553 lines
22 KiB
Python
553 lines
22 KiB
Python
|
"""Approximate nearest neighbor search"""
|
||
|
# Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk>
|
||
|
# Joel Nothman <joel.nothman@gmail.com>
|
||
|
|
||
|
import numpy as np
|
||
|
import warnings
|
||
|
|
||
|
from scipy import sparse
|
||
|
|
||
|
from .base import KNeighborsMixin, RadiusNeighborsMixin
|
||
|
from ..base import BaseEstimator
|
||
|
from ..utils.validation import check_array
|
||
|
from ..utils import check_random_state
|
||
|
from ..metrics.pairwise import pairwise_distances
|
||
|
|
||
|
from ..random_projection import GaussianRandomProjection
|
||
|
|
||
|
__all__ = ["LSHForest"]
|
||
|
|
||
|
HASH_DTYPE = '>u4'
|
||
|
MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8
|
||
|
|
||
|
|
||
|
def _find_matching_indices(tree, bin_X, left_mask, right_mask):
|
||
|
"""Finds indices in sorted array of integers.
|
||
|
|
||
|
Most significant h bits in the binary representations of the
|
||
|
integers are matched with the items' most significant h bits.
|
||
|
"""
|
||
|
left_index = np.searchsorted(tree, bin_X & left_mask)
|
||
|
right_index = np.searchsorted(tree, bin_X | right_mask,
|
||
|
side='right')
|
||
|
return left_index, right_index
|
||
|
|
||
|
|
||
|
def _find_longest_prefix_match(tree, bin_X, hash_size,
|
||
|
left_masks, right_masks):
|
||
|
"""Find the longest prefix match in tree for each query in bin_X
|
||
|
|
||
|
Most significant bits are considered as the prefix.
|
||
|
"""
|
||
|
hi = np.empty_like(bin_X, dtype=np.intp)
|
||
|
hi.fill(hash_size)
|
||
|
lo = np.zeros_like(bin_X, dtype=np.intp)
|
||
|
res = np.empty_like(bin_X, dtype=np.intp)
|
||
|
|
||
|
left_idx, right_idx = _find_matching_indices(tree, bin_X,
|
||
|
left_masks[hi],
|
||
|
right_masks[hi])
|
||
|
found = right_idx > left_idx
|
||
|
res[found] = lo[found] = hash_size
|
||
|
|
||
|
r = np.arange(bin_X.shape[0])
|
||
|
kept = r[lo < hi] # indices remaining in bin_X mask
|
||
|
while kept.shape[0]:
|
||
|
mid = (lo.take(kept) + hi.take(kept)) // 2
|
||
|
|
||
|
left_idx, right_idx = _find_matching_indices(tree,
|
||
|
bin_X.take(kept),
|
||
|
left_masks[mid],
|
||
|
right_masks[mid])
|
||
|
found = right_idx > left_idx
|
||
|
mid_found = mid[found]
|
||
|
lo[kept[found]] = mid_found + 1
|
||
|
res[kept[found]] = mid_found
|
||
|
hi[kept[~found]] = mid[~found]
|
||
|
|
||
|
kept = r[lo < hi]
|
||
|
|
||
|
return res
|
||
|
|
||
|
|
||
|
class ProjectionToHashMixin(object):
|
||
|
"""Turn a transformed real-valued array into a hash"""
|
||
|
@staticmethod
|
||
|
def _to_hash(projected):
|
||
|
if projected.shape[1] % 8 != 0:
|
||
|
raise ValueError('Require reduced dimensionality to be a multiple '
|
||
|
'of 8 for hashing')
|
||
|
# XXX: perhaps non-copying operation better
|
||
|
out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE)
|
||
|
return out.reshape(projected.shape[0], -1)
|
||
|
|
||
|
def fit_transform(self, X, y=None):
|
||
|
self.fit(X)
|
||
|
return self.transform(X)
|
||
|
|
||
|
def transform(self, X):
|
||
|
return self._to_hash(super(ProjectionToHashMixin, self).transform(X))
|
||
|
|
||
|
|
||
|
class GaussianRandomProjectionHash(ProjectionToHashMixin,
|
||
|
GaussianRandomProjection):
|
||
|
"""Use GaussianRandomProjection to produce a cosine LSH fingerprint"""
|
||
|
def __init__(self,
|
||
|
n_components=32,
|
||
|
random_state=None):
|
||
|
super(GaussianRandomProjectionHash, self).__init__(
|
||
|
n_components=n_components,
|
||
|
random_state=random_state)
|
||
|
|
||
|
|
||
|
def _array_of_arrays(list_of_arrays):
|
||
|
"""Creates an array of array from list of arrays."""
