sp
|
||
|
|
||
|
from ..base import BaseEstimator, ClassifierMixin
|
||
|
from ..metrics.pairwise import pairwise_distances
|
||
|
from ..preprocessing import LabelEncoder
|
||
|
from ..utils.validation import check_array, check_X_y, check_is_fitted
|
||
|
from ..utils.sparsefuncs import csc_median_axis_0
|
||
|
from ..utils.multiclass import check_classification_targets
|
||
|
|
||
|
class NearestCentroid(BaseEstimator, ClassifierMixin):
|
||
|
"""Nearest centroid classifier.
|
||
|
|
||
|
Each class is represented by its centroid, with test samples classified to
|
||
|
the class with the nearest centroid.
|
||
|
|
||
|
Read more in the :ref:`User Guide <nearest_centroid_classifier>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
metric : string, or callable
|
||
|
The metric to use when calculating distance between instances in a
|
||
|
feature array. If metric is a string or callable, it must be one of
|
||
|
the options allowed by metrics.pairwise.pairwise_distances for its
|
||
|
metric parameter.
|
||
|
The centroids for the samples corresponding to each class is the point
|
||
|
from which the sum of the distances (according to the metric) of all
|
||
|
samples that belong to that particular class are minimized.
|
||
|
If the "manhattan" metric is provided, this centroid is the median and
|
||
|
for all other metrics, the centroid is now set to be the mean.
|
||
|
|
||
|
shrink_threshold : float, optional (default = None)
|
||
|
Threshold for shrinking centroids to remove features.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
centroids_ : array-like, shape = [n_classes, n_features]
|
||
|
Centroid of each class
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
|
||
|
>>> import numpy as np
|
||
|
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
||
|
>>> y = np.array([1, 1, 1, 2, 2, 2])
|
||
|
>>> clf = NearestCentroid()
|
||
|
>>> clf.fit(X, y)
|
||
|
NearestCentroid(metric='euclidean', shrink_threshold=None)
|
||
|
>>> print(clf.predict([[-0.8, -1]]))
|
||
|
[1]
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
When used for text classification with tf-idf vectors, this classifier is
|
||
|
also known as the Rocchio classifier.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of
|
||
|
multiple cancer types by shrunken centroids of gene expression. Proceedings
|
||
|
of the National Academy of Sciences of the United States of America,
|
||
|
99(10), 6567-6572. The National Academy of Sciences.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, metric='euclidean', shrink_threshold=None):
|
||
|
self.metric = metric
|
||
|
self.shrink_threshold = shrink_threshold
|
||
|
|
||
|
def fit(self, X, y):
|
||
|
"""
|
||
|
Fit the NearestCentroid model according to the given training data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
|
||
|
Training vector, where n_samples in the number of samples and
|
||
|
n_features is the number of features.
|
||
|
Note that centroid shrinking cannot be used with sparse matrices.
|
||
|
y : array, shape = [n_samples]
|
||
|
Target values (integers)
|
||
|
"""
|
||
|
if self.metric == 'precomputed':
|
||
|
raise ValueError("Precomputed is not supported.")
|
||
|
# If X is sparse and the metric is "manhattan", store it in a csc
|
||
|
# format is easier to calculate the median.
|
||
|
if self.metric == 'manhattan':
|
||
|
X, y = check_X_y(X, y, ['csc'])
|
||
|
else:
|
||
|
X, y = check_X_y(X, y, ['csr', 'csc'])
|
||
|
is_X_sparse = sp.issparse(X)
|
||
|
if is_X_sparse and self.shrink_threshold:
|
||
|
raise ValueError("threshold shrinking not supported"
|
||
|
" for sparse input")
|
||
|
check_classification_targets(y)
|
||
|
|
||
|
n_samples, n_features = X.shape
|
||
|
le = LabelEncoder()
|
||
|
y_ind = le.fit_transform(y)
|
||
|
self.classes_ = classes = le.classes_
|
||
|
n_classes = classes.size
|
||
|
if n_classes < 2:
|
||
|
raise ValueError('y has less than 2 classes')
|
||
|
|
||
|
# Mask mapping each class to its members.
|
||
|
self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64)
|
||
|
# Number of clusters in each class.
|
||
|
nk = np.zeros(n_classes)
|
||
|
|
||
|
for cur_class in range(n_classes):
|
||
|
center_mask = y_ind == cur_class
|
||
|
nk[cur_class] = np.sum(center_mask)
|
||
|
if is_X_sparse:
|
||
|
center_mask = np.where(center_mask)[0]
|
||
|
|
||
|
# XXX: Update other averaging methods according to the metrics.
|
||
|
if self.metric == "manhattan":
|
||
|
# NumPy does not calculate median of sparse matrices.
|
||
|
if not is_X_sparse:
|
||
|
self.centroids_[cur_class] = np.median(X[center_mask], axis=0)
|
||
|
else:
|
||
|
self.centroids_[cur_class] = csc_median_axis_0(X[center_mask])
|
||
|
else:
|
||
|
if self.metric != 'euclidean':
|
||
|
warnings.warn("Averaging for metrics other than "
|
||
|
"euclidean and manhattan not supported. "
|
||
|
"The average is set to be the mean."
|
||
|
)
|
||
|
self.centroids_[cur_class] = X[center_mask].mean(axis=0)
|
||
|
|
||
|
if self.shrink_threshold:
|
||
|
dataset_centroid_ = np.mean(X, axis=0)
|
||
|
|
||
|
# m parameter for determining deviation
|
||
|
m = np.sqrt((1. / nk) - (1. / n_samples))
|
||
|
# Calculate deviation using the standard deviation of centroids.
|
||
|
variance = (X - self.centroids_[y_ind]) ** 2
|
||
|
variance = variance.sum(axis=0)
|
||
|
s = np.sqrt(variance / (n_samples - n_classes))
|
||
|
s += np.median(s) # To deter outliers from affecting the results.
|
||
|
mm = m.reshape(len(m), 1) # Reshape to allow broadcasting.
|
||
|
ms = mm * s
|
||
|
deviation = ((self.centroids_ - dataset_centroid_) / ms)
|
||
|
# Soft thresholding: if the deviation crosses 0 during shrinking,
|
||
|
# it becomes zero.
|
||
|
signs = np.sign(deviation)
|
||
|
deviation = (np.abs(deviation) - self.shrink_threshold)
|
||
|
deviation[deviation < 0] = 0
|
||
|
deviation *= signs
|
||
|
# Now adjust the centroids using the deviation
|
||
|
msd = ms * deviation
|
||
|
self.centroids_ = dataset_centroid_[np.newaxis, :] + msd
|
||
|
return self
|
||
|
|
||
|
def predict(self, X):
|
||
|
"""Perform classification on an array of test vectors X.
|
||
|
|
||
|
The predicted class C for each sample in X is returned.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape = [n_samples, n_features]
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
C : array, shape = [n_samples]
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If the metric constructor parameter is "precomputed", X is assumed to
|
||
|
be the distance matrix between the data to be predicted and
|
||
|
``self.centroids_``.
|
||
|
"""
|
||
|
check_is_fitted(self, 'centroids_')
|
||
|
|
||
|
X = check_array(X, accept_sparse='csr')
|
||
|
return self.classes_[pairwise_distances(
|
||
|
X, self.centroids_, metric=self.metric).argmin(axis=1)]
|