415 lines
15 KiB
Python
415 lines
15 KiB
Python
|
# Authors: Rob Zinkov, Mathieu Blondel
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
from .stochastic_gradient import BaseSGDClassifier
|
||
|
from .stochastic_gradient import BaseSGDRegressor
|
||
|
from .stochastic_gradient import DEFAULT_EPSILON
|
||
|
|
||
|
|
||
|
class PassiveAggressiveClassifier(BaseSGDClassifier):
|
||
|
"""Passive Aggressive Classifier
|
||
|
|
||
|
Read more in the :ref:`User Guide <passive_aggressive>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
C : float
|
||
|
Maximum step size (regularization). Defaults to 1.0.
|
||
|
|
||
|
fit_intercept : bool, default=False
|
||
|
Whether the intercept should be estimated or not. If False, the
|
||
|
data is assumed to be already centered.
|
||
|
|
||
|
max_iter : int, optional
|
||
|
The maximum number of passes over the training data (aka epochs).
|
||
|
It only impacts the behavior in the ``fit`` method, and not the
|
||
|
`partial_fit`.
|
||
|
Defaults to 5. Defaults to 1000 from 0.21, or if tol is not None.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
tol : float or None, optional
|
||
|
The stopping criterion. If it is not None, the iterations will stop
|
||
|
when (loss > previous_loss - tol). Defaults to None.
|
||
|
Defaults to 1e-3 from 0.21.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
shuffle : bool, default=True
|
||
|
Whether or not the training data should be shuffled after each epoch.
|
||
|
|
||
|
verbose : integer, optional
|
||
|
The verbosity level
|
||
|
|
||
|
loss : string, optional
|
||
|
The loss function to be used:
|
||
|
hinge: equivalent to PA-I in the reference paper.
|
||
|
squared_hinge: equivalent to PA-II in the reference paper.
|
||
|
|
||
|
n_jobs : integer, optional
|
||
|
The number of CPUs to use to do the OVA (One Versus All, for
|
||
|
multi-class problems) computation. -1 means 'all CPUs'. Defaults
|
||
|
to 1.
|
||
|
|
||
|
random_state : int, RandomState instance or None, optional, default=None
|
||
|
The seed of the pseudo random number generator to use when shuffling
|
||
|
the data. If int, random_state is the seed used by the random number
|
||
|
generator; If RandomState instance, random_state is the random number
|
||
|
generator; If None, the random number generator is the RandomState
|
||
|
instance used by `np.random`.
|
||
|
|
||
|
warm_start : bool, optional
|
||
|
When set to True, reuse the solution of the previous call to fit as
|
||
|
initialization, otherwise, just erase the previous solution.
|
||
|
|
||
|
class_weight : dict, {class_label: weight} or "balanced" or None, optional
|
||
|
Preset for the class_weight fit parameter.
|
||
|
|
||
|
Weights associated with classes. If not given, all classes
|
||
|
are supposed to have weight one.
|
||
|
|
||
|
The "balanced" mode uses the values of y to automatically adjust
|
||
|
weights inversely proportional to class frequencies in the input data
|
||
|
as ``n_samples / (n_classes * np.bincount(y))``
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
parameter *class_weight* to automatically weight samples.
|
||
|
|
||
|
average : bool or int, optional
|
||
|
When set to True, computes the averaged SGD weights and stores the
|
||
|
result in the ``coef_`` attribute. If set to an int greater than 1,
|
||
|
averaging will begin once the total number of samples seen reaches
|
||
|
average. So average=10 will begin averaging after seeing 10 samples.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
parameter *average* to use weights averaging in SGD
|
||
|
|
||
|
n_iter : int, optional
|
||
|
The number of passes over the training data (aka epochs).
|
||
|
Defaults to None. Deprecated, will be removed in 0.21.
|
||
|
|
||
|
.. versionchanged:: 0.19
|
||
|
Deprecated
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\
|
||
|
n_features]
|
||
|
Weights assigned to the features.
