3775 lines
117 KiB
Python
3775 lines
117 KiB
Python
|
#
|
||
|
# Author: Joris Vankerschaver 2013
|
||
|
#
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
import math
|
||
|
import numpy as np
|
||
|
import scipy.linalg
|
||
|
from scipy.misc import doccer
|
||
|
from scipy.special import gammaln, psi, multigammaln, xlogy, entr
|
||
|
from scipy._lib._util import check_random_state
|
||
|
from scipy.linalg.blas import drot
|
||
|
|
||
|
from ._discrete_distns import binom
|
||
|
from . import mvn
|
||
|
|
||
|
__all__ = ['multivariate_normal',
|
||
|
'matrix_normal',
|
||
|
'dirichlet',
|
||
|
'wishart',
|
||
|
'invwishart',
|
||
|
'multinomial',
|
||
|
'special_ortho_group',
|
||
|
'ortho_group',
|
||
|
'random_correlation',
|
||
|
'unitary_group']
|
||
|
|
||
|
_LOG_2PI = np.log(2 * np.pi)
|
||
|
_LOG_2 = np.log(2)
|
||
|
_LOG_PI = np.log(np.pi)
|
||
|
|
||
|
|
||
|
_doc_random_state = """\
|
||
|
random_state : None or int or np.random.RandomState instance, optional
|
||
|
If int or RandomState, use it for drawing the random variates.
|
||
|
If None (or np.random), the global np.random state is used.
|
||
|
Default is None.
|
||
|
"""
|
||
|
|
||
|
def _squeeze_output(out):
|
||
|
"""
|
||
|
Remove single-dimensional entries from array and convert to scalar,
|
||
|
if necessary.
|
||
|
|
||
|
"""
|
||
|
out = out.squeeze()
|
||
|
if out.ndim == 0:
|
||
|
out = out[()]
|
||
|
return out
|
||
|
|
||
|
|
||
|
def _eigvalsh_to_eps(spectrum, cond=None, rcond=None):
|
||
|
"""
|
||
|
Determine which eigenvalues are "small" given the spectrum.
|
||
|
|
||
|
This is for compatibility across various linear algebra functions
|
||
|
that should agree about whether or not a Hermitian matrix is numerically
|
||
|
singular and what is its numerical matrix rank.
|
||
|
This is designed to be compatible with scipy.linalg.pinvh.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
spectrum : 1d ndarray
|
||
|
Array of eigenvalues of a Hermitian matrix.
|
||
|
cond, rcond : float, optional
|
||
|
Cutoff for small eigenvalues.
|
||
|
Singular values smaller than rcond * largest_eigenvalue are
|
||
|
considered zero.
|
||
|
If None or -1, suitable machine precision is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
eps : float
|
||
|
Magnitude cutoff for numerical negligibility.
|
||
|
|
||
|
"""
|
||
|
if rcond is not None:
|
||
|
cond = rcond
|
||
|
if cond in [None, -1]:
|
||
|
t = spectrum.dtype.char.lower()
|
||
|
factor = {'f': 1E3, 'd': 1E6}
|
||
|
cond = factor[t] * np.finfo(t).eps
|
||
|
eps = cond * np.max(abs(spectrum))
|
||
|
return eps
|
||
|
|
||
|
|
||
|
def _pinv_1d(v, eps=1e-5):
|
||
|
"""
|
||
|
A helper function for computing the pseudoinverse.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v : iterable of numbers
|
||
|
This may be thought of as a vector of eigenvalues or singular values.
|
||
|
eps : float
|
||
|
Values with magnitude no greater than eps are considered negligible.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
v_pinv : 1d float ndarray
|
||
|
A vector of pseudo-inverted numbers.
|
||
|
|
||
|
"""
|
||
|
return np.array([0 if abs(x) <= eps else 1/x for x in v], dtype=float)
|
||
|
|
||
|
|
||
|
class _PSD(object):
|
||
|
"""
|
||
|
Compute coordinated functions of a symmetric positive semidefinite matrix.
|
||
|
|
||
|
This class addresses two issues. Firstly it allows the pseudoinverse,
|
||
|
the logarithm of the pseudo-determinant, and the rank of the matrix
|
||
|
to be computed using one call to eigh instead of three.
|
||
|
Secondly it allows these functions to be computed in a way
|
||
|
that gives mutually compatible results.
|
||
|
All of the functions are computed with a common understanding as to
|
||
|
which of the eigenvalues are to be considered negligibly small.
|
||
|
The functions are designed to coordinate with scipy.linalg.pinvh()
|
||
|
but not necessarily with np.linalg.det() or with np.linalg.matrix_rank().
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : array_like
|
||
|
Symmetric positive semidefinite matrix (2-D).
|
||
|
cond, rcond : float, optional
|
||
|
Cutoff for small eigenvalues.
|
||
|
Singular values smaller than rcond * largest_eigenvalue are
|
||
|
considered zero.
|
||
|
If None or -1, suitable machine precision is used.
|
||
|
lower : bool, optional
|
||
|
Whether the pertinent array data is taken from the lower
|
||
|
or upper triangle of M. (Default: lower)
|
||
|
check_finite : bool, optional
|
||
|
Whether to check that the input matrices contain only finite
|
||
|
numbers. Disabling may give a performance gain, but may result
|
||
|
in problems (crashes, non-termination) if the inputs do contain
|
||
|
infinities or NaNs.
|
||
|
allow_singular : bool, optional
|
||
|
Whether to allow a singular matrix. (Default: True)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The arguments are similar to those of scipy.linalg.pinvh().
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, M, cond=None, rcond=None, lower=True,
|
||
|
check_finite=True, allow_singular=True):
|
||
|
# Compute the symmetric eigendecomposition.
|
||
|
# Note that eigh takes care of array conversion, chkfinite,
|
||
|
# and assertion that the matrix is square.
|
||
|
s, u = scipy.linalg.eigh(M, lower=lower, check_finite=check_finite)
|
||
|
|
||
|
eps = _eigvalsh_to_eps(s, cond, rcond)
|
||
|
if np.min(s) < -eps:
|
||
|
raise ValueError('the input matrix must be positive semidefinite')
|
||
|
d = s[s > eps]
|
||
|
if len(d) < len(s) and not allow_singular:
|
||
|
raise np.linalg.LinAlgError('singular matrix')
|
||
|
s_pinv = _pinv_1d(s, eps)
|
||
|
U = np.multiply(u, np.sqrt(s_pinv))
|
||
|
|
||
|
# Initialize the eagerly precomputed attributes.
|
||
|
self.rank = len(d)
|
||
|
self.U = U
|
||
|
self.log_pdet = np.sum(np.log(d))
|
||
|
|
||
|
# Initialize an attribute to be lazily computed.
|
||
|
self._pinv = None
|
||
|
|
||
|
@property
|
||
|
def pinv(self):
|
||
|
if self._pinv is None:
|
||
|
self._pinv = np.dot(self.U, self.U.T)
|
||
|
return self._pinv
|
||
|
|
||
|
|
||
|
class multi_rv_generic(object):
|
||
|
"""
|
||
|
Class which encapsulates common functionality between all multivariate
|
||
|
distributions.
|
||
|
|
||
|
"""
|
||
|
def __init__(self, seed=None):
|
||
|
super(multi_rv_generic, self).__init__()
|
||
|
self._random_state = check_random_state(seed)
|
||
|
|
||
|
@property
|
||
|
def random_state(self):
|
||
|
""" Get or set the RandomState object for generating random variates.
|
||
|
|
||
|
This can be either None or an existing RandomState object.
|
||
|
|
||
|
If None (or np.random), use the RandomState singleton used by np.random.
|
||
|
If already a RandomState instance, use it.
|
||
|
If an int, use a new RandomState instance seeded with seed.
|
||
|
|
||
|
"""
|
||
|
return self._random_state
|
||
|
|
||
|
@random_state.setter
|
||
|
def random_state(self, seed):
|
||
|
self._random_state = check_random_state(seed)
|
||
|
|
||
|
def _get_random_state(self, random_state):
|
||
|
if random_state is not None:
|
||
|
return check_random_state(random_state)
|
||
|
else:
|
||
|
return self._random_state
|
||
|
|
||
|
|
||
|
class multi_rv_frozen(object):
|
||
|
"""
|
||
|
Class which encapsulates common functionality between all frozen
|
||
|
multivariate distributions.
|
||
|
"""
|
||
|
@property
|
||
|
def random_state(self):
|
||
|
return self._dist._random_state
|
||
|
|
||
|
@random_state.setter
|
||
|
def random_state(self, seed):
|
||
|
self._dist._random_state = check_random_state(seed)
|
||
|
|
||
|
|
||
|
_mvn_doc_default_callparams = """\
|
||
|
mean : array_like, optional
|
||
|
Mean of the distribution (default zero)
|
||
|
cov : array_like, optional
|
||
|
Covariance matrix of the distribution (default one)
|
||
|
allow_singular : bool, optional
|
||
|
Whether to allow a singular covariance matrix. (Default: False)
|
||
|
"""
|
||
|
|
||
|
_mvn_doc_callparams_note = \
|
||
|
"""Setting the parameter `mean` to `None` is equivalent to having `mean`
|
||
|
be the zero-vector. The parameter `cov` can be a scalar, in which case
|
||
|
the covariance matrix is the identity times that value, a vector of
|
||
|
diagonal entries for the covariance matrix, or a two-dimensional
|
||
|
array_like.
|
||
|
"""
|
||
|
|
||
|
_mvn_doc_frozen_callparams = ""
|
||
|
|
||
|
_mvn_doc_frozen_callparams_note = \
|
||
|
"""See class definition for a detailed description of parameters."""
|
||
|
|
||
|
mvn_docdict_params = {
|
||
|
'_mvn_doc_default_callparams': _mvn_doc_default_callparams,
|
||
|
'_mvn_doc_callparams_note': _mvn_doc_callparams_note,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
|
||
|
mvn_docdict_noparams = {
|
||
|
'_mvn_doc_default_callparams': _mvn_doc_frozen_callparams,
|
||
|
'_mvn_doc_callparams_note': _mvn_doc_frozen_callparams_note,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
|
||
|
class multivariate_normal_gen(multi_rv_generic):
|
||
|
r"""
|
||
|
A multivariate normal random variable.
|
||
|
|
||
|
The `mean` keyword specifies the mean. The `cov` keyword specifies the
|
||
|
covariance matrix.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``pdf(x, mean=None, cov=1, allow_singular=False)``
|
||
|
Probability density function.
|
||
|
``logpdf(x, mean=None, cov=1, allow_singular=False)``
|
||
|
Log of the probability density function.
|
||
|
``cdf(x, mean=None, cov=1, allow_singular=False, maxpts=1000000*dim, abseps=1e-5, releps=1e-5)``
|
||
|
Cumulative distribution function.
|
||
|
``logcdf(x, mean=None, cov=1, allow_singular=False, maxpts=1000000*dim, abseps=1e-5, releps=1e-5)``
|
||
|
Log of the cumulative distribution function.
|
||
|
``rvs(mean=None, cov=1, size=1, random_state=None)``
|
||
|
Draw random samples from a multivariate normal distribution.
|
||
|
``entropy()``
|
||
|
Compute the differential entropy of the multivariate normal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_mvn_doc_default_callparams)s
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Alternatively, the object may be called (as a function) to fix the mean
|
||
|
and covariance parameters, returning a "frozen" multivariate normal
|
||
|
random variable:
|
||
|
|
||
|
rv = multivariate_normal(mean=None, cov=1, allow_singular=False)
|
||
|
- Frozen object with the same methods but holding the given
|
||
|
mean and covariance fixed.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_mvn_doc_callparams_note)s
|
||
|
|
||
|
The covariance matrix `cov` must be a (symmetric) positive
|
||
|
semi-definite matrix. The determinant and inverse of `cov` are computed
|
||
|
as the pseudo-determinant and pseudo-inverse, respectively, so
|
||
|
that `cov` does not need to have full rank.
|
||
|
|
||
|
The probability density function for `multivariate_normal` is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}}
|
||
|
\exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),
|
||
|
|
||
|
where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix,
|
||
|
and :math:`k` is the dimension of the space where :math:`x` takes values.
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.stats import multivariate_normal
|
||
|
|
||
|
>>> x = np.linspace(0, 5, 10, endpoint=False)
|
||
|
>>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
|
||
|
array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,
|
||
|
0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349])
|
||
|
>>> fig1 = plt.figure()
|
||
|
>>> ax = fig1.add_subplot(111)
|
||
|
>>> ax.plot(x, y)
|
||
|
|
||
|
The input quantiles can be any shape of array, as long as the last
|
||
|
axis labels the components. This allows us for instance to
|
||
|
display the frozen pdf for a non-isotropic random variable in 2D as
|
||
|
follows:
|
||
|
|
||
|
>>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
|
||
|
>>> pos = np.dstack((x, y))
|
||
|
>>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
|
||
|
>>> fig2 = plt.figure()
|
||
|
>>> ax2 = fig2.add_subplot(111)
|
||
|
>>> ax2.contourf(x, y, rv.pdf(pos))
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(multivariate_normal_gen, self).__init__(seed)
|
||
|
self.__doc__ = doccer.docformat(self.__doc__, mvn_docdict_params)
|
||
|
|
||
|
def __call__(self, mean=None, cov=1, allow_singular=False, seed=None):
|
||
|
"""
|
||
|
Create a frozen multivariate normal distribution.
|
||
|
|
||
|
See `multivariate_normal_frozen` for more information.
|
||
|
|
||
|
"""
|
||
|
return multivariate_normal_frozen(mean, cov,
|
||
|
allow_singular=allow_singular,
|
||
|
seed=seed)
|
||
|
|
||
|
def _process_parameters(self, dim, mean, cov):
|
||
|
"""
|
||
|
Infer dimensionality from mean or covariance matrix, ensure that
|
||
|
mean and covariance are full vector resp. matrix.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Try to infer dimensionality
|
||
|
if dim is None:
|
||
|
if mean is None:
|
||
|
if cov is None:
|
||
|
dim = 1
|
||
|
else:
|
||
|
cov = np.asarray(cov, dtype=float)
|
||
|
if cov.ndim < 2:
|
||
|
dim = 1
|
||
|
else:
|
||
|
dim = cov.shape[0]
|
||
|
else:
|
||
|
mean = np.asarray(mean, dtype=float)
|
||
|
dim = mean.size
|
||
|
else:
|
||
|
if not np.isscalar(dim):
|
||
|
raise ValueError("Dimension of random variable must be a scalar.")
|
||
|
|
||
|
# Check input sizes and return full arrays for mean and cov if necessary
|
||
|
if mean is None:
|
||
|
mean = np.zeros(dim)
|
||
|
mean = np.asarray(mean, dtype=float)
|
||
|
|
||
|
if cov is None:
|
||
|
cov = 1.0
|
||
|
cov = np.asarray(cov, dtype=float)
|
||
|
|
||
|
if dim == 1:
|
||
|
mean.shape = (1,)
|
||
|
cov.shape = (1, 1)
|
||
|
|
||
|
if mean.ndim != 1 or mean.shape[0] != dim:
|
||
|
raise ValueError("Array 'mean' must be a vector of length %d." % dim)
|
||
|
if cov.ndim == 0:
|
||
|
cov = cov * np.eye(dim)
|
||
|
elif cov.ndim == 1:
|
||
|
cov = np.diag(cov)
|
||
|
elif cov.ndim == 2 and cov.shape != (dim, dim):
|
||
|
rows, cols = cov.shape
|
||
|
if rows != cols:
|
||
|
msg = ("Array 'cov' must be square if it is two dimensional,"
|
||
|
" but cov.shape = %s." % str(cov.shape))
|
||
|
else:
|
||
|
msg = ("Dimension mismatch: array 'cov' is of shape %s,"
|
||
|
" but 'mean' is a vector of length %d.")
|
||
|
msg = msg % (str(cov.shape), len(mean))
|
||
|
raise ValueError(msg)
|
||
|
elif cov.ndim > 2:
|
||
|
raise ValueError("Array 'cov' must be at most two-dimensional,"
|
||
|
" but cov.ndim = %d" % cov.ndim)
|
||
|
|
||
|
return dim, mean, cov
|
||
|
|
||
|
def _process_quantiles(self, x, dim):
|
||
|
"""
|
||
|
Adjust quantiles array so that last axis labels the components of
|
||
|
each data point.