|
||
|
out = np.empty(len(list_of_arrays), dtype=object)
|
||
|
out[:] = list_of_arrays
|
||
|
return out
|
||
|
|
||
|
|
||
|
class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin):
|
||
|
"""Performs approximate nearest neighbor search using LSH forest.
|
||
|
|
||
|
LSH Forest: Locality Sensitive Hashing forest [1] is an alternative
|
||
|
method for vanilla approximate nearest neighbor search methods.
|
||
|
LSH forest data structure has been implemented using sorted
|
||
|
arrays and binary search and 32 bit fixed-length hashes.
|
||
|
Random projection is used as the hash family which approximates
|
||
|
cosine distance.
|
||
|
|
||
|
The cosine distance is defined as ``1 - cosine_similarity``: the lowest
|
||
|
value is 0 (identical point) but it is bounded above by 2 for the farthest
|
||
|
points. Its value does not depend on the norm of the vector points but
|
||
|
only on their relative angles.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
n_estimators : int (default = 10)
|
||
|
Number of trees in the LSH Forest.
|
||
|
|
||
|
radius : float, optinal (default = 1.0)
|
||
|
Radius from the data point to its neighbors. This is the parameter
|
||
|
space to use by default for the :meth:`radius_neighbors` queries.
|
||
|
|
||
|
n_candidates : int (default = 50)
|
||
|
Minimum number of candidates evaluated per estimator, assuming enough
|
||
|
items meet the `min_hash_match` constraint.
|
||
|
|
||
|
n_neighbors : int (default = 5)
|
||
|
Number of neighbors to be returned from query function when
|
||
|
it is not provided to the :meth:`kneighbors` method.
|
||
|
|
||
|
min_hash_match : int (default = 4)
|
||
|
lowest hash length to be searched when candidate selection is
|
||
|
performed for nearest neighbors.
|
||
|
|
||
|
radius_cutoff_ratio : float, optional (default = 0.9)
|
||
|
A value ranges from 0 to 1. Radius neighbors will be searched until
|
||
|
the ratio between total neighbors within the radius and the total
|
||
|
candidates becomes less than this value unless it is terminated by
|
||
|
hash length reaching `min_hash_match`.
|
||
|
|
||
|
random_state : int, RandomState instance or None, optional (default=None)
|
||
|
If int, random_state is the seed used by the random number generator;
|
||
|
If RandomState instance, random_state is the random number generator;
|
||
|
If None, the random number generator is the RandomState instance used
|
||
|
by `np.random`.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
|
||
|
hash_functions_ : list of GaussianRandomProjectionHash objects
|
||
|
Hash function g(p,x) for a tree is an array of 32 randomly generated
|
||
|
float arrays with the same dimension as the data set. This array is
|
||
|
stored in GaussianRandomProjectionHash object and can be obtained
|
||
|
from ``components_`` attribute.
|
||
|
|
||
|
trees_ : array, shape (n_estimators, n_samples)
|
||
|
Each tree (corresponding to a hash function) contains an array of
|
||
|
sorted hashed values. The array representation may change in future
|
||
|
versions.
