204 lines
7.2 KiB
Python
204 lines
7.2 KiB
Python
|
# Authors: Gilles Louppe, Mathieu Blondel, Maheshakya Wijewardena
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from .base import SelectorMixin
|
||
|
from ..base import BaseEstimator, clone, MetaEstimatorMixin
|
||
|
from ..externals import six
|
||
|
|
||
|
from ..exceptions import NotFittedError
|
||
|
from ..utils.metaestimators import if_delegate_has_method
|
||
|
|
||
|
|
||
|
def _get_feature_importances(estimator, norm_order=1):
|
||
|
"""Retrieve or aggregate feature importances from estimator"""
|
||
|
importances = getattr(estimator, "feature_importances_", None)
|
||
|
|
||
|
if importances is None and hasattr(estimator, "coef_"):
|
||
|
if estimator.coef_.ndim == 1:
|
||
|
importances = np.abs(estimator.coef_)
|
||
|
|
||
|
else:
|
||
|
importances = np.linalg.norm(estimator.coef_, axis=0,
|
||
|
ord=norm_order)
|
||
|
|
||
|
elif importances is None:
|
||
|
raise ValueError(
|
||
|
"The underlying estimator %s has no `coef_` or "
|
||
|
"`feature_importances_` attribute. Either pass a fitted estimator"
|
||
|
" to SelectFromModel or call fit before calling transform."
|
||
|
% estimator.__class__.__name__)
|
||
|
|
||
|
return importances
|
||
|
|
||
|
|
||
|
def _calculate_threshold(estimator, importances, threshold):
|
||
|
"""Interpret the threshold value"""
|
||
|
|
||
|
if threshold is None:
|
||
|
# determine default from estimator
|
||
|
est_name = estimator.__class__.__name__
|
||
|
if ((hasattr(estimator, "penalty") and estimator.penalty == "l1") or
|
||
|
"Lasso" in est_name):
|
||
|
# the natural default threshold is 0 when l1 penalty was used
|
||
|
threshold = 1e-5
|
||
|
else:
|
||
|
threshold = "mean"
|
||
|
|
||
|
if isinstance(threshold, six.string_types):
|
||
|
if "*" in threshold:
|
||
|
scale, reference = threshold.split("*")
|
||
|
scale = float(scale.strip())
|
||
|
reference = reference.strip()
|
||
|
|
||
|
if reference == "median":
|
||
|
reference = np.median(importances)
|
||
|
elif reference == "mean":
|
||
|
reference = np.mean(importances)
|
||
|
else:
|
||
|
raise ValueError("Unknown reference: " + reference)
|
||
|
|
||
|
threshold = scale * reference
|
||
|
|
||
|
elif threshold == "median":
|
||
|
threshold = np.median(importances)
|
||
|
|
||
|
elif threshold == "mean":
|
||
|
threshold = np.mean(importances)
|
||
|
|
||
|
else:
|
||
|
raise ValueError("Expected threshold='mean' or threshold='median' "
|
||
|
"got %s" % threshold)
|
||
|
|
||
|
else:
|
||
|
threshold = float(threshold)
|
||
|
|
||
|
return threshold
|
||
|
|
||
|
|
||
|
class SelectFromModel(BaseEstimator, SelectorMixin, MetaEstimatorMixin):
|
||
|
"""Meta-transformer for selecting features based on importance weights.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : object
|
||
|
The base estimator from which the transformer is built.
|
||
|
This can be both a fitted (if ``prefit`` is set to True)
|
||
|
or a non-fitted estimator. The estimator must have either a
|
||
|
``feature_importances_`` or ``coef_`` attribute after fitting.
|
||
|
|
||
|
threshold : string, float, optional default None
|
||
|
The threshold value to use for feature selection. Features whose
|
||
|
importance is greater or equal are kept while the others are
|
||
|
discarded. If "median" (resp. "mean"), then the ``threshold`` value is
|
||
|
the median (resp. the mean) of the feature importances. A scaling
|
||
|
factor (e.g., "1.25*mean") may also be used. If None and if the
|
||
|
estimator has a parameter penalty set to l1, either explicitly
|
||
|
or implicitly (e.g, Lasso), the threshold used is 1e-5.