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x, dtype=float)
|
||
|
|
||
|
if x.ndim == 0:
|
||
|
x = x[np.newaxis]
|
||
|
elif x.ndim == 1:
|
||
|
if dim == 1:
|
||
|
x = x[:, np.newaxis]
|
||
|
else:
|
||
|
x = x[np.newaxis, :]
|
||
|
|
||
|
return x
|
||
|
|
||
|
def _logpdf(self, x, mean, prec_U, log_det_cov, rank):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Points at which to evaluate the log of the probability
|
||
|
density function
|
||
|
mean : ndarray
|
||
|
Mean of the distribution
|
||
|
prec_U : ndarray
|
||
|
A decomposition such that np.dot(prec_U, prec_U.T)
|
||
|
is the precision matrix, i.e. inverse of the covariance matrix.
|
||
|
log_det_cov : float
|
||
|
Logarithm of the determinant of the covariance matrix
|
||
|
rank : int
|
||
|
Rank of the covariance matrix.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'logpdf' instead.
|
||
|
|
||
|
"""
|
||
|
dev = x - mean
|
||
|
maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1)
|
||
|
return -0.5 * (rank * _LOG_2PI + log_det_cov + maha)
|
||
|
|
||
|
def logpdf(self, x, mean=None, cov=1, allow_singular=False):
|
||
|
"""
|
||
|
Log of the multivariate normal probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_mvn_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pdf : ndarray or scalar
|
||
|
Log of the probability density function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_mvn_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
dim, mean, cov = self._process_parameters(None, mean, cov)
|
||
|
x = self._process_quantiles(x, dim)
|
||
|
psd = _PSD(cov, allow_singular=allow_singular)
|
||
|
out = self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def pdf(self, x, mean=None, cov=1, allow_singular=False):
|
||
|
"""
|
||
|
Multivariate normal probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_mvn_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pdf : ndarray or scalar
|
||
|
Probability density function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_mvn_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
dim, mean, cov = self._process_parameters(None, mean, cov)
|
||
|
x = self._process_quantiles(x, dim)
|
||
|
psd = _PSD(cov, allow_singular=allow_singular)
|
||
|
out = np.exp(self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank))
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def _cdf(self, x, mean, cov, maxpts, abseps, releps):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Points at which to evaluate the cumulative distribution function.
|
||
|
mean : ndarray
|
||
|
Mean of the distribution
|
||
|
cov : array_like
|
||
|
Covariance matrix of the distribution
|
||
|
maxpts: integer
|
||
|
The maximum number of points to use for integration
|
||
|
abseps: float
|
||
|
Absolute error tolerance
|
||
|
releps: float
|
||
|
Relative error tolerance
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'cdf' instead.
|
||
|
|
||
|
.. versionadded:: 1.0.0
|
||
|
|
||
|
"""
|
||
|
lower = np.full(mean.shape, -np.inf)
|
||
|
# mvnun expects 1-d arguments, so process points sequentially
|
||
|
func1d = lambda x_slice: mvn.mvnun(lower, x_slice, mean, cov,
|
||
|
maxpts, abseps, releps)[0]
|
||
|
out = np.apply_along_axis(func1d, -1, x)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def logcdf(self, x, mean=None, cov=1, allow_singular=False, maxpts=None,
|
||
|
abseps=1e-5, releps=1e-5):
|
||
|
"""
|
||
|
Log of the multivariate normal cumulative distribution function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_mvn_doc_default_callparams)s
|
||
|
maxpts: integer, optional
|
||
|
The maximum number of points to use for integration
|
||
|
(default `1000000*dim`)
|
||
|
abseps: float, optional
|
||
|
Absolute error tolerance (default 1e-5)
|
||
|
releps: float, optional
|
||
|
Relative error tolerance (default 1e-5)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cdf : ndarray or scalar
|
||
|
Log of the cumulative distribution function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_mvn_doc_callparams_note)s
|
||
|
|
||
|
.. versionadded:: 1.0.0
|
||
|
|
||
|
"""
|
||
|
dim, mean, cov = self._process_parameters(None, mean, cov)
|
||
|
x = self._process_quantiles(x, dim)
|
||
|
# Use _PSD to check covariance matrix
|
||
|
_PSD(cov, allow_singular=allow_singular)
|
||
|
if not maxpts:
|
||
|
maxpts = 1000000 * dim
|
||
|
out = np.log(self._cdf(x, mean, cov, maxpts, abseps, releps))
|
||
|
return out
|
||
|
|
||
|
def cdf(self, x, mean=None, cov=1, allow_singular=False, maxpts=None,
|
||
|
abseps=1e-5, releps=1e-5):
|
||
|
"""
|
||
|
Multivariate normal cumulative distribution function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_mvn_doc_default_callparams)s
|
||
|
maxpts: integer, optional
|
||
|
The maximum number of points to use for integration
|
||
|
(default `1000000*dim`)
|
||
|
abseps: float, optional
|
||
|
Absolute error tolerance (default 1e-5)
|
||
|
releps: float, optional
|
||
|
Relative error tolerance (default 1e-5)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cdf : ndarray or scalar
|
||
|
Cumulative distribution function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_mvn_doc_callparams_note)s
|
||
|
|
||
|
.. versionadded:: 1.0.0
|
||
|
|
||
|
"""
|
||
|
dim, mean, cov = self._process_parameters(None, mean, cov)
|
||
|
x = self._process_quantiles(x, dim)
|
||
|
# Use _PSD to check covariance matrix
|
||
|
_PSD(cov, allow_singular=allow_singular)
|
||
|
if not maxpts:
|
||
|
maxpts = 1000000 * dim
|
||
|
out = self._cdf(x, mean, cov, maxpts, abseps, releps)
|
||
|
return out
|
||
|
|
||
|
def rvs(self, mean=None, cov=1, size=1, random_state=None):
|
||
|
"""
|
||
|
Draw random samples from a multivariate normal distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_mvn_doc_default_callparams)s
|
||
|
size : integer, optional
|
||
|
Number of samples to draw (default 1).
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray or scalar
|
||
|
Random variates of size (`size`, `N`), where `N` is the
|
||
|
dimension of the random variable.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_mvn_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
dim, mean, cov = self._process_parameters(None, mean, cov)
|
||
|
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
out = random_state.multivariate_normal(mean, cov, size)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def entropy(self, mean=None, cov=1):
|
||
|
"""
|
||
|
Compute the differential entropy of the multivariate normal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_mvn_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
h : scalar
|
||
|
Entropy of the multivariate normal distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_mvn_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
dim, mean, cov = self._process_parameters(None, mean, cov)
|
||
|
_, logdet = np.linalg.slogdet(2 * np.pi * np.e * cov)
|
||
|
return 0.5 * logdet
|
||
|
|
||
|
|
||
|
multivariate_normal = multivariate_normal_gen()
|
||
|
|
||
|
|
||
|
class multivariate_normal_frozen(multi_rv_frozen):
|
||
|
def __init__(self, mean=None, cov=1, allow_singular=False, seed=None,
|
||
|
maxpts=None, abseps=1e-5, releps=1e-5):
|
||
|
"""
|
||
|
Create a frozen multivariate normal distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mean : array_like, optional
|
||
|
Mean of the distribution (default zero)
|
||
|
cov : array_like, optional
|
||
|
Covariance matrix of the distribution (default one)
|
||
|
allow_singular : bool, optional
|
||
|
If this flag is True then tolerate a singular
|
||
|
covariance matrix (default False).
|
||
|
seed : None or int or np.random.RandomState instance, optional
|
||
|
This parameter defines the RandomState object to use for drawing
|
||
|
random variates.
|
||
|
If None (or np.random), the global np.random state is used.
|
||
|
If integer, it is used to seed the local RandomState instance
|
||
|
Default is None.
|
||
|
maxpts: integer, optional
|
||
|
The maximum number of points to use for integration of the
|
||
|
cumulative distribution function (default `1000000*dim`)
|
||
|
abseps: float, optional
|
||
|
Absolute error tolerance for the cumulative distribution function
|
||
|
(default 1e-5)
|
||
|
releps: float, optional
|
||
|
Relative error tolerance for the cumulative distribution function
|
||
|
(default 1e-5)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
When called with the default parameters, this will create a 1D random
|
||
|
variable with mean 0 and covariance 1:
|
||
|
|
||
|
>>> from scipy.stats import multivariate_normal
|
||
|
>>> r = multivariate_normal()
|
||
|
>>> r.mean
|
||
|
array([ 0.])
|
||
|
>>> r.cov
|
||
|
array([[1.]])
|
||
|
|
||
|
"""
|
||
|
self._dist = multivariate_normal_gen(seed)
|
||
|
self.dim, self.mean, self.cov = self._dist._process_parameters(
|
||
|
None, mean, cov)
|
||
|
self.cov_info = _PSD(self.cov, allow_singular=allow_singular)
|
||
|
if not maxpts:
|
||
|
maxpts = 1000000 * self.dim
|
||
|
self.maxpts = maxpts
|
||
|
self.abseps = abseps
|
||
|
self.releps = releps
|
||
|
|
||
|
def logpdf(self, x):
|
||
|
x = self._dist._process_quantiles(x, self.dim)
|
||
|
out = self._dist._logpdf(x, self.mean, self.cov_info.U,
|
||
|
self.cov_info.log_pdet, self.cov_info.rank)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def pdf(self, x):
|
||
|
return np.exp(self.logpdf(x))
|
||
|
|
||
|
def logcdf(self, x):
|
||
|
return np.log(self.cdf(x))
|
||
|
|
||
|
def cdf(self, x):
|
||
|
x = self._dist._process_quantiles(x, self.dim)
|
||
|
out = self._dist._cdf(x, self.mean, self.cov, self.maxpts, self.abseps,
|
||
|
self.releps)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def rvs(self, size=1, random_state=None):
|
||
|
return self._dist.rvs(self.mean, self.cov, size, random_state)
|
||
|
|
||
|
def entropy(self):
|
||
|
"""
|
||
|
Computes the differential entropy of the multivariate normal.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
h : scalar
|
||
|
Entropy of the multivariate normal distribution
|
||
|
|
||
|
"""
|
||
|
log_pdet = self.cov_info.log_pdet
|
||
|
rank = self.cov_info.rank
|
||
|
return 0.5 * (rank * (_LOG_2PI + 1) + log_pdet)
|
||
|
|
||
|
|
||
|
# Set frozen generator docstrings from corresponding docstrings in
|
||
|
# multivariate_normal_gen and fill in default strings in class docstrings
|
||
|
for name in ['logpdf', 'pdf', 'logcdf', 'cdf', 'rvs']:
|
||
|
method = multivariate_normal_gen.__dict__[name]
|
||
|
method_frozen = multivariate_normal_frozen.__dict__[name]
|
||
|
method_frozen.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_noparams)
|
||
|
method.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_params)
|
||
|
|
||
|
_matnorm_doc_default_callparams = """\
|
||
|
mean : array_like, optional
|
||
|
Mean of the distribution (default: `None`)
|
||
|
rowcov : array_like, optional
|
||
|
Among-row covariance matrix of the distribution (default: `1`)
|
||
|
colcov : array_like, optional
|
||
|
Among-column covariance matrix of the distribution (default: `1`)
|
||
|
"""
|
||
|
|
||
|
_matnorm_doc_callparams_note = \
|
||
|
"""If `mean` is set to `None` then a matrix of zeros is used for the mean.
|
||
|
The dimensions of this matrix are inferred from the shape of `rowcov` and
|
||
|
`colcov`, if these are provided, or set to `1` if ambiguous.
|
||
|
|
||
|
`rowcov` and `colcov` can be two-dimensional array_likes specifying the
|
||
|
covariance matrices directly. Alternatively, a one-dimensional array will
|
||
|
be be interpreted as the entries of a diagonal matrix, and a scalar or
|
||
|
zero-dimensional array will be interpreted as this value times the
|
||
|
identity matrix.
|
||
|
"""
|
||
|
|
||
|
_matnorm_doc_frozen_callparams = ""
|
||
|
|
||
|
_matnorm_doc_frozen_callparams_note = \
|
||
|
"""See class definition for a detailed description of parameters."""
|
||
|
|
||
|
matnorm_docdict_params = {
|
||
|
'_matnorm_doc_default_callparams': _matnorm_doc_default_callparams,
|
||
|
'_matnorm_doc_callparams_note': _matnorm_doc_callparams_note,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
|
||
|
matnorm_docdict_noparams = {
|
||
|
'_matnorm_doc_default_callparams': _matnorm_doc_frozen_callparams,
|
||
|
'_matnorm_doc_callparams_note': _matnorm_doc_frozen_callparams_note,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
class matrix_normal_gen(multi_rv_generic):
|
||
|
r"""
|
||
|
A matrix normal random variable.
|
||
|
|
||
|
The `mean` keyword specifies the mean. The `rowcov` keyword specifies the
|
||
|
among-row covariance matrix. The 'colcov' keyword specifies the
|
||
|
among-column covariance matrix.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``pdf(X, mean=None, rowcov=1, colcov=1)``
|
||
|
Probability density function.
|
||
|
``logpdf(X, mean=None, rowcov=1, colcov=1)``
|
||
|
Log of the probability density function.
|
||
|
``rvs(mean=None, rowcov=1, colcov=1, size=1, random_state=None)``
|
||
|
Draw random samples.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array_like
|
||
|
Quantiles, with the last two axes of `X` denoting the components.
|
||
|
%(_matnorm_doc_default_callparams)s
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Alternatively, the object may be called (as a function) to fix the mean
|
||
|
and covariance parameters, returning a "frozen" matrix normal
|
||
|
random variable:
|
||
|
|
||
|
rv = matrix_normal(mean=None, rowcov=1, colcov=1)
|
||
|
- Frozen object with the same methods but holding the given
|
||
|
mean and covariance fixed.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_matnorm_doc_callparams_note)s
|
||
|
|
||
|
The covariance matrices specified by `rowcov` and `colcov` must be
|
||
|
(symmetric) positive definite. If the samples in `X` are
|
||
|
:math:`m \times n`, then `rowcov` must be :math:`m \times m` and
|
||
|
`colcov` must be :math:`n \times n`. `mean` must be the same shape as `X`.
|
||
|
|
||
|
The probability density function for `matrix_normal` is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
f(X) = (2 \pi)^{-\frac{mn}{2}}|U|^{-\frac{n}{2}} |V|^{-\frac{m}{2}}
|
||
|
\exp\left( -\frac{1}{2} \mathrm{Tr}\left[ U^{-1} (X-M) V^{-1}
|
||
|
(X-M)^T \right] \right),
|
||
|
|
||
|
where :math:`M` is the mean, :math:`U` the among-row covariance matrix,
|
||
|
:math:`V` the among-column covariance matrix.
|
||
|
|
||
|
The `allow_singular` behaviour of the `multivariate_normal`
|
||
|
distribution is not currently supported. Covariance matrices must be
|
||
|
full rank.
|
||
|
|
||
|
The `matrix_normal` distribution is closely related to the
|
||
|
`multivariate_normal` distribution. Specifically, :math:`\mathrm{Vec}(X)`
|
||
|
(the vector formed by concatenating the columns of :math:`X`) has a
|
||
|
multivariate normal distribution with mean :math:`\mathrm{Vec}(M)`
|
||
|
and covariance :math:`V \otimes U` (where :math:`\otimes` is the Kronecker
|
||
|
product). Sampling and pdf evaluation are
|
||
|
:math:`\mathcal{O}(m^3 + n^3 + m^2 n + m n^2)` for the matrix normal, but
|
||
|
:math:`\mathcal{O}(m^3 n^3)` for the equivalent multivariate normal,
|
||
|
making this equivalent form algorithmically inefficient.