|
||
|
|
||
|
original_indices_ : array, shape (n_estimators, n_samples)
|
||
|
Original indices of sorted hashed values in the fitted index.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
.. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning
|
||
|
Indexes for Similarity Search", WWW '05 Proceedings of the
|
||
|
14th international conference on World Wide Web, 651-660,
|
||
|
2005.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.neighbors import LSHForest
|
||
|
|
||
|
>>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]]
|
||
|
>>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]]
|
||
|
>>> lshf = LSHForest(random_state=42)
|
||
|
>>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE
|
||
|
LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10,
|
||
|
n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9,
|
||
|
random_state=42)
|
||
|
>>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2)
|
||
|
>>> distances # doctest: +ELLIPSIS
|
||
|
array([[ 0.069..., 0.149...],
|
||
|
[ 0.229..., 0.481...],
|
||
|
[ 0.004..., 0.014...]])
|
||
|
>>> indices
|
||
|
array([[1, 2],
|
||
|
[2, 0],
|
||
|
[4, 0]])
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, n_estimators=10, radius=1.0, n_candidates=50,
|
||
|
n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9,
|
||
|
random_state=None):
|
||
|
self.n_estimators = n_estimators
|
||
|
self.radius = radius
|
||
|
self.random_state = random_state
|
||
|
self.n_candidates = n_candidates
|
||
|
self.n_neighbors = n_neighbors
|
||
|
self.min_hash_match = min_hash_match
|
||
|
self.radius_cutoff_ratio = radius_cutoff_ratio
|
||
|
|
||
|
warnings.warn("LSHForest has poor performance and has been deprecated "
|
||
|
"in 0.19. It will be removed in version 0.21.",
|
||
|
DeprecationWarning)
|
||
|
|
||
|
def _compute_distances(self, query, candidates):
|
||
|
"""Computes the cosine distance.
|
||
|
|
||
|
Distance is from the query to points in the candidates array.
|
||
|
Returns argsort of distances in the candidates
|
||
|
array and sorted distances.
|
||
|
"""
|
||
|
if candidates.shape == (0,):
|
||
|
# needed since _fit_X[np.array([])] doesn't work if _fit_X sparse
|
||
|
return np.empty(0, dtype=np.int), np.empty(0, dtype=float)
|
||
|
|
||
|
if sparse.issparse(self._fit_X):
|
||
|
candidate_X = self._fit_X[candidates]
|
||
|
else:
|
||
|
candidate_X = self._fit_X.take(candidates, axis=0, mode='clip')
|
||
|
distances = pairwise_distances(query, candidate_X,
|
||
|
metric='cosine')[0]
|
||
|
distance_positions = np.argsort(distances)
|
||
|
distances = distances.take(distance_positions, mode='clip', axis=0)
|
||
|
return distance_positions, distances
|
||
|
|
||
|
def _generate_masks(self):
|
||
|
"""Creates left and right masks for all hash lengths."""
|
||
|
tri_size = MAX_HASH_SIZE + 1
|
||
|
# Called once on fitting, output is independent of hashes
|
||
|
left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:]
|
||
|
right_mask = left_mask[::-1, ::-1]
|
||
|
|
||
|
self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE)
|
||
|
self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE)
|
||
|
|
||
|
def _get_candidates(self, query, max_depth, bin_queries, n_neighbors):
|
||
|
"""Performs the Synchronous ascending phase.
|
||
|
|
||
|
Returns an array of candidates, their distance ranks and
|
||
|
distances.
|
||
|
"""
|
||
|
index_size = self._fit_X.shape[0]
|
||
|
# Number of candidates considered including duplicates
|
||
|
# XXX: not sure whether this is being calculated correctly wrt
|
||
|
# duplicates from different iterations through a single tree
|
||
|
n_candidates = 0
|
||
|
candidate_set = set()
|
||
|
min_candidates = self.n_candidates * self.n_estimators
|
||
|
while (max_depth > self.min_hash_match and
|
||
|
(n_candidates < min_candidates or
|
||
|
len(candidate_set) < n_neighbors)):
|
||
|
|
||
|
left_mask = self._left_mask[max_depth]
|
||
|
right_mask = self._right_mask[max_depth]
|
||
|
for i in range(self.n_estimators):
|
||
|
start, stop = _find_matching_indices(self.trees_[i],
|
||
|
bin_queries[i],
|
||
|
left_mask, right_mask)
|
||
|
n_candidates += stop - start
|
||
|
candidate_set.update(
|
||
|
self.original_indices_[i][start:stop].tolist())
|
||
|
max_depth -= 1
|
||
|
|
||
|
candidates = np.fromiter(candidate_set, count=len(candidate_set),
|
||
|
dtype=np.intp)
