139 lines
4.2 KiB
Python
139 lines
4.2 KiB
Python
|
"""California housing dataset.
|
||
|
|
||
|
The original database is available from StatLib
|
||
|
|
||
|
http://lib.stat.cmu.edu/datasets/
|
||
|
|
||
|
The data contains 20,640 observations on 9 variables.
|
||
|
|
||
|
This dataset contains the average house value as target variable
|
||
|
and the following input variables (features): average income,
|
||
|
housing average age, average rooms, average bedrooms, population,
|
||
|
average occupation, latitude, and longitude in that order.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
|
||
|
Statistics and Probability Letters, 33 (1997) 291-297.
|
||
|
|
||
|
"""
|
||
|
# Authors: Peter Prettenhofer
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
from os.path import exists
|
||
|
from os import makedirs, remove
|
||
|
import tarfile
|
||
|
|
||
|
import numpy as np
|
||
|
import logging
|
||
|
|
||
|
from .base import get_data_home
|
||
|
from .base import _fetch_remote
|
||
|
from .base import _pkl_filepath
|
||
|
from .base import RemoteFileMetadata
|
||
|
from ..utils import Bunch
|
||
|
from ..externals import joblib
|
||
|
|
||
|
# The original data can be found at:
|
||
|
# http://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.tgz
|
||
|
ARCHIVE = RemoteFileMetadata(
|
||
|
filename='cal_housing.tgz',
|
||
|
url='https://ndownloader.figshare.com/files/5976036',
|
||
|
checksum=('aaa5c9a6afe2225cc2aed2723682ae40'
|
||
|
'3280c4a3695a2ddda4ffb5d8215ea681'))
|
||
|
|
||
|
# Grab the module-level docstring to use as a description of the
|
||
|
# dataset
|
||
|
MODULE_DOCS = __doc__
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def fetch_california_housing(data_home=None, download_if_missing=True):
|
||
|
"""Loader for the California housing dataset from StatLib.
|
||
|
|
||
|
Read more in the :ref:`User Guide <datasets>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data_home : optional, default: None
|
||
|
Specify another download and cache folder for the datasets. By default
|
||
|
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
|
||
|
|
||
|
download_if_missing : optional, True by default
|
||
|
If False, raise a IOError if the data is not locally available
|
||
|
instead of trying to download the data from the source site.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dataset : dict-like object with the following attributes:
|
||
|
|
||
|
dataset.data : ndarray, shape [20640, 8]
|
||
|
Each row corresponding to the 8 feature values in order.
|
||
|
|
||
|
dataset.target : numpy array of shape (20640,)
|
||
|
Each value corresponds to the average house value in units of 100,000.
|
||
|
|
||
|
dataset.feature_names : array of length 8
|
||
|
Array of ordered feature names used in the dataset.
|
||
|
|
||
|
dataset.DESCR : string
|
||
|
Description of the California housing dataset.
|
||
|
|
||
|
Notes
|
||
|
------
|
||
|
|
||
|
This dataset consists of 20,640 samples and 9 features.
|
||
|
"""
|
||
|
data_home = get_data_home(data_home=data_home)
|
||
|
if not exists(data_home):
|
||
|
makedirs(data_home)
|
||
|
|
||
|
filepath = _pkl_filepath(data_home, 'cal_housing.pkz')
|
||
|
if not exists(filepath):
|
||
|
if not download_if_missing:
|
||
|
raise IOError("Data not found and `download_if_missing` is False")
|
||
|
|
||
|
logger.info('Downloading Cal. housing from {} to {}'.format(
|
||
|
ARCHIVE.url, data_home))
|
||
|
|
||
|
archive_path = _fetch_remote(ARCHIVE, dirname=data_home)
|
||
|
|
||
|
with tarfile.open(mode="r:gz", name=archive_path) as f:
|
||
|
cal_housing = np.loadtxt(
|
||
|
f.extractfile('CaliforniaHousing/cal_housing.data'),
|
||
|
delimiter=',')
|
||
|
# Columns are not in the same order compared to the previous
|
||
|
# URL resource on lib.stat.cmu.edu
|
||
|
columns_index = [8, 7, 2, 3, 4, 5, 6, 1, 0]
|
||
|
cal_housing = cal_housing[:, columns_index]
|
||
|
|
||
|
joblib.dump(cal_housing, filepath, compress=6)
|
||
|
remove(archive_path)
|
||
|
|
||
|
else:
|
||
|
cal_housing = joblib.load(filepath)
|
||
|
|
||
|
feature_names = ["MedInc", "HouseAge", "AveRooms", "AveBedrms",
|
||
|
"Population", "AveOccup", "Latitude", "Longitude"]
|
||
|
|
||
|
target, data = cal_housing[:, 0], cal_housing[:, 1:]
|
||
|
|
||
|
# avg rooms = total rooms / households
|
||
|
data[:, 2] /= data[:, 5]
|
||
|
|
||
|
# avg bed rooms = total bed rooms / households
|
||
|
data[:, 3] /= data[:, 5]
|
||
|
|
||
|
# avg occupancy = population / households
|
||
|
data[:, 5] = data[:, 4] / data[:, 5]
|
||
|
|
||
|
# target in units of 100,000
|
||
|
target = target / 100000.0
|
||
|
|
||
|
return Bunch(data=data,
|
||
|
target=target,
|
||
|
feature_names=feature_names,
|
||
|
DESCR=MODULE_DOCS)
|