|
||
|
|
||
|
.. versionadded:: 0.17.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> from scipy.stats import matrix_normal
|
||
|
|
||
|
>>> M = np.arange(6).reshape(3,2); M
|
||
|
array([[0, 1],
|
||
|
[2, 3],
|
||
|
[4, 5]])
|
||
|
>>> U = np.diag([1,2,3]); U
|
||
|
array([[1, 0, 0],
|
||
|
[0, 2, 0],
|
||
|
[0, 0, 3]])
|
||
|
>>> V = 0.3*np.identity(2); V
|
||
|
array([[ 0.3, 0. ],
|
||
|
[ 0. , 0.3]])
|
||
|
>>> X = M + 0.1; X
|
||
|
array([[ 0.1, 1.1],
|
||
|
[ 2.1, 3.1],
|
||
|
[ 4.1, 5.1]])
|
||
|
>>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V)
|
||
|
0.023410202050005054
|
||
|
|
||
|
>>> # Equivalent multivariate normal
|
||
|
>>> from scipy.stats import multivariate_normal
|
||
|
>>> vectorised_X = X.T.flatten()
|
||
|
>>> equiv_mean = M.T.flatten()
|
||
|
>>> equiv_cov = np.kron(V,U)
|
||
|
>>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov)
|
||
|
0.023410202050005054
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(matrix_normal_gen, self).__init__(seed)
|
||
|
self.__doc__ = doccer.docformat(self.__doc__, matnorm_docdict_params)
|
||
|
|
||
|
def __call__(self, mean=None, rowcov=1, colcov=1, seed=None):
|
||
|
"""
|
||
|
Create a frozen matrix normal distribution.
|
||
|
|
||
|
See `matrix_normal_frozen` for more information.
|
||
|
|
||
|
"""
|
||
|
return matrix_normal_frozen(mean, rowcov, colcov, seed=seed)
|
||
|
|
||
|
def _process_parameters(self, mean, rowcov, colcov):
|
||
|
"""
|
||
|
Infer dimensionality from mean or covariance matrices. Handle
|
||
|
defaults. Ensure compatible dimensions.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Process mean
|
||
|
if mean is not None:
|
||
|
mean = np.asarray(mean, dtype=float)
|
||
|
meanshape = mean.shape
|
||
|
if len(meanshape) != 2:
|
||
|
raise ValueError("Array `mean` must be two dimensional.")
|
||
|
if np.any(meanshape == 0):
|
||
|
raise ValueError("Array `mean` has invalid shape.")
|
||
|
|
||
|
# Process among-row covariance
|
||
|
rowcov = np.asarray(rowcov, dtype=float)
|
||
|
if rowcov.ndim == 0:
|
||
|
if mean is not None:
|
||
|
rowcov = rowcov * np.identity(meanshape[0])
|
||
|
else:
|
||
|
rowcov = rowcov * np.identity(1)
|
||
|
elif rowcov.ndim == 1:
|
||
|
rowcov = np.diag(rowcov)
|
||
|
rowshape = rowcov.shape
|
||
|
if len(rowshape) != 2:
|
||
|
raise ValueError("`rowcov` must be a scalar or a 2D array.")
|
||
|
if rowshape[0] != rowshape[1]:
|
||
|
raise ValueError("Array `rowcov` must be square.")
|
||
|
if rowshape[0] == 0:
|
||
|
raise ValueError("Array `rowcov` has invalid shape.")
|
||
|
numrows = rowshape[0]
|
||
|
|
||
|
# Process among-column covariance
|
||
|
colcov = np.asarray(colcov, dtype=float)
|
||
|
if colcov.ndim == 0:
|
||
|
if mean is not None:
|
||
|
colcov = colcov * np.identity(meanshape[1])
|
||
|
else:
|
||
|
colcov = colcov * np.identity(1)
|
||
|
elif colcov.ndim == 1:
|
||
|
colcov = np.diag(colcov)
|
||
|
colshape = colcov.shape
|
||
|
if len(colshape) != 2:
|
||
|
raise ValueError("`colcov` must be a scalar or a 2D array.")
|
||
|
if colshape[0] != colshape[1]:
|
||
|
raise ValueError("Array `colcov` must be square.")
|
||
|
if colshape[0] == 0:
|
||
|
raise ValueError("Array `colcov` has invalid shape.")
|
||
|
numcols = colshape[0]
|
||
|
|
||
|
# Ensure mean and covariances compatible
|
||
|
if mean is not None:
|
||
|
if meanshape[0] != numrows:
|
||
|
raise ValueError("Arrays `mean` and `rowcov` must have the"
|
||
|
"same number of rows.")
|
||
|
if meanshape[1] != numcols:
|
||
|
raise ValueError("Arrays `mean` and `colcov` must have the"
|
||
|
"same number of columns.")
|
||
|
else:
|
||
|
mean = np.zeros((numrows,numcols))
|
||
|
|
||
|
dims = (numrows, numcols)
|
||
|
|
||
|
return dims, mean, rowcov, colcov
|
||
|
|
||
|
def _process_quantiles(self, X, dims):
|
||
|
"""
|
||
|
Adjust quantiles array so that last two axes labels the components of
|
||
|
each data point.
|
||
|
|
||
|
"""
|
||
|
X = np.asarray(X, dtype=float)
|
||
|
if X.ndim == 2:
|
||
|
X = X[np.newaxis, :]
|
||
|
if X.shape[-2:] != dims:
|
||
|
raise ValueError("The shape of array `X` is not compatible "
|
||
|
"with the distribution parameters.")
|
||
|
return X
|
||
|
|
||
|
def _logpdf(self, dims, X, mean, row_prec_rt, log_det_rowcov,
|
||
|
col_prec_rt, log_det_colcov):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
dims : tuple
|
||
|
Dimensions of the matrix variates
|
||
|
X : ndarray
|
||
|
Points at which to evaluate the log of the probability
|
||
|
density function
|
||
|
mean : ndarray
|
||
|
Mean of the distribution
|
||
|
row_prec_rt : ndarray
|
||
|
A decomposition such that np.dot(row_prec_rt, row_prec_rt.T)
|
||
|
is the inverse of the among-row covariance matrix
|
||
|
log_det_rowcov : float
|
||
|
Logarithm of the determinant of the among-row covariance matrix
|
||
|
col_prec_rt : ndarray
|
||
|
A decomposition such that np.dot(col_prec_rt, col_prec_rt.T)
|
||
|
is the inverse of the among-column covariance matrix
|
||
|
log_det_colcov : float
|
||
|
Logarithm of the determinant of the among-column covariance matrix
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'logpdf' instead.
|
||
|
|
||
|
"""
|
||
|
numrows, numcols = dims
|
||
|
roll_dev = np.rollaxis(X-mean, axis=-1, start=0)
|
||
|
scale_dev = np.tensordot(col_prec_rt.T,
|
||
|
np.dot(roll_dev, row_prec_rt), 1)
|
||
|
maha = np.sum(np.sum(np.square(scale_dev), axis=-1), axis=0)
|
||
|
return -0.5 * (numrows*numcols*_LOG_2PI + numcols*log_det_rowcov
|
||
|
+ numrows*log_det_colcov + maha)
|
||
|
|
||
|
def logpdf(self, X, mean=None, rowcov=1, colcov=1):
|
||
|
"""
|
||
|
Log of the matrix normal probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array_like
|
||
|
Quantiles, with the last two axes of `X` denoting the components.
|
||
|
%(_matnorm_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
logpdf : ndarray
|
||
|
Log of the probability density function evaluated at `X`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_matnorm_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov,
|
||
|
colcov)
|
||
|
X = self._process_quantiles(X, dims)
|
||
|
rowpsd = _PSD(rowcov, allow_singular=False)
|
||
|
colpsd = _PSD(colcov, allow_singular=False)
|
||
|
out = self._logpdf(dims, X, mean, rowpsd.U, rowpsd.log_pdet, colpsd.U,
|
||
|
colpsd.log_pdet)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def pdf(self, X, mean=None, rowcov=1, colcov=1):
|
||
|
"""
|
||
|
Matrix normal probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array_like
|
||
|
Quantiles, with the last two axes of `X` denoting the components.
|
||
|
%(_matnorm_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pdf : ndarray
|
||
|
Probability density function evaluated at `X`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_matnorm_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
return np.exp(self.logpdf(X, mean, rowcov, colcov))
|
||
|
|
||
|
def rvs(self, mean=None, rowcov=1, colcov=1, size=1, random_state=None):
|
||
|
"""
|
||
|
Draw random samples from a matrix normal distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_matnorm_doc_default_callparams)s
|
||
|
size : integer, optional
|
||
|
Number of samples to draw (default 1).
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray or scalar
|
||
|
Random variates of size (`size`, `dims`), where `dims` is the
|
||
|
dimension of the random matrices.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_matnorm_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
size = int(size)
|
||
|
dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov,
|
||
|
colcov)
|
||
|
rowchol = scipy.linalg.cholesky(rowcov, lower=True)
|
||
|
colchol = scipy.linalg.cholesky(colcov, lower=True)
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
std_norm = random_state.standard_normal(size=(dims[1],size,dims[0]))
|
||
|
roll_rvs = np.tensordot(colchol, np.dot(std_norm, rowchol.T), 1)
|
||
|
out = np.rollaxis(roll_rvs.T, axis=1, start=0) + mean[np.newaxis,:,:]
|
||
|
if size == 1:
|
||
|
#out = np.squeeze(out, axis=0)
|
||
|
out = out.reshape(mean.shape)
|
||
|
return out
|
||
|
|
||
|
|
||
|
matrix_normal = matrix_normal_gen()
|
||
|
|
||
|
|
||
|
class matrix_normal_frozen(multi_rv_frozen):
|
||
|
def __init__(self, mean=None, rowcov=1, colcov=1, seed=None):
|
||
|
"""
|
||
|
Create a frozen matrix normal distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_matnorm_doc_default_callparams)s
|
||
|
seed : None or int or np.random.RandomState instance, optional
|
||
|
If int or RandomState, use it for drawing the random variates.
|
||
|
If None (or np.random), the global np.random state is used.
|
||
|
Default is None.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.stats import matrix_normal
|
||
|
|
||
|
>>> distn = matrix_normal(mean=np.zeros((3,3)))
|
||
|
>>> X = distn.rvs(); X
|
||
|
array([[-0.02976962, 0.93339138, -0.09663178],
|
||
|
[ 0.67405524, 0.28250467, -0.93308929],
|
||
|
[-0.31144782, 0.74535536, 1.30412916]])
|
||
|
>>> distn.pdf(X)
|
||
|
2.5160642368346784e-05
|
||
|
>>> distn.logpdf(X)
|
||
|
-10.590229595124615
|
||
|
"""
|
||
|
self._dist = matrix_normal_gen(seed)
|
||
|
self.dims, self.mean, self.rowcov, self.colcov = \
|
||
|
self._dist._process_parameters(mean, rowcov, colcov)
|
||
|
self.rowpsd = _PSD(self.rowcov, allow_singular=False)
|
||
|
self.colpsd = _PSD(self.colcov, allow_singular=False)
|
||
|
|
||
|
def logpdf(self, X):
|
||
|
X = self._dist._process_quantiles(X, self.dims)
|
||
|
out = self._dist._logpdf(self.dims, X, self.mean, self.rowpsd.U,
|
||
|
self.rowpsd.log_pdet, self.colpsd.U,
|
||
|
self.colpsd.log_pdet)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def pdf(self, X):
|
||
|
return np.exp(self.logpdf(X))
|
||
|
|
||
|
def rvs(self, size=1, random_state=None):
|
||
|
return self._dist.rvs(self.mean, self.rowcov, self.colcov, size,
|
||
|
random_state)
|
||
|
|
||
|
|
||
|
# Set frozen generator docstrings from corresponding docstrings in
|
||
|
# matrix_normal_gen and fill in default strings in class docstrings
|
||
|
for name in ['logpdf', 'pdf', 'rvs']:
|
||
|
method = matrix_normal_gen.__dict__[name]
|
||
|
method_frozen = matrix_normal_frozen.__dict__[name]
|
||
|
method_frozen.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_noparams)
|
||
|
method.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_params)
|
||
|
|
||
|
_dirichlet_doc_default_callparams = """\
|
||
|
alpha : array_like
|
||
|
The concentration parameters. The number of entries determines the
|
||
|
dimensionality of the distribution.
|
||
|
"""
|
||
|
_dirichlet_doc_frozen_callparams = ""
|
||
|
|
||
|
_dirichlet_doc_frozen_callparams_note = \
|
||
|
"""See class definition for a detailed description of parameters."""
|
||
|
|
||
|
dirichlet_docdict_params = {
|
||
|
'_dirichlet_doc_default_callparams': _dirichlet_doc_default_callparams,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
|
||
|
dirichlet_docdict_noparams = {
|
||
|
'_dirichlet_doc_default_callparams': _dirichlet_doc_frozen_callparams,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
|
||
|
def _dirichlet_check_parameters(alpha):
|
||
|
alpha = np.asarray(alpha)
|
||
|
if np.min(alpha) <= 0:
|
||
|
raise ValueError("All parameters must be greater than 0")
|
||
|
elif alpha.ndim != 1:
|
||
|
raise ValueError("Parameter vector 'a' must be one dimensional, "
|
||
|
"but a.shape = %s." % (alpha.shape, ))
|
||
|
return alpha
|
||
|
|
||
|
|
||
|
def _dirichlet_check_input(alpha, x):
|
||
|
x = np.asarray(x)
|
||
|
|
||
|
if x.shape[0] + 1 != alpha.shape[0] and x.shape[0] != alpha.shape[0]:
|
||
|
raise ValueError("Vector 'x' must have either the same number "
|
||
|
"of entries as, or one entry fewer than, "
|
||
|
"parameter vector 'a', but alpha.shape = %s "
|
||
|
"and x.shape = %s." % (alpha.shape, x.shape))
|
||
|
|
||
|
if x.shape[0] != alpha.shape[0]:
|
||
|
xk = np.array([1 - np.sum(x, 0)])
|
||
|
if xk.ndim == 1:
|
||
|
x = np.append(x, xk)
|
||
|
elif xk.ndim == 2:
|
||
|
x = np.vstack((x, xk))
|
||
|
else:
|
||
|
raise ValueError("The input must be one dimensional or a two "
|
||
|
"dimensional matrix containing the entries.")
|
||
|
|
||
|
if np.min(x) < 0:
|
||
|
raise ValueError("Each entry in 'x' must be greater than or equal to zero.")
|
||
|
|
||
|
if np.max(x) > 1:
|
||
|
raise ValueError("Each entry in 'x' must be smaller or equal one.")
|
||
|
|
||
|
# Check x_i > 0 or alpha_i > 1
|
||
|
xeq0 = (x == 0)
|
||
|
alphalt1 = (alpha < 1)
|
||
|
if x.shape != alpha.shape:
|
||
|
alphalt1 = np.repeat(alphalt1, x.shape[-1], axis=-1).reshape(x.shape)
|
||
|
chk = np.logical_and(xeq0, alphalt1)
|
||
|
|
||
|
if np.sum(chk):
|
||
|
raise ValueError("Each entry in 'x' must be greater than zero if its alpha is less than one.")
|
||
|
|
||
|
if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any():
|
||
|
raise ValueError("The input vector 'x' must lie within the normal "
|
||
|
"simplex. but np.sum(x, 0) = %s." % np.sum(x, 0))
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _lnB(alpha):
|
||
|
r"""
|
||
|
Internal helper function to compute the log of the useful quotient
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
B(\alpha) = \frac{\prod_{i=1}{K}\Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^{K}\alpha_i\right)}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_dirichlet_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
B : scalar
|
||
|
Helper quotient, internal use only
|
||
|
|
||
|
"""
|
||
|
return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha))
|
||
|
|
||
|
|
||
|
class dirichlet_gen(multi_rv_generic):
|
||
|
r"""
|
||
|
A Dirichlet random variable.
|
||
|
|
||
|
The `alpha` keyword specifies the concentration parameters of the
|
||
|
distribution.