|
||
|
Otherwise, "mean" is used by default.
|
||
|
|
||
|
prefit : bool, default False
|
||
|
Whether a prefit model is expected to be passed into the constructor
|
||
|
directly or not. If True, ``transform`` must be called directly
|
||
|
and SelectFromModel cannot be used with ``cross_val_score``,
|
||
|
``GridSearchCV`` and similar utilities that clone the estimator.
|
||
|
Otherwise train the model using ``fit`` and then ``transform`` to do
|
||
|
feature selection.
|
||
|
|
||
|
norm_order : non-zero int, inf, -inf, default 1
|
||
|
Order of the norm used to filter the vectors of coefficients below
|
||
|
``threshold`` in the case where the ``coef_`` attribute of the
|
||
|
estimator is of dimension 2.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
estimator_ : an estimator
|
||
|
The base estimator from which the transformer is built.
|
||
|
This is stored only when a non-fitted estimator is passed to the
|
||
|
``SelectFromModel``, i.e when prefit is False.
|
||
|
|
||
|
threshold_ : float
|
||
|
The threshold value used for feature selection.
|
||
|
"""
|
||
|
def __init__(self, estimator, threshold=None, prefit=False, norm_order=1):
|
||
|
self.estimator = estimator
|
||
|
self.threshold = threshold
|
||
|
self.prefit = prefit
|
||
|
self.norm_order = norm_order
|
||
|
|
||
|
def _get_support_mask(self):
|
||
|
# SelectFromModel can directly call on transform.
|
||
|
if self.prefit:
|
||
|
estimator = self.estimator
|
||
|
elif hasattr(self, 'estimator_'):
|
||
|
estimator = self.estimator_
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'Either fit SelectFromModel before transform or set "prefit='
|
||
|
'True" and pass a fitted estimator to the constructor.')
|
||
|
scores = _get_feature_importances(estimator, self.norm_order)
|
||
|
threshold = _calculate_threshold(estimator, scores, self.threshold)
|
||
|
return scores >= threshold
|
||
|
|
||
|
def fit(self, X, y=None, **fit_params):
|
||
|
"""Fit the SelectFromModel meta-transformer.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The training input samples.
|
||
|
|
||
|
y : array-like, shape (n_samples,)
|
||
|
The target values (integers that correspond to classes in
|
||
|
classification, real numbers in regression).
|
||
|
|
||
|
**fit_params : Other estimator specific parameters
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns self.
|
||
|
"""
|
||
|
if self.prefit:
|
||
|
raise NotFittedError(
|
||
|
"Since 'prefit=True', call transform directly")
|
||
|
self.estimator_ = clone(self.estimator)
|
||
|
self.estimator_.fit(X, y, **fit_params)
|
||
|
return self
|
||
|
|
||
|
@property
|
||
|
def threshold_(self):
|
||
|
scores = _get_feature_importances(self.estimator_, self.norm_order)
|
||
|
return _calculate_threshold(self.estimator, scores, self.threshold)
|
||
|
|
||
|
@if_delegate_has_method('estimator')
|
||
|
def partial_fit(self, X, y=None, **fit_params):
|
||
|
"""Fit the SelectFromModel meta-transformer only once.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The training input samples.
|
||
|
|
||
|
y : array-like, shape (n_samples,)
|
||
|
The target values (integers that correspond to classes in
|
||
|
classification, real numbers in regression).
|
||
|
|
||
|
**fit_params : Other estimator specific parameters
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns self.
|
||
|
"""
|
||
|
if self.prefit:
|
||
|
raise NotFittedError(
|
||
|
"Since 'prefit=True', call transform directly")
|
||
|
if not hasattr(self, "estimator_"):
|
||
|
self.estimator_ = clone(self.estimator)
|
||
|
self.estimator_.partial_fit(X, y, **fit_params)
|
||
|
return self
|