|
||
|
|
||
|
intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
|
||
|
Constants in decision function.
|
||
|
|
||
|
n_iter_ : int
|
||
|
The actual number of iterations to reach the stopping criterion.
|
||
|
For multiclass fits, it is the maximum over every binary fit.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.linear_model import PassiveAggressiveClassifier
|
||
|
>>> from sklearn.datasets import make_classification
|
||
|
>>>
|
||
|
>>> X, y = make_classification(n_features=4, random_state=0)
|
||
|
>>> clf = PassiveAggressiveClassifier(random_state=0)
|
||
|
>>> clf.fit(X, y)
|
||
|
PassiveAggressiveClassifier(C=1.0, average=False, class_weight=None,
|
||
|
fit_intercept=True, loss='hinge', max_iter=None, n_iter=None,
|
||
|
n_jobs=1, random_state=0, shuffle=True, tol=None, verbose=0,
|
||
|
warm_start=False)
|
||
|
>>> print(clf.coef_)
|
||
|
[[ 0.49324685 1.0552176 1.49519589 1.33798314]]
|
||
|
>>> print(clf.intercept_)
|
||
|
[ 2.18438388]
|
||
|
>>> print(clf.predict([[0, 0, 0, 0]]))
|
||
|
[1]
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
|
||
|
SGDClassifier
|
||
|
Perceptron
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Online Passive-Aggressive Algorithms
|
||
|
<http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
|
||
|
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)
|
||
|
|
||
|
"""
|
||
|
def __init__(self, C=1.0, fit_intercept=True, max_iter=None, tol=None,
|
||
|
shuffle=True, verbose=0, loss="hinge", n_jobs=1,
|
||
|
random_state=None, warm_start=False, class_weight=None,
|
||
|
average=False, n_iter=None):
|
||
|
super(PassiveAggressiveClassifier, self).__init__(
|
||
|
penalty=None,
|
||
|
fit_intercept=fit_intercept,
|
||
|
max_iter=max_iter,
|
||
|
tol=tol,
|
||
|
shuffle=shuffle,
|
||
|
verbose=verbose,
|
||
|
random_state=random_state,
|
||
|
eta0=1.0,
|
||
|
warm_start=warm_start,
|
||
|
class_weight=class_weight,
|
||
|
average=average,
|
||
|
n_jobs=n_jobs,
|
||
|
n_iter=n_iter)
|
||
|
|
||
|
self.C = C
|
||
|
self.loss = loss
|
||
|
|
||
|
def partial_fit(self, X, y, classes=None):
|
||
|
"""Fit linear model with Passive Aggressive algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
|
||
|
Subset of the training data
|
||
|
|
||
|
y : numpy array of shape [n_samples]
|
||
|
Subset of the target values
|
||
|
|
||
|
classes : array, shape = [n_classes]
|
||
|
Classes across all calls to partial_fit.
|
||
|
Can be obtained by via `np.unique(y_all)`, where y_all is the
|
||
|
target vector of the entire dataset.
|
||
|
This argument is required for the first call to partial_fit
|
||
|
and can be omitted in the subsequent calls.
|
||
|
Note that y doesn't need to contain all labels in `classes`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : returns an instance of self.
|
||
|
"""
|
||
|
if self.class_weight == 'balanced':
|
||
|
raise ValueError("class_weight 'balanced' is not supported for "
|
||
|
"partial_fit. For 'balanced' weights, use "
|
||
|
"`sklearn.utils.compute_class_weight` with "
|
||
|
"`class_weight='balanced'`. In place of y you "
|
||
|
"can use a large enough subset of the full "
|
||
|
"training set target to properly estimate the "
|
||
|
"class frequency distributions. Pass the "
|
||
|
"resulting weights as the class_weight "
|
||
|
"parameter.")