|
||
|
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``pdf(x, alpha)``
|
||
|
Probability density function.
|
||
|
``logpdf(x, alpha)``
|
||
|
Log of the probability density function.
|
||
|
``rvs(alpha, size=1, random_state=None)``
|
||
|
Draw random samples from a Dirichlet distribution.
|
||
|
``mean(alpha)``
|
||
|
The mean of the Dirichlet distribution
|
||
|
``var(alpha)``
|
||
|
The variance of the Dirichlet distribution
|
||
|
``entropy(alpha)``
|
||
|
Compute the differential entropy of the Dirichlet distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_dirichlet_doc_default_callparams)s
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Alternatively, the object may be called (as a function) to fix
|
||
|
concentration parameters, returning a "frozen" Dirichlet
|
||
|
random variable:
|
||
|
|
||
|
rv = dirichlet(alpha)
|
||
|
- Frozen object with the same methods but holding the given
|
||
|
concentration parameters fixed.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Each :math:`\alpha` entry must be positive. The distribution has only
|
||
|
support on the simplex defined by
|
||
|
|
||
|
.. math::
|
||
|
\sum_{i=1}^{K} x_i \le 1
|
||
|
|
||
|
|
||
|
The probability density function for `dirichlet` is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
f(x) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}
|
||
|
|
||
|
where
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)}
|
||
|
{\Gamma\bigl(\sum_{i=1}^K \alpha_i\bigr)}
|
||
|
|
||
|
and :math:`\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)`, the
|
||
|
concentration parameters and :math:`K` is the dimension of the space
|
||
|
where :math:`x` takes values.
|
||
|
|
||
|
Note that the dirichlet interface is somewhat inconsistent.
|
||
|
The array returned by the rvs function is transposed
|
||
|
with respect to the format expected by the pdf and logpdf.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(dirichlet_gen, self).__init__(seed)
|
||
|
self.__doc__ = doccer.docformat(self.__doc__, dirichlet_docdict_params)
|
||
|
|
||
|
def __call__(self, alpha, seed=None):
|
||
|
return dirichlet_frozen(alpha, seed=seed)
|
||
|
|
||
|
def _logpdf(self, x, alpha):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Points at which to evaluate the log of the probability
|
||
|
density function
|
||
|
%(_dirichlet_doc_default_callparams)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'logpdf' instead.
|
||
|
|
||
|
"""
|
||
|
lnB = _lnB(alpha)
|
||
|
return - lnB + np.sum((xlogy(alpha - 1, x.T)).T, 0)
|
||
|
|
||
|
def logpdf(self, x, alpha):
|
||
|
"""
|
||
|
Log of the Dirichlet probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_dirichlet_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pdf : ndarray or scalar
|
||
|
Log of the probability density function evaluated at `x`.
|
||
|
|
||
|
"""
|
||
|
alpha = _dirichlet_check_parameters(alpha)
|
||
|
x = _dirichlet_check_input(alpha, x)
|
||
|
|
||
|
out = self._logpdf(x, alpha)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def pdf(self, x, alpha):
|
||
|
"""
|
||
|
The Dirichlet probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_dirichlet_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pdf : ndarray or scalar
|
||
|
The probability density function evaluated at `x`.
|
||
|
|
||
|
"""
|
||
|
alpha = _dirichlet_check_parameters(alpha)
|
||
|
x = _dirichlet_check_input(alpha, x)
|
||
|
|
||
|
out = np.exp(self._logpdf(x, alpha))
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def mean(self, alpha):
|
||
|
"""
|
||
|
Compute the mean of the dirichlet distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_dirichlet_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mu : ndarray or scalar
|
||
|
Mean of the Dirichlet distribution.
|
||
|
|
||
|
"""
|
||
|
alpha = _dirichlet_check_parameters(alpha)
|
||
|
|
||
|
out = alpha / (np.sum(alpha))
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def var(self, alpha):
|
||
|
"""
|
||
|
Compute the variance of the dirichlet distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_dirichlet_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
v : ndarray or scalar
|
||
|
Variance of the Dirichlet distribution.
|
||
|
|
||
|
"""
|
||
|
|
||
|
alpha = _dirichlet_check_parameters(alpha)
|
||
|
|
||
|
alpha0 = np.sum(alpha)
|
||
|
out = (alpha * (alpha0 - alpha)) / ((alpha0 * alpha0) * (alpha0 + 1))
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def entropy(self, alpha):
|
||
|
"""
|
||
|
Compute the differential entropy of the dirichlet distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_dirichlet_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
h : scalar
|
||
|
Entropy of the Dirichlet distribution
|
||
|
|
||
|
"""
|
||
|
|
||
|
alpha = _dirichlet_check_parameters(alpha)
|
||
|
|
||
|
alpha0 = np.sum(alpha)
|
||
|
lnB = _lnB(alpha)
|
||
|
K = alpha.shape[0]
|
||
|
|
||
|
out = lnB + (alpha0 - K) * scipy.special.psi(alpha0) - np.sum(
|
||
|
(alpha - 1) * scipy.special.psi(alpha))
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def rvs(self, alpha, size=1, random_state=None):
|
||
|
"""
|
||
|
Draw random samples from a Dirichlet distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_dirichlet_doc_default_callparams)s
|
||
|
size : int, optional
|
||
|
Number of samples to draw (default 1).
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray or scalar
|
||
|
Random variates of size (`size`, `N`), where `N` is the
|
||
|
dimension of the random variable.
|
||
|
|
||
|
"""
|
||
|
alpha = _dirichlet_check_parameters(alpha)
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
return random_state.dirichlet(alpha, size=size)
|
||
|
|
||
|
|
||
|
dirichlet = dirichlet_gen()
|
||
|
|
||
|
|
||
|
class dirichlet_frozen(multi_rv_frozen):
|
||
|
def __init__(self, alpha, seed=None):
|
||
|
self.alpha = _dirichlet_check_parameters(alpha)
|
||
|
self._dist = dirichlet_gen(seed)
|
||
|
|
||
|
def logpdf(self, x):
|
||
|
return self._dist.logpdf(x, self.alpha)
|
||
|
|
||
|
def pdf(self, x):
|
||
|
return self._dist.pdf(x, self.alpha)
|
||
|
|
||
|
def mean(self):
|
||
|
return self._dist.mean(self.alpha)
|
||
|
|
||
|
def var(self):
|
||
|
return self._dist.var(self.alpha)
|
||
|
|
||
|
def entropy(self):
|
||
|
return self._dist.entropy(self.alpha)
|
||
|
|
||
|
def rvs(self, size=1, random_state=None):
|
||
|
return self._dist.rvs(self.alpha, size, random_state)
|
||
|
|
||
|
|
||
|
# Set frozen generator docstrings from corresponding docstrings in
|
||
|
# multivariate_normal_gen and fill in default strings in class docstrings
|
||
|
for name in ['logpdf', 'pdf', 'rvs', 'mean', 'var', 'entropy']:
|
||
|
method = dirichlet_gen.__dict__[name]
|
||
|
method_frozen = dirichlet_frozen.__dict__[name]
|
||
|
method_frozen.__doc__ = doccer.docformat(
|
||
|
method.__doc__, dirichlet_docdict_noparams)
|
||
|
method.__doc__ = doccer.docformat(method.__doc__, dirichlet_docdict_params)
|
||
|
|
||
|
|
||
|
_wishart_doc_default_callparams = """\
|
||
|
df : int
|
||
|
Degrees of freedom, must be greater than or equal to dimension of the
|
||
|
scale matrix
|
||
|
scale : array_like
|
||
|
Symmetric positive definite scale matrix of the distribution
|
||
|
"""
|
||
|
|
||
|
_wishart_doc_callparams_note = ""
|
||
|
|
||
|
_wishart_doc_frozen_callparams = ""
|
||
|
|
||
|
_wishart_doc_frozen_callparams_note = \
|
||
|
"""See class definition for a detailed description of parameters."""
|
||
|
|
||
|
wishart_docdict_params = {
|
||
|
'_doc_default_callparams': _wishart_doc_default_callparams,
|
||
|
'_doc_callparams_note': _wishart_doc_callparams_note,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
|
||
|
wishart_docdict_noparams = {
|
||
|
'_doc_default_callparams': _wishart_doc_frozen_callparams,
|
||
|
'_doc_callparams_note': _wishart_doc_frozen_callparams_note,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
|
||
|
|
||
|
class wishart_gen(multi_rv_generic):
|
||
|
r"""
|
||
|
A Wishart random variable.
|
||
|
|
||
|
The `df` keyword specifies the degrees of freedom. The `scale` keyword
|
||
|
specifies the scale matrix, which must be symmetric and positive definite.
|
||
|
In this context, the scale matrix is often interpreted in terms of a
|
||
|
multivariate normal precision matrix (the inverse of the covariance
|
||
|
matrix).
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``pdf(x, df, scale)``
|
||
|
Probability density function.
|
||
|
``logpdf(x, df, scale)``
|
||
|
Log of the probability density function.
|
||
|
``rvs(df, scale, size=1, random_state=None)``
|
||
|
Draw random samples from a Wishart distribution.
|
||
|
``entropy()``
|
||
|
Compute the differential entropy of the Wishart distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_doc_default_callparams)s
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Alternatively, the object may be called (as a function) to fix the degrees
|
||
|
of freedom and scale parameters, returning a "frozen" Wishart random
|
||
|
variable:
|
||
|
|
||
|
rv = wishart(df=1, scale=1)
|
||
|
- Frozen object with the same methods but holding the given
|
||
|
degrees of freedom and scale fixed.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
invwishart, chi2
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
The scale matrix `scale` must be a symmetric positive definite
|
||
|
matrix. Singular matrices, including the symmetric positive semi-definite
|
||
|
case, are not supported.
|
||
|
|
||
|
The Wishart distribution is often denoted
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
W_p(\nu, \Sigma)
|
||
|
|
||
|
where :math:`\nu` is the degrees of freedom and :math:`\Sigma` is the
|
||
|
:math:`p \times p` scale matrix.
|
||
|
|
||
|
The probability density function for `wishart` has support over positive
|
||
|
definite matrices :math:`S`; if :math:`S \sim W_p(\nu, \Sigma)`, then
|
||
|
its PDF is given by:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
f(S) = \frac{|S|^{\frac{\nu - p - 1}{2}}}{2^{ \frac{\nu p}{2} }
|
||
|
|\Sigma|^\frac{\nu}{2} \Gamma_p \left ( \frac{\nu}{2} \right )}
|
||
|
\exp\left( -tr(\Sigma^{-1} S) / 2 \right)
|
||
|
|
||
|
If :math:`S \sim W_p(\nu, \Sigma)` (Wishart) then
|
||
|
:math:`S^{-1} \sim W_p^{-1}(\nu, \Sigma^{-1})` (inverse Wishart).
|
||
|
|
||
|
If the scale matrix is 1-dimensional and equal to one, then the Wishart
|
||
|
distribution :math:`W_1(\nu, 1)` collapses to the :math:`\chi^2(\nu)`
|
||
|
distribution.
|
||
|
|
||
|
.. versionadded:: 0.16.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach",
|
||
|
Wiley, 1983.
|
||
|
.. [2] W.B. Smith and R.R. Hocking, "Algorithm AS 53: Wishart Variate
|
||
|
Generator", Applied Statistics, vol. 21, pp. 341-345, 1972.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.stats import wishart, chi2
|
||
|
>>> x = np.linspace(1e-5, 8, 100)
|
||
|
>>> w = wishart.pdf(x, df=3, scale=1); w[:5]
|
||
|
array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ])
|
||
|
>>> c = chi2.pdf(x, 3); c[:5]
|
||
|
array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ])
|
||
|
>>> plt.plot(x, w)
|
||
|
|
||
|
The input quantiles can be any shape of array, as long as the last
|
||
|
axis labels the components.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(wishart_gen, self).__init__(seed)
|
||
|
self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params)
|
||
|
|
||
|
def __call__(self, df=None, scale=None, seed=None):
|
||
|
"""
|
||
|
Create a frozen Wishart distribution.
|
||
|
|
||
|
See `wishart_frozen` for more information.
|
||
|
|
||
|
"""
|
||
|
return wishart_frozen(df, scale, seed)
|
||
|
|
||
|
def _process_parameters(self, df, scale):
|
||
|
if scale is None:
|
||
|
scale = 1.0
|
||
|
scale = np.asarray(scale, dtype=float)
|
||
|
|
||
|
if scale.ndim == 0:
|
||
|
scale = scale[np.newaxis,np.newaxis]
|
||
|
elif scale.ndim == 1:
|
||
|
scale = np.diag(scale)
|
||
|
elif scale.ndim == 2 and not scale.shape[0] == scale.shape[1]:
|
||
|
raise ValueError("Array 'scale' must be square if it is two"
|
||
|
" dimensional, but scale.scale = %s."
|
||
|
% str(scale.shape))
|
||
|
elif scale.ndim > 2:
|
||
|
raise ValueError("Array 'scale' must be at most two-dimensional,"
|
||
|
" but scale.ndim = %d" % scale.ndim)
|
||
|
|
||
|
dim = scale.shape[0]
|
||
|
|
||
|
if df is None:
|
||
|
df = dim
|
||
|
elif not np.isscalar(df):
|
||
|
raise ValueError("Degrees of freedom must be a scalar.")
|
||
|
elif df < dim:
|
||
|
raise ValueError("Degrees of freedom cannot be less than dimension"
|
||
|
" of scale matrix, but df = %d" % df)
|
||
|
|
||
|
return dim, df, scale
|
||
|
|
||
|
def _process_quantiles(self, x, dim):
|
||
|
"""
|
||
|
Adjust quantiles array so that last axis labels the components of
|
||
|
each data point.
|
||
|
"""
|
||
|
x = np.asarray(x, dtype=float)
|
||
|
|
||
|
if x.ndim == 0:
|
||
|
x = x * np.eye(dim)[:, :, np.newaxis]
|
||
|
if x.ndim == 1:
|
||
|
if dim == 1:
|
||
|
x = x[np.newaxis, np.newaxis, :]
|
||
|
else:
|
||
|
x = np.diag(x)[:, :, np.newaxis]
|
||
|
elif x.ndim == 2:
|
||
|
if not x.shape[0] == x.shape[1]:
|
||
|
raise ValueError("Quantiles must be square if they are two"
|
||
|
" dimensional, but x.shape = %s."
|
||
|
% str(x.shape))
|
||
|
x = x[:, :, np.newaxis]
|
||
|
elif x.ndim == 3:
|
||
|
if not x.shape[0] == x.shape[1]:
|
||
|
raise ValueError("Quantiles must be square in the first two"
|
||
|
" dimensions if they are three dimensional"
|
||
|
", but x.shape = %s." % str(x.shape))
|
||
|
elif x.ndim > 3:
|
||
|
raise ValueError("Quantiles must be at most two-dimensional with"
|
||
|
" an additional dimension for multiple"
|
||
|
"components, but x.ndim = %d" % x.ndim)
|
||
|
|
||
|
# Now we have 3-dim array; should have shape [dim, dim, *]
|
||
|
if not x.shape[0:2] == (dim, dim):
|
||
|
raise ValueError('Quantiles have incompatible dimensions: should'
|
||
|
' be %s, got %s.' % ((dim, dim), x.shape[0:2]))
|
||
|
|
||
|
return x
|
||
|
|
||
|
def _process_size(self, size):
|
||
|
size = np.asarray(size)
|
||
|
|
||
|
if size.ndim == 0:
|
||
|
size = size[np.newaxis]
|
||
|
elif size.ndim > 1:
|
||
|
raise ValueError('Size must be an integer or tuple of integers;'
|
||
|
' thus must have dimension <= 1.'
|
||
|
' Got size.ndim = %s' % str(tuple(size)))
|
||
|
n = size.prod()
|
||
|
shape = tuple(size)
|
||
|
|
||
|
return n, shape
|
||
|
|
||
|
def _logpdf(self, x, dim, df, scale, log_det_scale, C):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Points at which to evaluate the log of the probability
|
||
|
density function
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
df : int
|
||
|
Degrees of freedom
|
||
|
scale : ndarray
|
||
|
Scale matrix
|
||
|
log_det_scale : float
|
||
|
Logarithm of the determinant of the scale matrix
|
||
|
C : ndarray
|
||
|
Cholesky factorization of the scale matrix, lower triagular.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'logpdf' instead.
|
||
|
|
||
|
"""
|
||
|
# log determinant of x
|
||
|
# Note: x has components along the last axis, so that x.T has
|
||
|
# components alone the 0-th axis. Then since det(A) = det(A'), this
|
||
|
# gives us a 1-dim vector of determinants
|
||
|
|
||
|
# Retrieve tr(scale^{-1} x)
|
||
|
log_det_x = np.zeros(x.shape[-1])
|
||
|
scale_inv_x = np.zeros(x.shape)
|
||
|
tr_scale_inv_x = np.zeros(x.shape[-1])
|
||
|
for i in range(x.shape[-1]):
|
||
|
_, log_det_x[i] = self._cholesky_logdet(x[:,:,i])
|
||
|
scale_inv_x[:,:,i] = scipy.linalg.cho_solve((C, True), x[:,:,i])
|
||
|
tr_scale_inv_x[i] = scale_inv_x[:,:,i].trace()
|
||
|
|
||
|
# Log PDF
|
||
|
out = ((0.5 * (df - dim - 1) * log_det_x - 0.5 * tr_scale_inv_x) -
|
||
|
(0.5 * df * dim * _LOG_2 + 0.5 * df * log_det_scale +
|
||
|
multigammaln(0.5*df, dim)))
|
||
|
|
||
|
return out
|
||
|
|
||
|
def logpdf(self, x, df, scale):
|
||
|
"""
|
||
|
Log of the Wishart probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
Each quantile must be a symmetric positive definite matrix.
