265 lines
9.2 KiB
Python
265 lines
9.2 KiB
Python
|
"""Testing for Spectral Biclustering methods"""
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.sparse import csr_matrix, issparse
|
||
|
|
||
|
from sklearn.model_selection import ParameterGrid
|
||
|
|
||
|
from sklearn.utils.testing import assert_equal
|
||
|
from sklearn.utils.testing import assert_almost_equal
|
||
|
from sklearn.utils.testing import assert_array_equal
|
||
|
from sklearn.utils.testing import assert_array_almost_equal
|
||
|
from sklearn.utils.testing import assert_raises
|
||
|
from sklearn.utils.testing import assert_true
|
||
|
from sklearn.utils.testing import SkipTest
|
||
|
|
||
|
from sklearn.base import BaseEstimator, BiclusterMixin
|
||
|
|
||
|
from sklearn.cluster.bicluster import SpectralCoclustering
|
||
|
from sklearn.cluster.bicluster import SpectralBiclustering
|
||
|
from sklearn.cluster.bicluster import _scale_normalize
|
||
|
from sklearn.cluster.bicluster import _bistochastic_normalize
|
||
|
from sklearn.cluster.bicluster import _log_normalize
|
||
|
|
||
|
from sklearn.metrics import consensus_score
|
||
|
|
||
|
from sklearn.datasets import make_biclusters, make_checkerboard
|
||
|
|
||
|
|
||
|
class MockBiclustering(BaseEstimator, BiclusterMixin):
|
||
|
# Mock object for testing get_submatrix.
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def get_indices(self, i):
|
||
|
# Overridden to reproduce old get_submatrix test.
|
||
|
return (np.where([True, True, False, False, True])[0],
|
||
|
np.where([False, False, True, True])[0])
|
||
|
|
||
|
|
||
|
def test_get_submatrix():
|
||
|
data = np.arange(20).reshape(5, 4)
|
||
|
model = MockBiclustering()
|
||
|
|
||
|
for X in (data, csr_matrix(data), data.tolist()):
|
||
|
submatrix = model.get_submatrix(0, X)
|
||
|
if issparse(submatrix):
|
||
|
submatrix = submatrix.toarray()
|
||
|
assert_array_equal(submatrix, [[2, 3],
|
||
|
[6, 7],
|
||
|
[18, 19]])
|
||
|
submatrix[:] = -1
|
||
|
if issparse(X):
|
||
|
X = X.toarray()
|
||
|
assert_true(np.all(X != -1))
|
||
|
|
||
|
|
||
|
def _test_shape_indices(model):
|
||
|
# Test get_shape and get_indices on fitted model.
|
||
|
for i in range(model.n_clusters):
|
||
|
m, n = model.get_shape(i)
|
||
|
i_ind, j_ind = model.get_indices(i)
|
||
|
assert_equal(len(i_ind), m)
|
||
|
assert_equal(len(j_ind), n)
|
||
|
|
||
|
|
||
|
def test_spectral_coclustering():
|
||
|
# Test Dhillon's Spectral CoClustering on a simple problem.
|
||
|
param_grid = {'svd_method': ['randomized', 'arpack'],
|
||
|
'n_svd_vecs': [None, 20],
|
||
|
'mini_batch': [False, True],
|
||
|
'init': ['k-means++'],
|
||
|
'n_init': [10],
|
||
|
'n_jobs': [1]}
|
||
|
random_state = 0
|
||
|
S, rows, cols = make_biclusters((30, 30), 3, noise=0.5,
|
||
|
random_state=random_state)
|
||
|
S -= S.min() # needs to be nonnegative before making it sparse
|
||
|
S = np.where(S < 1, 0, S) # threshold some values
|
||
|
for mat in (S, csr_matrix(S)):
|
||
|
for kwargs in ParameterGrid(param_grid):
|
||
|
model = SpectralCoclustering(n_clusters=3,
|
||
|
random_state=random_state,
|
||
|
**kwargs)
|
||
|
model.fit(mat)
|
||
|
|
||
|
assert_equal(model.rows_.shape, (3, 30))
|
||
|
assert_array_equal(model.rows_.sum(axis=0), np.ones(30))
|
||
|
assert_array_equal(model.columns_.sum(axis=0), np.ones(30))
|
||
|
assert_equal(consensus_score(model.biclusters_,
|
||
|
(rows, cols)), 1)
|
||
|
|
||
|
_test_shape_indices(model)
|
||
|
|
||
|
|
||
|
def test_spectral_biclustering():