|
||
|
# For insufficient candidates, candidates are filled.
|
||
|
# Candidates are filled from unselected indices uniformly.
|
||
|
if candidates.shape[0] < n_neighbors:
|
||
|
warnings.warn(
|
||
|
"Number of candidates is not sufficient to retrieve"
|
||
|
" %i neighbors with"
|
||
|
" min_hash_match = %i. Candidates are filled up"
|
||
|
" uniformly from unselected"
|
||
|
" indices." % (n_neighbors, self.min_hash_match))
|
||
|
remaining = np.setdiff1d(np.arange(0, index_size), candidates)
|
||
|
to_fill = n_neighbors - candidates.shape[0]
|
||
|
candidates = np.concatenate((candidates, remaining[:to_fill]))
|
||
|
|
||
|
ranks, distances = self._compute_distances(query,
|
||
|
candidates.astype(int))
|
||
|
|
||
|
return (candidates[ranks[:n_neighbors]],
|
||
|
distances[:n_neighbors])
|
||
|
|
||
|
def _get_radius_neighbors(self, query, max_depth, bin_queries, radius):
|
||
|
"""Finds radius neighbors from the candidates obtained.
|
||
|
|
||
|
Their distances from query are smaller than radius.
|
||
|
Returns radius neighbors and distances.
|
||
|
"""
|
||
|
ratio_within_radius = 1
|
||
|
threshold = 1 - self.radius_cutoff_ratio
|
||
|
total_candidates = np.array([], dtype=int)
|
||
|
total_neighbors = np.array([], dtype=int)
|
||
|
total_distances = np.array([], dtype=float)
|
||
|
|
||
|
while (max_depth > self.min_hash_match and
|
||
|
ratio_within_radius > threshold):
|
||
|
left_mask = self._left_mask[max_depth]
|
||
|
right_mask = self._right_mask[max_depth]
|
||
|
candidates = []
|
||
|
for i in range(self.n_estimators):
|
||
|
start, stop = _find_matching_indices(self.trees_[i],
|
||
|
bin_queries[i],
|
||
|
left_mask, right_mask)
|
||
|
candidates.extend(
|
||
|
self.original_indices_[i][start:stop].tolist())
|
||
|
candidates = np.setdiff1d(candidates, total_candidates)
|
||
|
total_candidates = np.append(total_candidates, candidates)
|
||
|
ranks, distances = self._compute_distances(query, candidates)
|
||
|
m = np.searchsorted(distances, radius, side='right')
|
||
|
positions = np.searchsorted(total_distances, distances[:m])
|
||
|
total_neighbors = np.insert(total_neighbors, positions,
|
||
|
candidates[ranks[:m]])
|
||
|
total_distances = np.insert(total_distances, positions,
|
||
|
distances[:m])
|
||
|
ratio_within_radius = (total_neighbors.shape[0] /
|
||
|
float(total_candidates.shape[0]))
|
||
|
max_depth = max_depth - 1
|
||
|
return total_neighbors, total_distances
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit the LSH forest on the data.
|
||
|
|
||
|
This creates binary hashes of input data points by getting the
|
||
|
dot product of input points and hash_function then
|
||
|
transforming the projection into a binary string array based
|
||
|
on the sign (positive/negative) of the projection.
|
||
|
A sorted array of binary hashes is created.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
|
||
|
List of n_features-dimensional data points. Each row
|
||
|
corresponds to a single data point.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns self.