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pdf : ndarray
|
||
|
Log of the probability density function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
x = self._process_quantiles(x, dim)
|
||
|
|
||
|
# Cholesky decomposition of scale, get log(det(scale))
|
||
|
C, log_det_scale = self._cholesky_logdet(scale)
|
||
|
|
||
|
out = self._logpdf(x, dim, df, scale, log_det_scale, C)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def pdf(self, x, df, scale):
|
||
|
"""
|
||
|
Wishart probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
Each quantile must be a symmetric positive definite matrix.
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pdf : ndarray
|
||
|
Probability density function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
return np.exp(self.logpdf(x, df, scale))
|
||
|
|
||
|
def _mean(self, dim, df, scale):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'mean' instead.
|
||
|
|
||
|
"""
|
||
|
return df * scale
|
||
|
|
||
|
def mean(self, df, scale):
|
||
|
"""
|
||
|
Mean of the Wishart distribution
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mean : float
|
||
|
The mean of the distribution
|
||
|
"""
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
out = self._mean(dim, df, scale)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def _mode(self, dim, df, scale):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'mode' instead.
|
||
|
|
||
|
"""
|
||
|
if df >= dim + 1:
|
||
|
out = (df-dim-1) * scale
|
||
|
else:
|
||
|
out = None
|
||
|
return out
|
||
|
|
||
|
def mode(self, df, scale):
|
||
|
"""
|
||
|
Mode of the Wishart distribution
|
||
|
|
||
|
Only valid if the degrees of freedom are greater than the dimension of
|
||
|
the scale matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mode : float or None
|
||
|
The Mode of the distribution
|
||
|
"""
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
out = self._mode(dim, df, scale)
|
||
|
return _squeeze_output(out) if out is not None else out
|
||
|
|
||
|
def _var(self, dim, df, scale):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'var' instead.
|
||
|
|
||
|
"""
|
||
|
var = scale**2
|
||
|
diag = scale.diagonal() # 1 x dim array
|
||
|
var += np.outer(diag, diag)
|
||
|
var *= df
|
||
|
return var
|
||
|
|
||
|
def var(self, df, scale):
|
||
|
"""
|
||
|
Variance of the Wishart distribution
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
var : float
|
||
|
The variance of the distribution
|
||
|
"""
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
out = self._var(dim, df, scale)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def _standard_rvs(self, n, shape, dim, df, random_state):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
n : integer
|
||
|
Number of variates to generate
|
||
|
shape : iterable
|
||
|
Shape of the variates to generate
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
df : int
|
||
|
Degrees of freedom
|
||
|
random_state : np.random.RandomState instance
|
||
|
RandomState used for drawing the random variates.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'rvs' instead.
|
||
|
|
||
|
"""
|
||
|
# Random normal variates for off-diagonal elements
|
||
|
n_tril = dim * (dim-1) // 2
|
||
|
covariances = random_state.normal(
|
||
|
size=n*n_tril).reshape(shape+(n_tril,))
|
||
|
|
||
|
# Random chi-square variates for diagonal elements
|
||
|
variances = np.r_[[random_state.chisquare(df-(i+1)+1, size=n)**0.5
|
||
|
for i in range(dim)]].reshape((dim,) + shape[::-1]).T
|
||
|
|
||
|
# Create the A matri(ces) - lower triangular
|
||
|
A = np.zeros(shape + (dim, dim))
|
||
|
|
||
|
# Input the covariances
|
||
|
size_idx = tuple([slice(None,None,None)]*len(shape))
|
||
|
tril_idx = np.tril_indices(dim, k=-1)
|
||
|
A[size_idx + tril_idx] = covariances
|
||
|
|
||
|
# Input the variances
|
||
|
diag_idx = np.diag_indices(dim)
|
||
|
A[size_idx + diag_idx] = variances
|
||
|
|
||
|
return A
|
||
|
|
||
|
def _rvs(self, n, shape, dim, df, C, random_state):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
n : integer
|
||
|
Number of variates to generate
|
||
|
shape : iterable
|
||
|
Shape of the variates to generate
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
df : int
|
||
|
Degrees of freedom
|
||
|
scale : ndarray
|
||
|
Scale matrix
|
||
|
C : ndarray
|
||
|
Cholesky factorization of the scale matrix, lower triangular.
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'rvs' instead.
|
||
|
|
||
|
"""
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
# Calculate the matrices A, which are actually lower triangular
|
||
|
# Cholesky factorizations of a matrix B such that B ~ W(df, I)
|
||
|
A = self._standard_rvs(n, shape, dim, df, random_state)
|
||
|
|
||
|
# Calculate SA = C A A' C', where SA ~ W(df, scale)
|
||
|
# Note: this is the product of a (lower) (lower) (lower)' (lower)'
|
||
|
# or, denoting B = AA', it is C B C' where C is the lower
|
||
|
# triangular Cholesky factorization of the scale matrix.
|
||
|
# this appears to conflict with the instructions in [1]_, which
|
||
|
# suggest that it should be D' B D where D is the lower
|
||
|
# triangular factorization of the scale matrix. However, it is
|
||
|
# meant to refer to the Bartlett (1933) representation of a
|
||
|
# Wishart random variate as L A A' L' where L is lower triangular
|
||
|
# so it appears that understanding D' to be upper triangular
|
||
|
# is either a typo in or misreading of [1]_.
|
||
|
for index in np.ndindex(shape):
|
||
|
CA = np.dot(C, A[index])
|
||
|
A[index] = np.dot(CA, CA.T)
|
||
|
|
||
|
return A
|
||
|
|
||
|
def rvs(self, df, scale, size=1, random_state=None):
|
||
|
"""
|
||
|
Draw random samples from a Wishart distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
size : integer or iterable of integers, optional
|
||
|
Number of samples to draw (default 1).
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray
|
||
|
Random variates of shape (`size`) + (`dim`, `dim), where `dim` is
|
||
|
the dimension of the scale matrix.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
n, shape = self._process_size(size)
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
|
||
|
# Cholesky decomposition of scale
|
||
|
C = scipy.linalg.cholesky(scale, lower=True)
|
||
|
|
||
|
out = self._rvs(n, shape, dim, df, C, random_state)
|
||
|
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def _entropy(self, dim, df, log_det_scale):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
df : int
|
||
|
Degrees of freedom
|
||
|
log_det_scale : float
|
||
|
Logarithm of the determinant of the scale matrix
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'entropy' instead.
|
||
|
|
||
|
"""
|
||
|
return (
|
||
|
0.5 * (dim+1) * log_det_scale +
|
||
|
0.5 * dim * (dim+1) * _LOG_2 +
|
||
|
multigammaln(0.5*df, dim) -
|
||
|
0.5 * (df - dim - 1) * np.sum(
|
||
|
[psi(0.5*(df + 1 - (i+1))) for i in range(dim)]
|
||
|
) +
|
||
|
0.5 * df * dim
|
||
|
)
|
||
|
|
||
|
def entropy(self, df, scale):
|
||
|
"""
|
||
|
Compute the differential entropy of the Wishart.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
h : scalar
|
||
|
Entropy of the Wishart distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
_, log_det_scale = self._cholesky_logdet(scale)
|
||
|
return self._entropy(dim, df, log_det_scale)
|
||
|
|
||
|
def _cholesky_logdet(self, scale):
|
||
|
"""
|
||
|
Compute Cholesky decomposition and determine (log(det(scale)).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
scale : ndarray
|
||
|
Scale matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
c_decomp : ndarray
|
||
|
The Cholesky decomposition of `scale`.
|
||
|
logdet : scalar
|
||
|
The log of the determinant of `scale`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This computation of ``logdet`` is equivalent to
|
||
|
``np.linalg.slogdet(scale)``. It is ~2x faster though.
|
||
|
|
||
|
"""
|
||
|
c_decomp = scipy.linalg.cholesky(scale, lower=True)
|
||
|
logdet = 2 * np.sum(np.log(c_decomp.diagonal()))
|
||
|
return c_decomp, logdet
|
||
|
|
||
|
|
||
|
wishart = wishart_gen()
|
||
|
|
||
|
|
||
|
class wishart_frozen(multi_rv_frozen):
|
||
|
"""
|
||
|
Create a frozen Wishart distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : array_like
|
||
|
Degrees of freedom of the distribution
|
||
|
scale : array_like
|
||
|
Scale matrix of the distribution
|
||
|
seed : None or int or np.random.RandomState instance, optional
|
||
|
This parameter defines the RandomState object to use for drawing
|
||
|
random variates.
|
||
|
If None (or np.random), the global np.random state is used.
|
||
|
If integer, it is used to seed the local RandomState instance
|
||
|
Default is None.
|
||
|
|
||
|
"""
|
||
|
def __init__(self, df, scale, seed=None):
|
||
|
self._dist = wishart_gen(seed)
|
||
|
self.dim, self.df, self.scale = self._dist._process_parameters(
|
||
|
df, scale)
|
||
|
self.C, self.log_det_scale = self._dist._cholesky_logdet(self.scale)
|
||
|
|
||
|
def logpdf(self, x):
|
||
|
x = self._dist._process_quantiles(x, self.dim)
|
||
|
|
||
|
out = self._dist._logpdf(x, self.dim, self.df, self.scale,
|
||
|
self.log_det_scale, self.C)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def pdf(self, x):
|
||
|
return np.exp(self.logpdf(x))
|
||
|
|
||
|
def mean(self):
|
||
|
out = self._dist._mean(self.dim, self.df, self.scale)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def mode(self):
|
||
|
out = self._dist._mode(self.dim, self.df, self.scale)
|
||
|
return _squeeze_output(out) if out is not None else out
|
||
|
|
||
|
def var(self):
|
||
|
out = self._dist._var(self.dim, self.df, self.scale)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def rvs(self, size=1, random_state=None):
|
||
|
n, shape = self._dist._process_size(size)
|
||
|
out = self._dist._rvs(n, shape, self.dim, self.df,
|
||
|
self.C, random_state)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def entropy(self):
|
||
|
return self._dist._entropy(self.dim, self.df, self.log_det_scale)
|
||
|
|
||
|
|
||
|
# Set frozen generator docstrings from corresponding docstrings in
|
||
|
# Wishart and fill in default strings in class docstrings
|
||
|
for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs', 'entropy']:
|
||
|
method = wishart_gen.__dict__[name]
|
||
|
method_frozen = wishart_frozen.__dict__[name]
|
||
|
method_frozen.__doc__ = doccer.docformat(
|
||
|
method.__doc__, wishart_docdict_noparams)
|
||
|
method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params)
|
||
|
|
||
|
|
||
|
from numpy import asarray_chkfinite, asarray
|
||
|
from scipy.linalg.misc import LinAlgError
|
||
|
from scipy.linalg.lapack import get_lapack_funcs
|
||
|
def _cho_inv_batch(a, check_finite=True):
|
||
|
"""
|
||
|
Invert the matrices a_i, using a Cholesky factorization of A, where
|
||
|
a_i resides in the last two dimensions of a and the other indices describe
|
||
|
the index i.
|
||
|
|
||
|
Overwrites the data in a.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array
|
||
|
Array of matrices to invert, where the matrices themselves are stored
|
||
|
in the last two dimensions.
|
||
|
check_finite : bool, optional
|
||
|
Whether to check that the input matrices contain only finite numbers.
|
||
|
Disabling may give a performance gain, but may result in problems
|
||
|
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : array
|
||
|
Array of inverses of the matrices ``a_i``.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
scipy.linalg.cholesky : Cholesky factorization of a matrix
|
||
|
|
||
|
"""
|
||
|
if check_finite:
|
||
|
a1 = asarray_chkfinite(a)
|
||
|
else:
|
||
|
a1 = asarray(a)
|
||
|
if len(a1.shape) < 2 or a1.shape[-2] != a1.shape[-1]:
|
||
|
raise ValueError('expected square matrix in last two dimensions')
|
||
|
|
||
|
potrf, potri = get_lapack_funcs(('potrf','potri'), (a1,))
|
||
|
|
||
|
tril_idx = np.tril_indices(a.shape[-2], k=-1)
|
||
|
triu_idx = np.triu_indices(a.shape[-2], k=1)
|
||
|
for index in np.ndindex(a1.shape[:-2]):
|
||
|
|
||
|
# Cholesky decomposition
|
||
|
a1[index], info = potrf(a1[index], lower=True, overwrite_a=False,
|
||
|
clean=False)
|
||
|
if info > 0:
|
||
|
raise LinAlgError("%d-th leading minor not positive definite"
|
||
|
% info)
|
||
|
if info < 0:
|
||
|
raise ValueError('illegal value in %d-th argument of internal'
|
||
|
' potrf' % -info)
|
||
|
# Inversion
|
||
|
a1[index], info = potri(a1[index], lower=True, overwrite_c=False)
|
||
|
if info > 0:
|
||
|
raise LinAlgError("the inverse could not be computed")
|
||
|
if info < 0:
|
||
|
raise ValueError('illegal value in %d-th argument of internal'
|
||
|
' potrf' % -info)
|
||
|
|
||
|
# Make symmetric (dpotri only fills in the lower triangle)
|
||
|
a1[index][triu_idx] = a1[index][tril_idx]
|
||
|
|
||
|
return a1
|
||
|
|
||
|
|
||
|
class invwishart_gen(wishart_gen):
|
||
|
r"""
|
||
|
An inverse Wishart random variable.
|
||
|
|
||
|
The `df` keyword specifies the degrees of freedom. The `scale` keyword
|
||
|
specifies the scale matrix, which must be symmetric and positive definite.
|
||
|
In this context, the scale matrix is often interpreted in terms of a
|
||
|
multivariate normal covariance matrix.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``pdf(x, df, scale)``
|
||
|
Probability density function.
|
||
|
``logpdf(x, df, scale)``
|
||
|
Log of the probability density function.
|
||
|
``rvs(df, scale, size=1, random_state=None)``
|
||
|
Draw random samples from an inverse Wishart distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_doc_default_callparams)s
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Alternatively, the object may be called (as a function) to fix the degrees
|
||
|
of freedom and scale parameters, returning a "frozen" inverse Wishart
|
||
|
random variable:
|
||
|
|
||
|
rv = invwishart(df=1, scale=1)
|
||
|
- Frozen object with the same methods but holding the given
|
||
|
degrees of freedom and scale fixed.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
wishart
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
The scale matrix `scale` must be a symmetric positive definite
|
||
|
matrix. Singular matrices, including the symmetric positive semi-definite
|
||
|
case, are not supported.