|
||
|
# Test Kluger methods on a checkerboard dataset.
|
||
|
S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5,
|
||
|
random_state=0)
|
||
|
|
||
|
non_default_params = {'method': ['scale', 'log'],
|
||
|
'svd_method': ['arpack'],
|
||
|
'n_svd_vecs': [20],
|
||
|
'mini_batch': [True]}
|
||
|
|
||
|
for mat in (S, csr_matrix(S)):
|
||
|
for param_name, param_values in non_default_params.items():
|
||
|
for param_value in param_values:
|
||
|
|
||
|
model = SpectralBiclustering(
|
||
|
n_clusters=3,
|
||
|
n_init=3,
|
||
|
init='k-means++',
|
||
|
random_state=0,
|
||
|
)
|
||
|
model.set_params(**dict([(param_name, param_value)]))
|
||
|
|
||
|
if issparse(mat) and model.get_params().get('method') == 'log':
|
||
|
# cannot take log of sparse matrix
|
||
|
assert_raises(ValueError, model.fit, mat)
|
||
|
continue
|
||
|
else:
|
||
|
model.fit(mat)
|
||
|
|
||
|
assert_equal(model.rows_.shape, (9, 30))
|
||
|
assert_equal(model.columns_.shape, (9, 30))
|
||
|
assert_array_equal(model.rows_.sum(axis=0),
|
||
|
np.repeat(3, 30))
|
||
|
assert_array_equal(model.columns_.sum(axis=0),
|
||
|
np.repeat(3, 30))
|
||
|
assert_equal(consensus_score(model.biclusters_,
|
||
|
(rows, cols)), 1)
|
||
|
|
||
|
_test_shape_indices(model)
|
||
|
|
||
|
|
||
|
def _do_scale_test(scaled):
|
||
|
"""Check that rows sum to one constant, and columns to another."""
|
||
|
row_sum = scaled.sum(axis=1)
|
||
|
col_sum = scaled.sum(axis=0)
|
||
|
if issparse(scaled):
|
||
|
row_sum = np.asarray(row_sum).squeeze()
|
||
|
col_sum = np.asarray(col_sum).squeeze()
|
||
|
assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100),
|
||
|
decimal=1)
|
||
|
assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100),
|
||
|
decimal=1)
|
||
|
|
||
|
|
||
|
def _do_bistochastic_test(scaled):
|
||
|
"""Check that rows and columns sum to the same constant."""
|
||
|
_do_scale_test(scaled)
|
||
|
assert_almost_equal(scaled.sum(axis=0).mean(),
|
||
|
scaled.sum(axis=1).mean(),
|
||
|
decimal=1)
|
||
|
|
||
|
|
||
|
def test_scale_normalize():
|
||
|
generator = np.random.RandomState(0)
|
||
|
X = generator.rand(100, 100)
|
||
|
for mat in (X, csr_matrix(X)):
|
||
|
scaled, _, _ = _scale_normalize(mat)
|
||
|
_do_scale_test(scaled)
|
||
|
if issparse(mat):
|
||
|
assert issparse(scaled)
|
||
|
|
||
|
|
||
|
def test_bistochastic_normalize():
|
||
|
generator = np.random.RandomState(0)
|
||
|
X = generator.rand(100, 100)
|
||
|
for mat in (X, csr_matrix(X)):
|
||
|
scaled = _bistochastic_normalize(mat)
|
||
|
_do_bistochastic_test(scaled)
|
||
|
if issparse(mat):
|
||
|
assert issparse(scaled)
|
||
|
|
||
|
|
||
|
def test_log_normalize():
|
||
|
# adding any constant to a log-scaled matrix should make it
|
||
|
# bistochastic
|
||
|
generator = np.random.RandomState(0)
|
||
|
mat = generator.rand(100, 100)
|
