laywerrobot/lib/python3.6/site-packages/sklearn/decomposition/sparse_pca.py

305 lines
10 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
"""Matrix factorization with Sparse PCA"""
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause
import warnings
import numpy as np
from ..utils import check_random_state, check_array
from ..utils.validation import check_is_fitted
from ..linear_model import ridge_regression
from ..base import BaseEstimator, TransformerMixin
from .dict_learning import dict_learning, dict_learning_online
class SparsePCA(BaseEstimator, TransformerMixin):
"""Sparse Principal Components Analysis (SparsePCA)
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Read more in the :ref:`User Guide <SparsePCA>`.
Parameters
----------
n_components : int,
Number of sparse atoms to extract.
alpha : float,
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float,
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
max_iter : int,
Maximum number of iterations to perform.
tol : float,
Tolerance for the stopping condition.
method : {'lars', 'cd'}
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
n_jobs : int,
Number of parallel jobs to run.
U_init : array of shape (n_samples, n_components),
Initial values for the loadings for warm restart scenarios.
V_init : array of shape (n_components, n_features),
Initial values for the components for warm restart scenarios.
verbose : int
Controls the verbosity; the higher, the more messages. Defaults to 0.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
Attributes
----------
components_ : array, [n_components, n_features]
Sparse components extracted from the data.
error_ : array
Vector of errors at each iteration.
n_iter_ : int
Number of iterations run.
See also
--------
PCA
MiniBatchSparsePCA
DictionaryLearning
"""
def __init__(self, n_components=None, alpha=1, ridge_alpha=0.01,
max_iter=1000, tol=1e-8, method='lars', n_jobs=1, U_init=None,
V_init=None, verbose=False, random_state=None):
self.n_components = n_components
self.alpha = alpha
self.ridge_alpha = ridge_alpha
self.max_iter = max_iter
self.tol = tol
self.method = method
self.n_jobs = n_jobs
self.U_init = U_init
self.V_init = V_init
self.verbose = verbose
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
y : Ignored.
Returns
-------
self : object
Returns the instance itself.
"""
random_state = check_random_state(self.random_state)
X = check_array(X)
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
code_init = self.V_init.T if self.V_init is not None else None
dict_init = self.U_init.T if self.U_init is not None else None
Vt, _, E, self.n_iter_ = dict_learning(X.T, n_components, self.alpha,
tol=self.tol,
max_iter=self.max_iter,
method=self.method,
n_jobs=self.n_jobs,
verbose=self.verbose,
random_state=random_state,
code_init=code_init,
dict_init=dict_init,
return_n_iter=True
)
self.components_ = Vt.T
self.error_ = E
return self
def transform(self, X, ridge_alpha='deprecated'):
"""Least Squares projection of the data onto the sparse components.
To avoid instability issues in case the system is under-determined,
regularization can be applied (Ridge regression) via the
`ridge_alpha` parameter.
Note that Sparse PCA components orthogonality is not enforced as in PCA
hence one cannot use a simple linear projection.
Parameters
----------
X : array of shape (n_samples, n_features)
Test data to be transformed, must have the same number of
features as the data used to train the model.
ridge_alpha : float, default: 0.01
Amount of ridge shrinkage to apply in order to improve
conditioning.
.. deprecated:: 0.19
This parameter will be removed in 0.21.
Specify ``ridge_alpha`` in the ``SparsePCA`` constructor.
Returns
-------
X_new array, shape (n_samples, n_components)
Transformed data.
"""
check_is_fitted(self, 'components_')
X = check_array(X)
if ridge_alpha != 'deprecated':
warnings.warn("The ridge_alpha parameter on transform() is "
"deprecated since 0.19 and will be removed in 0.21. "
"Specify ridge_alpha in the SparsePCA constructor.",
DeprecationWarning)
if ridge_alpha is None:
ridge_alpha = self.ridge_alpha
else:
ridge_alpha = self.ridge_alpha
U = ridge_regression(self.components_.T, X.T, ridge_alpha,
solver='cholesky')
s = np.sqrt((U ** 2).sum(axis=0))
s[s == 0] = 1
U /= s
return U
class MiniBatchSparsePCA(SparsePCA):
"""Mini-batch Sparse Principal Components Analysis
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Read more in the :ref:`User Guide <SparsePCA>`.
Parameters
----------
n_components : int,
number of sparse atoms to extract
alpha : int,
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float,
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
n_iter : int,
number of iterations to perform for each mini batch
callback : callable or None, optional (default: None)
callable that gets invoked every five iterations
batch_size : int,
the number of features to take in each mini batch
verbose : int
Controls the verbosity; the higher, the more messages. Defaults to 0.
shuffle : boolean,
whether to shuffle the data before splitting it in batches
n_jobs : int,
number of parallel jobs to run, or -1 to autodetect.
method : {'lars', 'cd'}
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
Attributes
----------
components_ : array, [n_components, n_features]
Sparse components extracted from the data.
error_ : array
Vector of errors at each iteration.
n_iter_ : int
Number of iterations run.
See also
--------
PCA
SparsePCA
DictionaryLearning
"""
def __init__(self, n_components=None, alpha=1, ridge_alpha=0.01,
n_iter=100, callback=None, batch_size=3, verbose=False,
shuffle=True, n_jobs=1, method='lars', random_state=None):
super(MiniBatchSparsePCA, self).__init__(
n_components=n_components, alpha=alpha, verbose=verbose,
ridge_alpha=ridge_alpha, n_jobs=n_jobs, method=method,
random_state=random_state)
self.n_iter = n_iter
self.callback = callback
self.batch_size = batch_size
self.shuffle = shuffle
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
y : Ignored.
Returns
-------
self : object
Returns the instance itself.
"""
random_state = check_random_state(self.random_state)
X = check_array(X)
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
Vt, _, self.n_iter_ = dict_learning_online(
X.T, n_components, alpha=self.alpha,
n_iter=self.n_iter, return_code=True,
dict_init=None, verbose=self.verbose,
callback=self.callback,
batch_size=self.batch_size,
shuffle=self.shuffle,
n_jobs=self.n_jobs, method=self.method,
random_state=random_state,
return_n_iter=True)
self.components_ = Vt.T
return self