|
||
|
|
||
|
The inverse Wishart distribution is often denoted
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
W_p^{-1}(\nu, \Psi)
|
||
|
|
||
|
where :math:`\nu` is the degrees of freedom and :math:`\Psi` is the
|
||
|
:math:`p \times p` scale matrix.
|
||
|
|
||
|
The probability density function for `invwishart` has support over positive
|
||
|
definite matrices :math:`S`; if :math:`S \sim W^{-1}_p(\nu, \Sigma)`,
|
||
|
then its PDF is given by:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
f(S) = \frac{|\Sigma|^\frac{\nu}{2}}{2^{ \frac{\nu p}{2} }
|
||
|
|S|^{\frac{\nu + p + 1}{2}} \Gamma_p \left(\frac{\nu}{2} \right)}
|
||
|
\exp\left( -tr(\Sigma S^{-1}) / 2 \right)
|
||
|
|
||
|
If :math:`S \sim W_p^{-1}(\nu, \Psi)` (inverse Wishart) then
|
||
|
:math:`S^{-1} \sim W_p(\nu, \Psi^{-1})` (Wishart).
|
||
|
|
||
|
If the scale matrix is 1-dimensional and equal to one, then the inverse
|
||
|
Wishart distribution :math:`W_1(\nu, 1)` collapses to the
|
||
|
inverse Gamma distribution with parameters shape = :math:`\frac{\nu}{2}`
|
||
|
and scale = :math:`\frac{1}{2}`.
|
||
|
|
||
|
.. versionadded:: 0.16.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach",
|
||
|
Wiley, 1983.
|
||
|
.. [2] M.C. Jones, "Generating Inverse Wishart Matrices", Communications in
|
||
|
Statistics - Simulation and Computation, vol. 14.2, pp.511-514, 1985.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.stats import invwishart, invgamma
|
||
|
>>> x = np.linspace(0.01, 1, 100)
|
||
|
>>> iw = invwishart.pdf(x, df=6, scale=1)
|
||
|
>>> iw[:3]
|
||
|
array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
|
||
|
>>> ig = invgamma.pdf(x, 6/2., scale=1./2)
|
||
|
>>> ig[:3]
|
||
|
array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
|
||
|
>>> plt.plot(x, iw)
|
||
|
|
||
|
The input quantiles can be any shape of array, as long as the last
|
||
|
axis labels the components.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(invwishart_gen, self).__init__(seed)
|
||
|
self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params)
|
||
|
|
||
|
def __call__(self, df=None, scale=None, seed=None):
|
||
|
"""
|
||
|
Create a frozen inverse Wishart distribution.
|
||
|
|
||
|
See `invwishart_frozen` for more information.
|
||
|
|
||
|
"""
|
||
|
return invwishart_frozen(df, scale, seed)
|
||
|
|
||
|
def _logpdf(self, x, dim, df, scale, log_det_scale):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
x : ndarray
|
||
|
Points at which to evaluate the log of the probability
|
||
|
density function.
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
df : int
|
||
|
Degrees of freedom
|
||
|
scale : ndarray
|
||
|
Scale matrix
|
||
|
log_det_scale : float
|
||
|
Logarithm of the determinant of the scale matrix
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'logpdf' instead.
|
||
|
|
||
|
"""
|
||
|
log_det_x = np.zeros(x.shape[-1])
|
||
|
#scale_x_inv = np.zeros(x.shape)
|
||
|
x_inv = np.copy(x).T
|
||
|
if dim > 1:
|
||
|
_cho_inv_batch(x_inv) # works in-place
|
||
|
else:
|
||
|
x_inv = 1./x_inv
|
||
|
tr_scale_x_inv = np.zeros(x.shape[-1])
|
||
|
|
||
|
for i in range(x.shape[-1]):
|
||
|
C, lower = scipy.linalg.cho_factor(x[:,:,i], lower=True)
|
||
|
|
||
|
log_det_x[i] = 2 * np.sum(np.log(C.diagonal()))
|
||
|
|
||
|
#scale_x_inv[:,:,i] = scipy.linalg.cho_solve((C, True), scale).T
|
||
|
tr_scale_x_inv[i] = np.dot(scale, x_inv[i]).trace()
|
||
|
|
||
|
# Log PDF
|
||
|
out = ((0.5 * df * log_det_scale - 0.5 * tr_scale_x_inv) -
|
||
|
(0.5 * df * dim * _LOG_2 + 0.5 * (df + dim + 1) * log_det_x) -
|
||
|
multigammaln(0.5*df, dim))
|
||
|
|
||
|
return out
|
||
|
|
||
|
def logpdf(self, x, df, scale):
|
||
|
"""
|
||
|
Log of the inverse Wishart probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
Each quantile must be a symmetric positive definite matrix.
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pdf : ndarray
|
||
|
Log of the probability density function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
x = self._process_quantiles(x, dim)
|
||
|
_, log_det_scale = self._cholesky_logdet(scale)
|
||
|
out = self._logpdf(x, dim, df, scale, log_det_scale)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def pdf(self, x, df, scale):
|
||
|
"""
|
||
|
Inverse Wishart probability density function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
Each quantile must be a symmetric positive definite matrix.
|
||
|
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pdf : ndarray
|
||
|
Probability density function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
return np.exp(self.logpdf(x, df, scale))
|
||
|
|
||
|
def _mean(self, dim, df, scale):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'mean' instead.
|
||
|
|
||
|
"""
|
||
|
if df > dim + 1:
|
||
|
out = scale / (df - dim - 1)
|
||
|
else:
|
||
|
out = None
|
||
|
return out
|
||
|
|
||
|
def mean(self, df, scale):
|
||
|
"""
|
||
|
Mean of the inverse Wishart distribution
|
||
|
|
||
|
Only valid if the degrees of freedom are greater than the dimension of
|
||
|
the scale matrix plus one.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mean : float or None
|
||
|
The mean of the distribution
|
||
|
|
||
|
"""
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
out = self._mean(dim, df, scale)
|
||
|
return _squeeze_output(out) if out is not None else out
|
||
|
|
||
|
def _mode(self, dim, df, scale):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'mode' instead.
|
||
|
|
||
|
"""
|
||
|
return scale / (df + dim + 1)
|
||
|
|
||
|
def mode(self, df, scale):
|
||
|
"""
|
||
|
Mode of the inverse Wishart distribution
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mode : float
|
||
|
The Mode of the distribution
|
||
|
|
||
|
"""
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
out = self._mode(dim, df, scale)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def _var(self, dim, df, scale):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'var' instead.
|
||
|
|
||
|
"""
|
||
|
if df > dim + 3:
|
||
|
var = (df - dim + 1) * scale**2
|
||
|
diag = scale.diagonal() # 1 x dim array
|
||
|
var += (df - dim - 1) * np.outer(diag, diag)
|
||
|
var /= (df - dim) * (df - dim - 1)**2 * (df - dim - 3)
|
||
|
else:
|
||
|
var = None
|
||
|
return var
|
||
|
|
||
|
def var(self, df, scale):
|
||
|
"""
|
||
|
Variance of the inverse Wishart distribution
|
||
|
|
||
|
Only valid if the degrees of freedom are greater than the dimension of
|
||
|
the scale matrix plus three.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
var : float
|
||
|
The variance of the distribution
|
||
|
"""
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
out = self._var(dim, df, scale)
|
||
|
return _squeeze_output(out) if out is not None else out
|
||
|
|
||
|
def _rvs(self, n, shape, dim, df, C, random_state):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
n : integer
|
||
|
Number of variates to generate
|
||
|
shape : iterable
|
||
|
Shape of the variates to generate
|
||
|
dim : int
|
||
|
Dimension of the scale matrix
|
||
|
df : int
|
||
|
Degrees of freedom
|
||
|
C : ndarray
|
||
|
Cholesky factorization of the scale matrix, lower triagular.
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
As this function does no argument checking, it should not be
|
||
|
called directly; use 'rvs' instead.
|
||
|
|
||
|
"""
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
# Get random draws A such that A ~ W(df, I)
|
||
|
A = super(invwishart_gen, self)._standard_rvs(n, shape, dim,
|
||
|
df, random_state)
|
||
|
|
||
|
# Calculate SA = (CA)'^{-1} (CA)^{-1} ~ iW(df, scale)
|
||
|
eye = np.eye(dim)
|
||
|
trtrs = get_lapack_funcs(('trtrs'), (A,))
|
||
|
|
||
|
for index in np.ndindex(A.shape[:-2]):
|
||
|
# Calculate CA
|
||
|
CA = np.dot(C, A[index])
|
||
|
# Get (C A)^{-1} via triangular solver
|
||
|
if dim > 1:
|
||
|
CA, info = trtrs(CA, eye, lower=True)
|
||
|
if info > 0:
|
||
|
raise LinAlgError("Singular matrix.")
|
||
|
if info < 0:
|
||
|
raise ValueError('Illegal value in %d-th argument of'
|
||
|
' internal trtrs' % -info)
|
||
|
else:
|
||
|
CA = 1. / CA
|
||
|
# Get SA
|
||
|
A[index] = np.dot(CA.T, CA)
|
||
|
|
||
|
return A
|
||
|
|
||
|
def rvs(self, df, scale, size=1, random_state=None):
|
||
|
"""
|
||
|
Draw random samples from an inverse Wishart distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
size : integer or iterable of integers, optional
|
||
|
Number of samples to draw (default 1).
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray
|
||
|
Random variates of shape (`size`) + (`dim`, `dim), where `dim` is
|
||
|
the dimension of the scale matrix.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
"""
|
||
|
n, shape = self._process_size(size)
|
||
|
dim, df, scale = self._process_parameters(df, scale)
|
||
|
|
||
|
# Invert the scale
|
||
|
eye = np.eye(dim)
|
||
|
L, lower = scipy.linalg.cho_factor(scale, lower=True)
|
||
|
inv_scale = scipy.linalg.cho_solve((L, lower), eye)
|
||
|
# Cholesky decomposition of inverted scale
|
||
|
C = scipy.linalg.cholesky(inv_scale, lower=True)
|
||
|
|
||
|
out = self._rvs(n, shape, dim, df, C, random_state)
|
||
|
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def entropy(self):
|
||
|
# Need to find reference for inverse Wishart entropy
|
||
|
raise AttributeError
|
||
|
|
||
|
|
||
|
invwishart = invwishart_gen()
|
||
|
|
||
|
class invwishart_frozen(multi_rv_frozen):
|
||
|
def __init__(self, df, scale, seed=None):
|
||
|
"""
|
||
|
Create a frozen inverse Wishart distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : array_like
|
||
|
Degrees of freedom of the distribution
|
||
|
scale : array_like
|
||
|
Scale matrix of the distribution
|
||
|
seed : None or int or np.random.RandomState instance, optional
|
||
|
This parameter defines the RandomState object to use for drawing
|
||
|
random variates.
|
||
|
If None (or np.random), the global np.random state is used.
|
||
|
If integer, it is used to seed the local RandomState instance
|
||
|
Default is None.
|
||
|
|
||
|
"""
|
||
|
self._dist = invwishart_gen(seed)
|
||
|
self.dim, self.df, self.scale = self._dist._process_parameters(
|
||
|
df, scale
|
||
|
)
|
||
|
|
||
|
# Get the determinant via Cholesky factorization
|
||
|
C, lower = scipy.linalg.cho_factor(self.scale, lower=True)
|
||
|
self.log_det_scale = 2 * np.sum(np.log(C.diagonal()))
|
||
|
|
||
|
# Get the inverse using the Cholesky factorization
|
||
|
eye = np.eye(self.dim)
|
||
|
self.inv_scale = scipy.linalg.cho_solve((C, lower), eye)
|
||
|
|
||
|
# Get the Cholesky factorization of the inverse scale
|
||
|
self.C = scipy.linalg.cholesky(self.inv_scale, lower=True)
|
||
|
|
||
|
def logpdf(self, x):
|
||
|
x = self._dist._process_quantiles(x, self.dim)
|
||
|
out = self._dist._logpdf(x, self.dim, self.df, self.scale,
|
||
|
self.log_det_scale)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def pdf(self, x):
|
||
|
return np.exp(self.logpdf(x))
|
||
|
|
||
|
def mean(self):
|
||
|
out = self._dist._mean(self.dim, self.df, self.scale)
|
||
|
return _squeeze_output(out) if out is not None else out
|
||
|
|
||
|
def mode(self):
|
||
|
out = self._dist._mode(self.dim, self.df, self.scale)
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def var(self):
|
||
|
out = self._dist._var(self.dim, self.df, self.scale)
|
||
|
return _squeeze_output(out) if out is not None else out
|
||
|
|
||
|
def rvs(self, size=1, random_state=None):
|
||
|
n, shape = self._dist._process_size(size)
|
||
|
|
||
|
out = self._dist._rvs(n, shape, self.dim, self.df,
|
||
|
self.C, random_state)
|
||
|
|
||
|
return _squeeze_output(out)
|
||
|
|
||
|
def entropy(self):
|
||
|
# Need to find reference for inverse Wishart entropy
|
||
|
raise AttributeError
|
||
|
|
||
|
|
||
|
# Set frozen generator docstrings from corresponding docstrings in
|
||
|
# inverse Wishart and fill in default strings in class docstrings
|
||
|
for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs']:
|
||
|
method = invwishart_gen.__dict__[name]
|
||
|
method_frozen = wishart_frozen.__dict__[name]
|
||
|
method_frozen.__doc__ = doccer.docformat(
|
||
|
method.__doc__, wishart_docdict_noparams)
|
||
|
method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params)
|
||
|
|
||
|
_multinomial_doc_default_callparams = """\
|
||
|
n : int
|
||
|
Number of trials
|
||
|
p : array_like
|
||
|
Probability of a trial falling into each category; should sum to 1
|
||
|
"""
|
||
|
|
||
|
_multinomial_doc_callparams_note = \
|
||
|
"""`n` should be a positive integer. Each element of `p` should be in the
|
||
|
interval :math:`[0,1]` and the elements should sum to 1. If they do not sum to
|
||
|
1, the last element of the `p` array is not used and is replaced with the
|
||
|
remaining probability left over from the earlier elements.
|
||
|
"""
|
||
|
|
||
|
_multinomial_doc_frozen_callparams = ""
|
||
|
|
||
|
_multinomial_doc_frozen_callparams_note = \
|
||
|
"""See class definition for a detailed description of parameters."""
|
||
|
|
||
|
multinomial_docdict_params = {
|
||
|
'_doc_default_callparams': _multinomial_doc_default_callparams,
|
||
|
'_doc_callparams_note': _multinomial_doc_callparams_note,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
|
||
|
multinomial_docdict_noparams = {
|
||
|
'_doc_default_callparams': _multinomial_doc_frozen_callparams,
|
||
|
'_doc_callparams_note': _multinomial_doc_frozen_callparams_note,
|
||
|
'_doc_random_state': _doc_random_state
|
||
|
}
|
||
|
|
||
|
class multinomial_gen(multi_rv_generic):
|
||
|
r"""
|
||
|
A multinomial random variable.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``pmf(x, n, p)``
|
||
|
Probability mass function.
|
||
|
``logpmf(x, n, p)``
|
||
|
Log of the probability mass function.
|
||
|
``rvs(n, p, size=1, random_state=None)``
|
||
|
Draw random samples from a multinomial distribution.
|
||
|
``entropy(n, p)``
|
||
|
Compute the entropy of the multinomial distribution.
|
||
|
``cov(n, p)``
|
||
|
Compute the covariance matrix of the multinomial distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
%(_doc_default_callparams)s
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
|
||
|
Alternatively, the object may be called (as a function) to fix the `n` and
|
||
|
`p` parameters, returning a "frozen" multinomial random variable:
|
||
|
|
||
|
The probability mass function for `multinomial` is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
f(x) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k},
|
||
|
|
||
|
supported on :math:`x=(x_1, \ldots, x_k)` where each :math:`x_i` is a
|
||
|
nonnegative integer and their sum is :math:`n`.