|
||
|
"""
|
||
|
|
||
|
self._fit_X = check_array(X, accept_sparse='csr')
|
||
|
|
||
|
# Creates a g(p,x) for each tree
|
||
|
self.hash_functions_ = []
|
||
|
self.trees_ = []
|
||
|
self.original_indices_ = []
|
||
|
|
||
|
rng = check_random_state(self.random_state)
|
||
|
int_max = np.iinfo(np.int32).max
|
||
|
|
||
|
for i in range(self.n_estimators):
|
||
|
# This is g(p,x) for a particular tree.
|
||
|
# Builds a single tree. Hashing is done on an array of data points.
|
||
|
# `GaussianRandomProjection` is used for hashing.
|
||
|
# `n_components=hash size and n_features=n_dim.
|
||
|
hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE,
|
||
|
rng.randint(0, int_max))
|
||
|
hashes = hasher.fit_transform(self._fit_X)[:, 0]
|
||
|
original_index = np.argsort(hashes)
|
||
|
bin_hashes = hashes[original_index]
|
||
|
self.original_indices_.append(original_index)
|
||
|
self.trees_.append(bin_hashes)
|
||
|
self.hash_functions_.append(hasher)
|
||
|
|
||
|
self._generate_masks()
|
||
|
|
||
|
return self
|
||
|
|
||
|
def _query(self, X):
|
||
|
"""Performs descending phase to find maximum depth."""
|
||
|
# Calculate hashes of shape (n_samples, n_estimators, [hash_size])
|
||
|
bin_queries = np.asarray([hasher.transform(X)[:, 0]
|
||
|
for hasher in self.hash_functions_])
|
||
|
bin_queries = np.rollaxis(bin_queries, 1)
|
||
|
|
||
|
# descend phase
|
||
|
depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE,
|
||
|
self._left_mask, self._right_mask)
|
||
|
for tree, tree_queries in zip(self.trees_,
|
||
|
np.rollaxis(bin_queries, 1))]
|
||
|
|
||
|
return bin_queries, np.max(depths, axis=0)
|
||
|
|
||
|
def kneighbors(self, X, n_neighbors=None, return_distance=True):
|
||
|
"""Returns n_neighbors of approximate nearest neighbors.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
|
||
|
List of n_features-dimensional data points. Each row
|
||
|
corresponds to a single query.
|
||
|
|
||
|
n_neighbors : int, optional (default = None)
|
||
|
Number of neighbors required. If not provided, this will
|
||
|
return the number specified at the initialization.
|
||
|
|
||
|
return_distance : boolean, optional (default = True)
|
||
|
Returns the distances of neighbors if set to True.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dist : array, shape (n_samples, n_neighbors)
|
||
|
Array representing the cosine distances to each point,
|
||
|
only present if return_distance=True.
|
||
|
|
||
|
ind : array, shape (n_samples, n_neighbors)
|
||
|
Indices of the approximate nearest points in the population
|
||
|
matrix.
|
||
|
"""
|
||
|
if not hasattr(self, 'hash_functions_'):
|
||
|
raise ValueError("estimator should be fitted.")
|
||
|
|
||
|
if n_neighbors is None:
|
||
|
n_neighbors = self.n_neighbors
|
||
|
|
||
|
X = check_array(X, accept_sparse='csr')
|
||
|
|
||
|
neighbors, distances = [], []
|
||
|
bin_queries, max_depth = self._query(X)
|
||
|
for i in range(X.shape[0]):
|
||
|
|
||
|
neighs, dists = self._get_candidates(X[[i]], max_depth[i],
|
||
|
bin_queries[i],
|
||
|
n_neighbors)
|
||
|
neighbors.append(neighs)
|
||
|
distances.append(dists)
|
||
|
|
||
|
if return_distance:
|
||
|
return np.array(distances), np.array(neighbors)
|
||
|
else:
|
||
|
return np.array(neighbors)
|
||
|
|
||
|
def radius_neighbors(self, X, radius=None, return_distance=True):
|
||
|
"""Finds the neighbors within a given radius of a point or points.