|
||
|
lr = "pa1" if self.loss == "hinge" else "pa2"
|
||
|
return self._partial_fit(X, y, alpha=1.0, C=self.C,
|
||
|
loss="hinge", learning_rate=lr, max_iter=1,
|
||
|
classes=classes, sample_weight=None,
|
||
|
coef_init=None, intercept_init=None)
|
||
|
|
||
|
def fit(self, X, y, coef_init=None, intercept_init=None):
|
||
|
"""Fit linear model with Passive Aggressive algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
|
||
|
Training data
|
||
|
|
||
|
y : numpy array of shape [n_samples]
|
||
|
Target values
|
||
|
|
||
|
coef_init : array, shape = [n_classes,n_features]
|
||
|
The initial coefficients to warm-start the optimization.
|
||
|
|
||
|
intercept_init : array, shape = [n_classes]
|
||
|
The initial intercept to warm-start the optimization.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : returns an instance of self.
|
||
|
"""
|
||
|
lr = "pa1" if self.loss == "hinge" else "pa2"
|
||
|
return self._fit(X, y, alpha=1.0, C=self.C,
|
||
|
loss="hinge", learning_rate=lr,
|
||
|
coef_init=coef_init, intercept_init=intercept_init)
|
||
|
|
||
|
|
||
|
class PassiveAggressiveRegressor(BaseSGDRegressor):
|
||
|
"""Passive Aggressive Regressor
|
||
|
|
||
|
Read more in the :ref:`User Guide <passive_aggressive>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
C : float
|
||
|
Maximum step size (regularization). Defaults to 1.0.
|
||
|
|
||
|
fit_intercept : bool
|
||
|
Whether the intercept should be estimated or not. If False, the
|
||
|
data is assumed to be already centered. Defaults to True.
|
||
|
|
||
|
max_iter : int, optional
|
||
|
The maximum number of passes over the training data (aka epochs).
|
||
|
It only impacts the behavior in the ``fit`` method, and not the
|
||
|
`partial_fit`.
|
||
|
Defaults to 5. Defaults to 1000 from 0.21, or if tol is not None.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
tol : float or None, optional
|
||
|
The stopping criterion. If it is not None, the iterations will stop
|
||
|
when (loss > previous_loss - tol). Defaults to None.
|
||
|
Defaults to 1e-3 from 0.21.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
shuffle : bool, default=True
|
||
|
Whether or not the training data should be shuffled after each epoch.
|
||
|
|
||
|
verbose : integer, optional
|
||
|
The verbosity level
|
||
|
|
||
|
loss : string, optional
|
||
|
The loss function to be used:
|
||
|
epsilon_insensitive: equivalent to PA-I in the reference paper.
|
||
|
squared_epsilon_insensitive: equivalent to PA-II in the reference
|
||
|
paper.
|
||
|
|
||
|
epsilon : float
|
||
|
If the difference between the current prediction and the correct label
|
||
|
is below this threshold, the model is not updated.
|
||
|
|
||
|
random_state : int, RandomState instance or None, optional, default=None
|
||
|
The seed of the pseudo random number generator to use when shuffling
|
||
|
the data. If int, random_state is the seed used by the random number
|
||
|
generator; If RandomState instance, random_state is the random number
|
||
|
generator; If None, the random number generator is the RandomState
|
||
|
instance used by `np.random`.
|
||
|
|
||
|
warm_start : bool, optional
|
||
|
When set to True, reuse the solution of the previous call to fit as
|
||
|
initialization, otherwise, just erase the previous solution.
|
||
|
|
||
|
average : bool or int, optional
|
||
|
When set to True, computes the averaged SGD weights and stores the
|
||
|
result in the ``coef_`` attribute. If set to an int greater than 1,
|
||
|
averaging will begin once the total number of samples seen reaches
|
||
|
average. So average=10 will begin averaging after seeing 10 samples.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
parameter *average* to use weights averaging in SGD
|
||
|
|
||
|
n_iter : int, optional
|
||
|
The number of passes over the training data (aka epochs).
|
||
|
Defaults to None. Deprecated, will be removed in 0.21.
|
||
|
|
||
|
.. versionchanged:: 0.19
|
||
|
Deprecated
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\
|
||
|
n_features]
|
||
|
Weights assigned to the features.