|
||
|
|
||
|
.. versionadded:: 0.19.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> from scipy.stats import multinomial
|
||
|
>>> rv = multinomial(8, [0.3, 0.2, 0.5])
|
||
|
>>> rv.pmf([1, 3, 4])
|
||
|
0.042000000000000072
|
||
|
|
||
|
The multinomial distribution for :math:`k=2` is identical to the
|
||
|
corresponding binomial distribution (tiny numerical differences
|
||
|
notwithstanding):
|
||
|
|
||
|
>>> from scipy.stats import binom
|
||
|
>>> multinomial.pmf([3, 4], n=7, p=[0.4, 0.6])
|
||
|
0.29030399999999973
|
||
|
>>> binom.pmf(3, 7, 0.4)
|
||
|
0.29030400000000012
|
||
|
|
||
|
The functions ``pmf``, ``logpmf``, ``entropy``, and ``cov`` support
|
||
|
broadcasting, under the convention that the vector parameters (``x`` and
|
||
|
``p``) are interpreted as if each row along the last axis is a single
|
||
|
object. For instance:
|
||
|
|
||
|
>>> multinomial.pmf([[3, 4], [3, 5]], n=[7, 8], p=[.3, .7])
|
||
|
array([0.2268945, 0.25412184])
|
||
|
|
||
|
Here, ``x.shape == (2, 2)``, ``n.shape == (2,)``, and ``p.shape == (2,)``,
|
||
|
but following the rules mentioned above they behave as if the rows
|
||
|
``[3, 4]`` and ``[3, 5]`` in ``x`` and ``[.3, .7]`` in ``p`` were a single
|
||
|
object, and as if we had ``x.shape = (2,)``, ``n.shape = (2,)``, and
|
||
|
``p.shape = ()``. To obtain the individual elements without broadcasting,
|
||
|
we would do this:
|
||
|
|
||
|
>>> multinomial.pmf([3, 4], n=7, p=[.3, .7])
|
||
|
0.2268945
|
||
|
>>> multinomial.pmf([3, 5], 8, p=[.3, .7])
|
||
|
0.25412184
|
||
|
|
||
|
This broadcasting also works for ``cov``, where the output objects are
|
||
|
square matrices of size ``p.shape[-1]``. For example:
|
||
|
|
||
|
>>> multinomial.cov([4, 5], [[.3, .7], [.4, .6]])
|
||
|
array([[[ 0.84, -0.84],
|
||
|
[-0.84, 0.84]],
|
||
|
[[ 1.2 , -1.2 ],
|
||
|
[-1.2 , 1.2 ]]])
|
||
|
|
||
|
In this example, ``n.shape == (2,)`` and ``p.shape == (2, 2)``, and
|
||
|
following the rules above, these broadcast as if ``p.shape == (2,)``.
|
||
|
Thus the result should also be of shape ``(2,)``, but since each output is
|
||
|
a :math:`2 \times 2` matrix, the result in fact has shape ``(2, 2, 2)``,
|
||
|
where ``result[0]`` is equal to ``multinomial.cov(n=4, p=[.3, .7])`` and
|
||
|
``result[1]`` is equal to ``multinomial.cov(n=5, p=[.4, .6])``.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
scipy.stats.binom : The binomial distribution.
|
||
|
numpy.random.multinomial : Sampling from the multinomial distribution.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(multinomial_gen, self).__init__(seed)
|
||
|
self.__doc__ = \
|
||
|
doccer.docformat(self.__doc__, multinomial_docdict_params)
|
||
|
|
||
|
def __call__(self, n, p, seed=None):
|
||
|
"""
|
||
|
Create a frozen multinomial distribution.
|
||
|
|
||
|
See `multinomial_frozen` for more information.
|
||
|
"""
|
||
|
return multinomial_frozen(n, p, seed)
|
||
|
|
||
|
def _process_parameters(self, n, p):
|
||
|
"""
|
||
|
Return: n_, p_, npcond.
|
||
|
|
||
|
n_ and p_ are arrays of the correct shape; npcond is a boolean array
|
||
|
flagging values out of the domain.
|
||
|
"""
|
||
|
p = np.array(p, dtype=np.float64, copy=True)
|
||
|
p[...,-1] = 1. - p[...,:-1].sum(axis=-1)
|
||
|
|
||
|
# true for bad p
|
||
|
pcond = np.any(p < 0, axis=-1)
|
||
|
pcond |= np.any(p > 1, axis=-1)
|
||
|
|
||
|
n = np.array(n, dtype=np.int, copy=True)
|
||
|
|
||
|
# true for bad n
|
||
|
ncond = n <= 0
|
||
|
|
||
|
return n, p, ncond | pcond
|
||
|
|
||
|
def _process_quantiles(self, x, n, p):
|
||
|
"""
|
||
|
Return: x_, xcond.
|
||
|
|
||
|
x_ is an int array; xcond is a boolean array flagging values out of the
|
||
|
domain.
|
||
|
"""
|
||
|
xx = np.asarray(x, dtype=np.int)
|
||
|
|
||
|
if xx.ndim == 0:
|
||
|
raise ValueError("x must be an array.")
|
||
|
|
||
|
if xx.size != 0 and not xx.shape[-1] == p.shape[-1]:
|
||
|
raise ValueError("Size of each quantile should be size of p: "
|
||
|
"received %d, but expected %d." % (xx.shape[-1], p.shape[-1]))
|
||
|
|
||
|
# true for x out of the domain
|
||
|
cond = np.any(xx != x, axis=-1)
|
||
|
cond |= np.any(xx < 0, axis=-1)
|
||
|
cond = cond | (np.sum(xx, axis=-1) != n)
|
||
|
|
||
|
return xx, cond
|
||
|
|
||
|
def _checkresult(self, result, cond, bad_value):
|
||
|
result = np.asarray(result)
|
||
|
|
||
|
if cond.ndim != 0:
|
||
|
result[cond] = bad_value
|
||
|
elif cond:
|
||
|
if result.ndim == 0:
|
||
|
return bad_value
|
||
|
result[...] = bad_value
|
||
|
return result
|
||
|
|
||
|
def _logpmf(self, x, n, p):
|
||
|
return gammaln(n+1) + np.sum(xlogy(x, p) - gammaln(x+1), axis=-1)
|
||
|
|
||
|
def logpmf(self, x, n, p):
|
||
|
"""
|
||
|
Log of the Multinomial probability mass function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
Each quantile must be a symmetric positive definite matrix.
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
logpmf : ndarray or scalar
|
||
|
Log of the probability mass function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
"""
|
||
|
n, p, npcond = self._process_parameters(n, p)
|
||
|
x, xcond = self._process_quantiles(x, n, p)
|
||
|
|
||
|
result = self._logpmf(x, n, p)
|
||
|
|
||
|
# replace values for which x was out of the domain; broadcast
|
||
|
# xcond to the right shape
|
||
|
xcond_ = xcond | np.zeros(npcond.shape, dtype=np.bool_)
|
||
|
result = self._checkresult(result, xcond_, np.NINF)
|
||
|
|
||
|
# replace values bad for n or p; broadcast npcond to the right shape
|
||
|
npcond_ = npcond | np.zeros(xcond.shape, dtype=np.bool_)
|
||
|
return self._checkresult(result, npcond_, np.NAN)
|
||
|
|
||
|
def pmf(self, x, n, p):
|
||
|
"""
|
||
|
Multinomial probability mass function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Quantiles, with the last axis of `x` denoting the components.
|
||
|
Each quantile must be a symmetric positive definite matrix.
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pmf : ndarray or scalar
|
||
|
Probability density function evaluated at `x`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
"""
|
||
|
return np.exp(self.logpmf(x, n, p))
|
||
|
|
||
|
def mean(self, n, p):
|
||
|
"""
|
||
|
Mean of the Multinomial distribution
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mean : float
|
||
|
The mean of the distribution
|
||
|
"""
|
||
|
n, p, npcond = self._process_parameters(n, p)
|
||
|
result = n[..., np.newaxis]*p
|
||
|
return self._checkresult(result, npcond, np.NAN)
|
||
|
|
||
|
def cov(self, n, p):
|
||
|
"""
|
||
|
Covariance matrix of the multinomial distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cov : ndarray
|
||
|
The covariance matrix of the distribution
|
||
|
"""
|
||
|
n, p, npcond = self._process_parameters(n, p)
|
||
|
|
||
|
nn = n[..., np.newaxis, np.newaxis]
|
||
|
result = nn * np.einsum('...j,...k->...jk', -p, p)
|
||
|
|
||
|
# change the diagonal
|
||
|
for i in range(p.shape[-1]):
|
||
|
result[...,i, i] += n*p[..., i]
|
||
|
|
||
|
return self._checkresult(result, npcond, np.nan)
|
||
|
|
||
|
def entropy(self, n, p):
|
||
|
r"""
|
||
|
Compute the entropy of the multinomial distribution.
|
||
|
|
||
|
The entropy is computed using this expression:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
f(x) = - \log n! - n\sum_{i=1}^k p_i \log p_i +
|
||
|
\sum_{i=1}^k \sum_{x=0}^n \binom n x p_i^x(1-p_i)^{n-x} \log x!
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
h : scalar
|
||
|
Entropy of the Multinomial distribution
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
"""
|
||
|
n, p, npcond = self._process_parameters(n, p)
|
||
|
|
||
|
x = np.r_[1:np.max(n)+1]
|
||
|
|
||
|
term1 = n*np.sum(entr(p), axis=-1)
|
||
|
term1 -= gammaln(n+1)
|
||
|
|
||
|
n = n[..., np.newaxis]
|
||
|
new_axes_needed = max(p.ndim, n.ndim) - x.ndim + 1
|
||
|
x.shape += (1,)*new_axes_needed
|
||
|
|
||
|
term2 = np.sum(binom.pmf(x, n, p)*gammaln(x+1),
|
||
|
axis=(-1, -1-new_axes_needed))
|
||
|
|
||
|
return self._checkresult(term1 + term2, npcond, np.nan)
|
||
|
|
||
|
def rvs(self, n, p, size=None, random_state=None):
|
||
|
"""
|
||
|
Draw random samples from a Multinomial distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(_doc_default_callparams)s
|
||
|
size : integer or iterable of integers, optional
|
||
|
Number of samples to draw (default 1).
|
||
|
%(_doc_random_state)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray or scalar
|
||
|
Random variates of shape (`size`, `len(p)`)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
%(_doc_callparams_note)s
|
||
|
"""
|
||
|
n, p, npcond = self._process_parameters(n, p)
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
return random_state.multinomial(n, p, size)
|
||
|
|
||
|
|
||
|
multinomial = multinomial_gen()
|
||
|
|
||
|
class multinomial_frozen(multi_rv_frozen):
|
||
|
r"""
|
||
|
Create a frozen Multinomial distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
number of trials
|
||
|
p: array_like
|
||
|
probability of a trial falling into each category; should sum to 1
|
||
|
seed : None or int or np.random.RandomState instance, optional
|
||
|
This parameter defines the RandomState object to use for drawing
|
||
|
random variates.
|
||
|
If None (or np.random), the global np.random state is used.
|
||
|
If integer, it is used to seed the local RandomState instance
|
||
|
Default is None.
|
||
|
"""
|
||
|
def __init__(self, n, p, seed=None):
|
||
|
self._dist = multinomial_gen(seed)
|
||
|
self.n, self.p, self.npcond = self._dist._process_parameters(n, p)
|
||
|
|
||
|
# monkey patch self._dist
|
||
|
def _process_parameters(n, p):
|
||
|
return self.n, self.p, self.npcond
|
||
|
|
||
|
self._dist._process_parameters = _process_parameters
|
||
|
|
||
|
def logpmf(self, x):
|
||
|
return self._dist.logpmf(x, self.n, self.p)
|
||
|
|
||
|
def pmf(self, x):
|
||
|
return self._dist.pmf(x, self.n, self.p)
|
||
|
|
||
|
def mean(self):
|
||
|
return self._dist.mean(self.n, self.p)
|
||
|
|
||
|
def cov(self):
|
||
|
return self._dist.cov(self.n, self.p)
|
||
|
|
||
|
def entropy(self):
|
||
|
return self._dist.entropy(self.n, self.p)
|
||
|
|
||
|
def rvs(self, size=1, random_state=None):
|
||
|
return self._dist.rvs(self.n, self.p, size, random_state)
|
||
|
|
||
|
|
||
|
# Set frozen generator docstrings from corresponding docstrings in
|
||
|
# multinomial and fill in default strings in class docstrings
|
||
|
for name in ['logpmf', 'pmf', 'mean', 'cov', 'rvs']:
|
||
|
method = multinomial_gen.__dict__[name]
|
||
|
method_frozen = multinomial_frozen.__dict__[name]
|
||
|
method_frozen.__doc__ = doccer.docformat(
|
||
|
method.__doc__, multinomial_docdict_noparams)
|
||
|
method.__doc__ = doccer.docformat(method.__doc__,
|
||
|
multinomial_docdict_params)
|
||
|
|
||
|
class special_ortho_group_gen(multi_rv_generic):
|
||
|
r"""
|
||
|
A matrix-valued SO(N) random variable.
|
||
|
|
||
|
Return a random rotation matrix, drawn from the Haar distribution
|
||
|
(the only uniform distribution on SO(n)).
|
||
|
|
||
|
The `dim` keyword specifies the dimension N.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``rvs(dim=None, size=1, random_state=None)``
|
||
|
Draw random samples from SO(N).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : scalar
|
||
|
Dimension of matrices
|
||
|
|
||
|
Notes
|
||
|
----------
|
||
|
This class is wrapping the random_rot code from the MDP Toolkit,
|
||
|
https://github.com/mdp-toolkit/mdp-toolkit
|
||
|
|
||
|
Return a random rotation matrix, drawn from the Haar distribution
|
||
|
(the only uniform distribution on SO(n)).
|
||
|
The algorithm is described in the paper
|
||
|
Stewart, G.W., "The efficient generation of random orthogonal
|
||
|
matrices with an application to condition estimators", SIAM Journal
|
||
|
on Numerical Analysis, 17(3), pp. 403-409, 1980.
|
||
|
For more information see
|
||
|
http://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization
|
||
|
|
||
|
See also the similar `ortho_group`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.stats import special_ortho_group
|
||
|
>>> x = special_ortho_group.rvs(3)
|
||
|
|
||
|
>>> np.dot(x, x.T)
|
||
|
array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16],
|
||
|
[ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16],
|
||
|
[ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])
|
||
|
|
||
|
>>> import scipy.linalg
|
||
|
>>> scipy.linalg.det(x)
|
||
|
1.0
|
||
|
|
||
|
This generates one random matrix from SO(3). It is orthogonal and
|
||
|
has a determinant of 1.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(special_ortho_group_gen, self).__init__(seed)
|
||
|
self.__doc__ = doccer.docformat(self.__doc__)
|
||
|
|
||
|
def __call__(self, dim=None, seed=None):
|
||
|
"""
|
||
|
Create a frozen SO(N) distribution.
|
||
|
|
||
|
See `special_ortho_group_frozen` for more information.
|
||
|
|
||
|
"""
|
||
|
return special_ortho_group_frozen(dim, seed=seed)
|
||
|
|
||
|
def _process_parameters(self, dim):
|
||
|
"""
|
||
|
Dimension N must be specified; it cannot be inferred.
|
||
|
"""
|
||
|
|
||
|
if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim):
|
||
|
raise ValueError("""Dimension of rotation must be specified,
|
||
|
and must be a scalar greater than 1.""")
|
||
|
|
||
|
return dim
|
||
|
|
||
|
def rvs(self, dim, size=1, random_state=None):
|
||
|
"""
|
||
|
Draw random samples from SO(N).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : integer
|
||
|
Dimension of rotation space (N).