|
||
|
|
||
|
Return the indices and distances of some points from the dataset
|
||
|
lying in a ball with size ``radius`` around the points of the query
|
||
|
array. Points lying on the boundary are included in the results.
|
||
|
|
||
|
The result points are *not* necessarily sorted by distance to their
|
||
|
query point.
|
||
|
|
||
|
LSH Forest being an approximate method, some true neighbors from the
|
||
|
indexed dataset might be missing from the results.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
|
||
|
List of n_features-dimensional data points. Each row
|
||
|
corresponds to a single query.
|
||
|
|
||
|
radius : float
|
||
|
Limiting distance of neighbors to return.
|
||
|
(default is the value passed to the constructor).
|
||
|
|
||
|
return_distance : boolean, optional (default = False)
|
||
|
Returns the distances of neighbors if set to True.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dist : array, shape (n_samples,) of arrays
|
||
|
Each element is an array representing the cosine distances
|
||
|
to some points found within ``radius`` of the respective query.
|
||
|
Only present if ``return_distance=True``.
|
||
|
|
||
|
ind : array, shape (n_samples,) of arrays
|
||
|
Each element is an array of indices for neighbors within ``radius``
|
||
|
of the respective query.
|
||
|
"""
|
||
|
if not hasattr(self, 'hash_functions_'):
|
||
|
raise ValueError("estimator should be fitted.")
|
||
|
|
||
|
if radius is None:
|
||
|
radius = self.radius
|
||
|
|
||
|
X = check_array(X, accept_sparse='csr')
|
||
|
|
||
|
neighbors, distances = [], []
|
||
|
bin_queries, max_depth = self._query(X)
|
||
|
for i in range(X.shape[0]):
|
||
|
|
||
|
neighs, dists = self._get_radius_neighbors(X[[i]], max_depth[i],
|
||
|
bin_queries[i], radius)
|
||
|
neighbors.append(neighs)
|
||
|
distances.append(dists)
|
||
|
|
||
|
if return_distance:
|
||
|
return _array_of_arrays(distances), _array_of_arrays(neighbors)
|
||
|
else:
|
||
|
return _array_of_arrays(neighbors)
|
||
|
|
||
|
def partial_fit(self, X, y=None):
|
||
|
"""
|
||
|
Inserts new data into the already fitted LSH Forest.
|
||
|
Cost is proportional to new total size, so additions
|
||
|
should be batched.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
|
||
|
New data point to be inserted into the LSH Forest.
|
||
|
"""
|
||
|
X = check_array(X, accept_sparse='csr')
|
||
|
if not hasattr(self, 'hash_functions_'):
|
||
|
return self.fit(X)
|
||
|
|
||
|
if X.shape[1] != self._fit_X.shape[1]:
|
||
|
raise ValueError("Number of features in X and"
|
||
|
" fitted array does not match.")
|
||
|
n_samples = X.shape[0]
|
||
|
n_indexed = self._fit_X.shape[0]
|
||
|
|
||
|
for i in range(self.n_estimators):
|
||
|
bin_X = self.hash_functions_[i].transform(X)[:, 0]
|
||
|
# gets the position to be added in the tree.
|
||
|
positions = self.trees_[i].searchsorted(bin_X)
|
||
|
# adds the hashed value into the tree.
|
||
|
self.trees_[i] = np.insert(self.trees_[i],
|
||
|
positions, bin_X)
|
||
|
# add the entry into the original_indices_.
|
||
|
self.original_indices_[i] = np.insert(self.original_indices_[i],
|
||
|
positions,
|
||
|
np.arange(n_indexed,
|
||
|
n_indexed +
|
||
|
n_samples))
|
||
|
|
||
|
# adds the entry into the input_array.
|
||
|
if sparse.issparse(X) or sparse.issparse(self._fit_X):
|
||
|
self._fit_X = sparse.vstack((self._fit_X, X))
|
||
|
else:
|
||
|
self._fit_X = np.row_stack((self._fit_X, X))
|
||
|
|
||
|
return self
|