||
|
scaled = _log_normalize(mat) + 1
|
||
|
_do_bistochastic_test(scaled)
|
||
|
|
||
|
|
||
|
def test_fit_best_piecewise():
|
||
|
model = SpectralBiclustering(random_state=0)
|
||
|
vectors = np.array([[0, 0, 0, 1, 1, 1],
|
||
|
[2, 2, 2, 3, 3, 3],
|
||
|
[0, 1, 2, 3, 4, 5]])
|
||
|
best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2)
|
||
|
assert_array_equal(best, vectors[:2])
|
||
|
|
||
|
|
||
|
def test_project_and_cluster():
|
||
|
model = SpectralBiclustering(random_state=0)
|
||
|
data = np.array([[1, 1, 1],
|
||
|
[1, 1, 1],
|
||
|
[3, 6, 3],
|
||
|
[3, 6, 3]])
|
||
|
vectors = np.array([[1, 0],
|
||
|
[0, 1],
|
||
|
[0, 0]])
|
||
|
for mat in (data, csr_matrix(data)):
|
||
|
labels = model._project_and_cluster(data, vectors,
|
||
|
n_clusters=2)
|
||
|
assert_array_equal(labels, [0, 0, 1, 1])
|
||
|
|
||
|
|
||
|
def test_perfect_checkerboard():
|
||
|
raise SkipTest("This test is failing on the buildbot, but cannot"
|
||
|
" reproduce. Temporarily disabling it until it can be"
|
||
|
" reproduced and fixed.")
|
||
|
model = SpectralBiclustering(3, svd_method="arpack", random_state=0)
|
||
|
|
||
|
S, rows, cols = make_checkerboard((30, 30), 3, noise=0,
|
||
|
random_state=0)
|
||
|
model.fit(S)
|
||
|
assert_equal(consensus_score(model.biclusters_,
|
||
|
(rows, cols)), 1)
|
||
|
|
||
|
S, rows, cols = make_checkerboard((40, 30), 3, noise=0,
|
||
|
random_state=0)
|
||
|
model.fit(S)
|
||
|
assert_equal(consensus_score(model.biclusters_,
|
||
|
(rows, cols)), 1)
|
||
|
|
||
|
S, rows, cols = make_checkerboard((30, 40), 3, noise=0,
|
||
|
random_state=0)
|
||
|
model.fit(S)
|
||
|
assert_equal(consensus_score(model.biclusters_,
|
||
|
(rows, cols)), 1)
|
||
|
|
||
|
|
||
|
def test_errors():
|
||
|
data = np.arange(25).reshape((5, 5))
|
||
|
|
||
|
model = SpectralBiclustering(n_clusters=(3, 3, 3))
|
||
|
assert_raises(ValueError, model.fit, data)
|
||
|
|
||
|
model = SpectralBiclustering(n_clusters='abc')
|
||
|
assert_raises(ValueError, model.fit, data)
|
||
|
|
||
|
model = SpectralBiclustering(n_clusters=(3, 'abc'))
|
||
|
assert_raises(ValueError, model.fit, data)
|
||
|
|
||
|
model = SpectralBiclustering(method='unknown')
|
||
|
assert_raises(ValueError, model.fit, data)
|
||
|
|
||
|
model = SpectralBiclustering(svd_method='unknown')
|
||
|
assert_raises(ValueError, model.fit, data)
|
||
|
|
||
|
model = SpectralBiclustering(n_components=0)
|
||
|
assert_raises(ValueError, model.fit, data)
|
||
|
|
||
|
model = SpectralBiclustering(n_best=0)
|
||
|
assert_raises(ValueError, model.fit, data)
|
||
|
|
||
|
model = SpectralBiclustering(n_components=3, n_best=4)
|
||
|
assert_raises(ValueError, model.fit, data)
|
||
|
|
||
|
model = SpectralBiclustering()
|
||
|
data = np.arange(27).reshape((3, 3, 3))
|
||
|
assert_raises(ValueError, model.fit, data)
|