|
||
|
size : integer, optional
|
||
|
Number of samples to draw (default 1).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray or scalar
|
||
|
Random size N-dimensional matrices, dimension (size, dim, dim)
|
||
|
|
||
|
"""
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
|
||
|
size = int(size)
|
||
|
if size > 1:
|
||
|
return np.array([self.rvs(dim, size=1, random_state=random_state)
|
||
|
for i in range(size)])
|
||
|
|
||
|
dim = self._process_parameters(dim)
|
||
|
|
||
|
H = np.eye(dim)
|
||
|
D = np.empty((dim,))
|
||
|
for n in range(dim-1):
|
||
|
x = random_state.normal(size=(dim-n,))
|
||
|
D[n] = np.sign(x[0]) if x[0] != 0 else 1
|
||
|
x[0] += D[n]*np.sqrt((x*x).sum())
|
||
|
# Householder transformation
|
||
|
Hx = (np.eye(dim-n)
|
||
|
- 2.*np.outer(x, x)/(x*x).sum())
|
||
|
mat = np.eye(dim)
|
||
|
mat[n:, n:] = Hx
|
||
|
H = np.dot(H, mat)
|
||
|
D[-1] = (-1)**(dim-1)*D[:-1].prod()
|
||
|
# Equivalent to np.dot(np.diag(D), H) but faster, apparently
|
||
|
H = (D*H.T).T
|
||
|
return H
|
||
|
|
||
|
|
||
|
special_ortho_group = special_ortho_group_gen()
|
||
|
|
||
|
class special_ortho_group_frozen(multi_rv_frozen):
|
||
|
def __init__(self, dim=None, seed=None):
|
||
|
"""
|
||
|
Create a frozen SO(N) distribution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : scalar
|
||
|
Dimension of matrices
|
||
|
seed : None or int or np.random.RandomState instance, optional
|
||
|
This parameter defines the RandomState object to use for drawing
|
||
|
random variates.
|
||
|
If None (or np.random), the global np.random state is used.
|
||
|
If integer, it is used to seed the local RandomState instance
|
||
|
Default is None.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.stats import special_ortho_group
|
||
|
>>> g = special_ortho_group(5)
|
||
|
>>> x = g.rvs()
|
||
|
|
||
|
"""
|
||
|
self._dist = special_ortho_group_gen(seed)
|
||
|
self.dim = self._dist._process_parameters(dim)
|
||
|
|
||
|
def rvs(self, size=1, random_state=None):
|
||
|
return self._dist.rvs(self.dim, size, random_state)
|
||
|
|
||
|
class ortho_group_gen(multi_rv_generic):
|
||
|
r"""
|
||
|
A matrix-valued O(N) random variable.
|
||
|
|
||
|
Return a random orthogonal matrix, drawn from the O(N) Haar
|
||
|
distribution (the only uniform distribution on O(N)).
|
||
|
|
||
|
The `dim` keyword specifies the dimension N.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``rvs(dim=None, size=1, random_state=None)``
|
||
|
Draw random samples from O(N).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : scalar
|
||
|
Dimension of matrices
|
||
|
|
||
|
Notes
|
||
|
----------
|
||
|
This class is closely related to `special_ortho_group`.
|
||
|
|
||
|
Some care is taken to avoid numerical error, as per the paper by Mezzadri.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] F. Mezzadri, "How to generate random matrices from the classical
|
||
|
compact groups", :arXiv:`math-ph/0609050v2`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.stats import ortho_group
|
||
|
>>> x = ortho_group.rvs(3)
|
||
|
|
||
|
>>> np.dot(x, x.T)
|
||
|
array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16],
|
||
|
[ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16],
|
||
|
[ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])
|
||
|
|
||
|
>>> import scipy.linalg
|
||
|
>>> np.fabs(scipy.linalg.det(x))
|
||
|
1.0
|
||
|
|
||
|
This generates one random matrix from O(3). It is orthogonal and
|
||
|
has a determinant of +1 or -1.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(ortho_group_gen, self).__init__(seed)
|
||
|
self.__doc__ = doccer.docformat(self.__doc__)
|
||
|
|
||
|
def _process_parameters(self, dim):
|
||
|
"""
|
||
|
Dimension N must be specified; it cannot be inferred.
|
||
|
"""
|
||
|
|
||
|
if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim):
|
||
|
raise ValueError("Dimension of rotation must be specified,"
|
||
|
"and must be a scalar greater than 1.")
|
||
|
|
||
|
return dim
|
||
|
|
||
|
def rvs(self, dim, size=1, random_state=None):
|
||
|
"""
|
||
|
Draw random samples from O(N).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : integer
|
||
|
Dimension of rotation space (N).
|
||
|
size : integer, optional
|
||
|
Number of samples to draw (default 1).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray or scalar
|
||
|
Random size N-dimensional matrices, dimension (size, dim, dim)
|
||
|
|
||
|
"""
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
|
||
|
size = int(size)
|
||
|
if size > 1:
|
||
|
return np.array([self.rvs(dim, size=1, random_state=random_state)
|
||
|
for i in range(size)])
|
||
|
|
||
|
dim = self._process_parameters(dim)
|
||
|
|
||
|
H = np.eye(dim)
|
||
|
for n in range(dim):
|
||
|
x = random_state.normal(size=(dim-n,))
|
||
|
# random sign, 50/50, but chosen carefully to avoid roundoff error
|
||
|
D = np.sign(x[0]) if x[0] != 0 else 1
|
||
|
x[0] += D*np.sqrt((x*x).sum())
|
||
|
# Householder transformation
|
||
|
Hx = -D*(np.eye(dim-n)
|
||
|
- 2.*np.outer(x, x)/(x*x).sum())
|
||
|
mat = np.eye(dim)
|
||
|
mat[n:, n:] = Hx
|
||
|
H = np.dot(H, mat)
|
||
|
return H
|
||
|
|
||
|
|
||
|
ortho_group = ortho_group_gen()
|
||
|
|
||
|
class random_correlation_gen(multi_rv_generic):
|
||
|
r"""
|
||
|
A random correlation matrix.
|
||
|
|
||
|
Return a random correlation matrix, given a vector of eigenvalues.
|
||
|
|
||
|
The `eigs` keyword specifies the eigenvalues of the correlation matrix,
|
||
|
and implies the dimension.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``rvs(eigs=None, random_state=None)``
|
||
|
Draw random correlation matrices, all with eigenvalues eigs.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
eigs : 1d ndarray
|
||
|
Eigenvalues of correlation matrix.
|
||
|
|
||
|
Notes
|
||
|
----------
|
||
|
|
||
|
Generates a random correlation matrix following a numerically stable
|
||
|
algorithm spelled out by Davies & Higham. This algorithm uses a single O(N)
|
||
|
similarity transformation to construct a symmetric positive semi-definite
|
||
|
matrix, and applies a series of Givens rotations to scale it to have ones
|
||
|
on the diagonal.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
.. [1] Davies, Philip I; Higham, Nicholas J; "Numerically stable generation
|
||
|
of correlation matrices and their factors", BIT 2000, Vol. 40,
|
||
|
No. 4, pp. 640 651
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.stats import random_correlation
|
||
|
>>> np.random.seed(514)
|
||
|
>>> x = random_correlation.rvs((.5, .8, 1.2, 1.5))
|
||
|
>>> x
|
||
|
array([[ 1. , -0.20387311, 0.18366501, -0.04953711],
|
||
|
[-0.20387311, 1. , -0.24351129, 0.06703474],
|
||
|
[ 0.18366501, -0.24351129, 1. , 0.38530195],
|
||
|
[-0.04953711, 0.06703474, 0.38530195, 1. ]])
|
||
|
>>> import scipy.linalg
|
||
|
>>> e, v = scipy.linalg.eigh(x)
|
||
|
>>> e
|
||
|
array([ 0.5, 0.8, 1.2, 1.5])
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(random_correlation_gen, self).__init__(seed)
|
||
|
self.__doc__ = doccer.docformat(self.__doc__)
|
||
|
|
||
|
def _process_parameters(self, eigs, tol):
|
||
|
eigs = np.asarray(eigs, dtype=float)
|
||
|
dim = eigs.size
|
||
|
|
||
|
if eigs.ndim != 1 or eigs.shape[0] != dim or dim <= 1:
|
||
|
raise ValueError("Array 'eigs' must be a vector of length greater than 1.")
|
||
|
|
||
|
if np.fabs(np.sum(eigs) - dim) > tol:
|
||
|
raise ValueError("Sum of eigenvalues must equal dimensionality.")
|
||
|
|
||
|
for x in eigs:
|
||
|
if x < -tol:
|
||
|
raise ValueError("All eigenvalues must be non-negative.")
|
||
|
|
||
|
return dim, eigs
|
||
|
|
||
|
def _givens_to_1(self, aii, ajj, aij):
|
||
|
"""Computes a 2x2 Givens matrix to put 1's on the diagonal for the input matrix.
|
||
|
|
||
|
The input matrix is a 2x2 symmetric matrix M = [ aii aij ; aij ajj ].
|
||
|
|
||
|
The output matrix g is a 2x2 anti-symmetric matrix of the form [ c s ; -s c ];
|
||
|
the elements c and s are returned.
|
||
|
|
||
|
Applying the output matrix to the input matrix (as b=g.T M g)
|
||
|
results in a matrix with bii=1, provided tr(M) - det(M) >= 1
|
||
|
and floating point issues do not occur. Otherwise, some other
|
||
|
valid rotation is returned. When tr(M)==2, also bjj=1.
|
||
|
|
||
|
"""
|
||
|
aiid = aii - 1.
|
||
|
ajjd = ajj - 1.
|
||
|
|
||
|
if ajjd == 0:
|
||
|
# ajj==1, so swap aii and ajj to avoid division by zero
|
||
|
return 0., 1.
|
||
|
|
||
|
dd = math.sqrt(max(aij**2 - aiid*ajjd, 0))
|
||
|
|
||
|
# The choice of t should be chosen to avoid cancellation [1]
|
||
|
t = (aij + math.copysign(dd, aij)) / ajjd
|
||
|
c = 1. / math.sqrt(1. + t*t)
|
||
|
if c == 0:
|
||
|
# Underflow
|
||
|
s = 1.0
|
||
|
else:
|
||
|
s = c*t
|
||
|
return c, s
|
||
|
|
||
|
def _to_corr(self, m):
|
||
|
"""
|
||
|
Given a psd matrix m, rotate to put one's on the diagonal, turning it
|
||
|
into a correlation matrix. This also requires the trace equal the
|
||
|
dimensionality. Note: modifies input matrix
|
||
|
"""
|
||
|
# Check requirements for in-place Givens
|
||
|
if not (m.flags.c_contiguous and m.dtype == np.float64 and m.shape[0] == m.shape[1]):
|
||
|
raise ValueError()
|
||
|
|
||
|
d = m.shape[0]
|
||
|
for i in range(d-1):
|
||
|
if m[i,i] == 1:
|
||
|
continue
|
||
|
elif m[i, i] > 1:
|
||
|
for j in range(i+1, d):
|
||
|
if m[j, j] < 1:
|
||
|
break
|
||
|
else:
|
||
|
for j in range(i+1, d):
|
||
|
if m[j, j] > 1:
|
||
|
break
|
||
|
|
||
|
c, s = self._givens_to_1(m[i,i], m[j,j], m[i,j])
|
||
|
|
||
|
# Use BLAS to apply Givens rotations in-place. Equivalent to:
|
||
|
# g = np.eye(d)
|
||
|
# g[i, i] = g[j,j] = c
|
||
|
# g[j, i] = -s; g[i, j] = s
|
||
|
# m = np.dot(g.T, np.dot(m, g))
|
||
|
mv = m.ravel()
|
||
|
drot(mv, mv, c, -s, n=d,
|
||
|
offx=i*d, incx=1, offy=j*d, incy=1,
|
||
|
overwrite_x=True, overwrite_y=True)
|
||
|
drot(mv, mv, c, -s, n=d,
|
||
|
offx=i, incx=d, offy=j, incy=d,
|
||
|
overwrite_x=True, overwrite_y=True)
|
||
|
|
||
|
return m
|
||
|
|
||
|
def rvs(self, eigs, random_state=None, tol=1e-13, diag_tol=1e-7):
|
||
|
"""
|
||
|
Draw random correlation matrices
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
eigs : 1d ndarray
|
||
|
Eigenvalues of correlation matrix
|
||
|
tol : float, optional
|
||
|
Tolerance for input parameter checks
|
||
|
diag_tol : float, optional
|
||
|
Tolerance for deviation of the diagonal of the resulting
|
||
|
matrix. Default: 1e-7
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
RuntimeError
|
||
|
Floating point error prevented generating a valid correlation
|
||
|
matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray or scalar
|
||
|
Random size N-dimensional matrices, dimension (size, dim, dim),
|
||
|
each having eigenvalues eigs.
|
||
|
|
||
|
"""
|
||
|
dim, eigs = self._process_parameters(eigs, tol=tol)
|
||
|
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
|
||
|
m = ortho_group.rvs(dim, random_state=random_state)
|
||
|
m = np.dot(np.dot(m, np.diag(eigs)), m.T) # Set the trace of m
|
||
|
m = self._to_corr(m) # Carefully rotate to unit diagonal
|
||
|
|
||
|
# Check diagonal
|
||
|
if abs(m.diagonal() - 1).max() > diag_tol:
|
||
|
raise RuntimeError("Failed to generate a valid correlation matrix")
|
||
|
|
||
|
return m
|
||
|
|
||
|
|
||
|
random_correlation = random_correlation_gen()
|
||
|
|
||
|
class unitary_group_gen(multi_rv_generic):
|
||
|
r"""
|
||
|
A matrix-valued U(N) random variable.
|
||
|
|
||
|
Return a random unitary matrix.
|
||
|
|
||
|
The `dim` keyword specifies the dimension N.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
``rvs(dim=None, size=1, random_state=None)``
|
||
|
Draw random samples from U(N).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : scalar
|
||
|
Dimension of matrices
|
||
|
|
||
|
Notes
|
||
|
----------
|
||
|
This class is similar to `ortho_group`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] F. Mezzadri, "How to generate random matrices from the classical
|
||
|
compact groups", arXiv:math-ph/0609050v2.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.stats import unitary_group
|
||
|
>>> x = unitary_group.rvs(3)
|
||
|
|
||
|
>>> np.dot(x, x.conj().T)
|
||
|
array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16],
|
||
|
[ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16],
|
||
|
[ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])
|
||
|
|
||
|
This generates one random matrix from U(3). The dot product confirms that it is unitary up to machine precision.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, seed=None):
|
||
|
super(unitary_group_gen, self).__init__(seed)
|
||
|
self.__doc__ = doccer.docformat(self.__doc__)
|
||
|
|
||
|
def _process_parameters(self, dim):
|
||
|
"""
|
||
|
Dimension N must be specified; it cannot be inferred.
|
||
|
"""
|
||
|
|
||
|
if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim):
|
||
|
raise ValueError("Dimension of rotation must be specified,"
|
||
|
"and must be a scalar greater than 1.")
|
||
|
|
||
|
return dim
|
||
|
|
||
|
def rvs(self, dim, size=1, random_state=None):
|
||
|
"""
|
||
|
Draw random samples from U(N).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dim : integer
|
||
|
Dimension of space (N).
|
||
|
size : integer, optional
|
||
|
Number of samples to draw (default 1).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rvs : ndarray or scalar
|
||
|
Random size N-dimensional matrices, dimension (size, dim, dim)
|
||
|
|
||
|
"""
|
||
|
random_state = self._get_random_state(random_state)
|
||
|
|
||
|
size = int(size)
|
||
|
if size > 1:
|
||
|
return np.array([self.rvs(dim, size=1, random_state=random_state)
|
||
|
for i in range(size)])
|
||
|
|
||
|
dim = self._process_parameters(dim)
|
||
|
|
||
|
z = 1/math.sqrt(2)*(random_state.normal(size=(dim,dim)) +
|
||
|
1j*random_state.normal(size=(dim,dim)))
|
||
|
q, r = scipy.linalg.qr(z)
|
||
|
d = r.diagonal()
|
||
|
q *= d/abs(d)
|
||
|
return q
|
||
|
|
||
|
|
||
|
unitary_group = unitary_group_gen()
|