|
||
|
|
||
|
intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
|
||
|
Constants in decision function.
|
||
|
|
||
|
n_iter_ : int
|
||
|
The actual number of iterations to reach the stopping criterion.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.linear_model import PassiveAggressiveRegressor
|
||
|
>>> from sklearn.datasets import make_regression
|
||
|
>>>
|
||
|
>>> X, y = make_regression(n_features=4, random_state=0)
|
||
|
>>> regr = PassiveAggressiveRegressor(random_state=0)
|
||
|
>>> regr.fit(X, y)
|
||
|
PassiveAggressiveRegressor(C=1.0, average=False, epsilon=0.1,
|
||
|
fit_intercept=True, loss='epsilon_insensitive',
|
||
|
max_iter=None, n_iter=None, random_state=0, shuffle=True,
|
||
|
tol=None, verbose=0, warm_start=False)
|
||
|
>>> print(regr.coef_)
|
||
|
[ 20.48736655 34.18818427 67.59122734 87.94731329]
|
||
|
>>> print(regr.intercept_)
|
||
|
[-0.02306214]
|
||
|
>>> print(regr.predict([[0, 0, 0, 0]]))
|
||
|
[-0.02306214]
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
|
||
|
SGDRegressor
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Online Passive-Aggressive Algorithms
|
||
|
<http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
|
||
|
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)
|
||
|
|
||
|
"""
|
||
|
def __init__(self, C=1.0, fit_intercept=True, max_iter=None, tol=None,
|
||
|
shuffle=True, verbose=0, loss="epsilon_insensitive",
|
||
|
epsilon=DEFAULT_EPSILON, random_state=None, warm_start=False,
|
||
|
average=False, n_iter=None):
|
||
|
super(PassiveAggressiveRegressor, self).__init__(
|
||
|
penalty=None,
|
||
|
l1_ratio=0,
|
||
|
epsilon=epsilon,
|
||
|
eta0=1.0,
|
||
|
fit_intercept=fit_intercept,
|
||
|
max_iter=max_iter,
|
||
|
tol=tol,
|
||
|
shuffle=shuffle,
|
||
|
verbose=verbose,
|
||
|
random_state=random_state,
|
||
|
warm_start=warm_start,
|
||
|
average=average,
|
||
|
n_iter=n_iter)
|
||
|
self.C = C
|
||
|
self.loss = loss
|
||
|
|
||
|
def partial_fit(self, X, y):
|
||
|
"""Fit linear model with Passive Aggressive algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
|
||
|
Subset of training data
|
||
|
|
||
|
y : numpy array of shape [n_samples]
|
||
|
Subset of target values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : returns an instance of self.
|
||
|
"""
|
||
|
self._validate_params()
|
||
|
lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2"
|
||
|
return self._partial_fit(X, y, alpha=1.0, C=self.C,
|
||
|
loss="epsilon_insensitive",
|
||
|
learning_rate=lr, max_iter=1,
|
||
|
sample_weight=None,
|
||
|
coef_init=None, intercept_init=None)
|
||
|
|
||
|
def fit(self, X, y, coef_init=None, intercept_init=None):
|
||
|
"""Fit linear model with Passive Aggressive algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
|
||
|
Training data
|
||
|
|
||
|
y : numpy array of shape [n_samples]
|
||
|
Target values
|
||
|
|
||
|
coef_init : array, shape = [n_features]
|
||
|
The initial coefficients to warm-start the optimization.
|
||
|
|
||
|
intercept_init : array, shape = [1]
|
||
|
The initial intercept to warm-start the optimization.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : returns an instance of self.
|
||
|
"""
|
||
|
lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2"
|
||
|
return self._fit(X, y, alpha=1.0, C=self.C,
|
||
|
loss="epsilon_insensitive",
|
||
|
learning_rate=lr,
|
||
|
coef_init=coef_init,
|
||
|
intercept_init=intercept_init)
|