132 lines
5.2 KiB
Python
132 lines
5.2 KiB
Python
|
"""
|
||
|
Testing for the base module (sklearn.ensemble.base).
|
||
|
"""
|
||
|
|
||
|
# Authors: Gilles Louppe
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_equal
|
||
|
|
||
|
from sklearn.utils.testing import assert_raise_message
|
||
|
from sklearn.utils.testing import assert_not_equal
|
||
|
from sklearn.utils.testing import assert_true
|
||
|
|
||
|
from sklearn.datasets import load_iris
|
||
|
from sklearn.ensemble import BaggingClassifier
|
||
|
from sklearn.ensemble.base import _set_random_states
|
||
|
from sklearn.linear_model import Perceptron
|
||
|
from collections import OrderedDict
|
||
|
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
|
||
|
from sklearn.pipeline import Pipeline
|
||
|
from sklearn.feature_selection import SelectFromModel
|
||
|
|
||
|
|
||
|
def test_base():
|
||
|
# Check BaseEnsemble methods.
|
||
|
ensemble = BaggingClassifier(
|
||
|
base_estimator=Perceptron(tol=1e-3, random_state=None), n_estimators=3)
|
||
|
|
||
|
iris = load_iris()
|
||
|
ensemble.fit(iris.data, iris.target)
|
||
|
ensemble.estimators_ = [] # empty the list and create estimators manually
|
||
|
|
||
|
ensemble._make_estimator()
|
||
|
random_state = np.random.RandomState(3)
|
||
|
ensemble._make_estimator(random_state=random_state)
|
||
|
ensemble._make_estimator(random_state=random_state)
|
||
|
ensemble._make_estimator(append=False)
|
||
|
|
||
|
assert_equal(3, len(ensemble))
|
||
|
assert_equal(3, len(ensemble.estimators_))
|
||
|
|
||
|
assert_true(isinstance(ensemble[0], Perceptron))
|
||
|
assert_equal(ensemble[0].random_state, None)
|
||
|
assert_true(isinstance(ensemble[1].random_state, int))
|
||
|
assert_true(isinstance(ensemble[2].random_state, int))
|
||
|
assert_not_equal(ensemble[1].random_state, ensemble[2].random_state)
|
||
|
|
||
|
np_int_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
|
||
|
n_estimators=np.int32(3))
|
||
|
np_int_ensemble.fit(iris.data, iris.target)
|
||
|
|
||
|
|
||
|
def test_base_zero_n_estimators():
|
||
|
# Check that instantiating a BaseEnsemble with n_estimators<=0 raises
|
||
|
# a ValueError.
|
||
|
ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
|
||
|
n_estimators=0)
|
||
|
iris = load_iris()
|
||
|
assert_raise_message(ValueError,
|
||
|
"n_estimators must be greater than zero, got 0.",
|
||
|
ensemble.fit, iris.data, iris.target)
|
||
|
|
||
|
|
||
|
def test_base_not_int_n_estimators():
|
||
|
# Check that instantiating a BaseEnsemble with a string as n_estimators
|
||
|
# raises a ValueError demanding n_estimators to be supplied as an integer.
|
||
|
string_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
|
||
|
n_estimators='3')
|
||
|
iris = load_iris()
|
||
|
assert_raise_message(ValueError,
|
||
|
"n_estimators must be an integer",
|
||
|
string_ensemble.fit, iris.data, iris.target)
|
||
|
float_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
|
||
|
n_estimators=3.0)
|
||
|
assert_raise_message(ValueError,
|
||
|
"n_estimators must be an integer",
|
||
|
float_ensemble.fit, iris.data, iris.target)
|
||
|
|
||
|
|
||
|
def test_set_random_states():
|
||
|
# Linear Discriminant Analysis doesn't have random state: smoke test
|
||
|
_set_random_states(LinearDiscriminantAnalysis(), random_state=17)
|
||
|
|
||
|
clf1 = Perceptron(tol=1e-3, random_state=None)
|
||
|
assert_equal(clf1.random_state, None)
|
||
|
# check random_state is None still sets
|
||
|
_set_random_states(clf1, None)
|
||
|
assert_true(isinstance(clf1.random_state, int))
|
||
|
|
||
|
# check random_state fixes results in consistent initialisation
|
||
|
_set_random_states(clf1, 3)
|
||
|
assert_true(isinstance(clf1.random_state, int))
|
||
|
clf2 = Perceptron(tol=1e-3, random_state=None)
|
||
|
_set_random_states(clf2, 3)
|
||
|
assert_equal(clf1.random_state, clf2.random_state)
|
||
|
|
||
|
# nested random_state
|
||
|
|
||
|
def make_steps():
|
||
|
return [('sel', SelectFromModel(Perceptron(tol=1e-3,
|
||
|
random_state=None))),
|
||
|
('clf', Perceptron(tol=1e-3, random_state=None))]
|
||
|
|
||
|
est1 = Pipeline(make_steps())
|
||
|
_set_random_states(est1, 3)
|
||
|
assert_true(isinstance(est1.steps[0][1].estimator.random_state, int))
|
||
|
assert_true(isinstance(est1.steps[1][1].random_state, int))
|
||
|
assert_not_equal(est1.get_params()['sel__estimator__random_state'],
|
||
|
est1.get_params()['clf__random_state'])
|
||
|
|
||
|
# ensure multiple random_state parameters are invariant to get_params()
|
||
|
# iteration order
|
||
|
|
||
|
class AlphaParamPipeline(Pipeline):
|
||
|
def get_params(self, *args, **kwargs):
|
||
|
params = Pipeline.get_params(self, *args, **kwargs).items()
|
||
|
return OrderedDict(sorted(params))
|
||
|
|
||
|
class RevParamPipeline(Pipeline):
|
||
|
def get_params(self, *args, **kwargs):
|
||
|
params = Pipeline.get_params(self, *args, **kwargs).items()
|
||
|
return OrderedDict(sorted(params, reverse=True))
|
||
|
|
||
|
for cls in [AlphaParamPipeline, RevParamPipeline]:
|
||
|
est2 = cls(make_steps())
|
||
|
_set_random_states(est2, 3)
|
||
|
assert_equal(est1.get_params()['sel__estimator__random_state'],
|
||
|
est2.get_params()['sel__estimator__random_state'])
|
||
|
assert_equal(est1.get_params()['clf__random_state'],
|
||
|
est2.get_params()['clf__random_state'])
|