laywerrobot/lib/python3.6/site-packages/scipy/special/tests/test_wrightomega.py

56 lines
1.7 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import assert_, assert_equal
import scipy.special as sc
def test_wrightomega_nan():
pts = [complex(np.nan, 0),
complex(0, np.nan),
complex(np.nan, np.nan),
complex(np.nan, 1),
complex(1, np.nan)]
for p in pts:
res = sc.wrightomega(p)
assert_(np.isnan(res.real))
assert_(np.isnan(res.imag))
def test_wrightomega_inf_branch():
pts = [complex(-np.inf, np.pi/4),
complex(-np.inf, -np.pi/4),
complex(-np.inf, 3*np.pi/4),
complex(-np.inf, -3*np.pi/4)]
expected_results = [complex(0.0, 0.0),
complex(0.0, -0.0),
complex(-0.0, 0.0),
complex(-0.0, -0.0)]
for p, expected in zip(pts, expected_results):
res = sc.wrightomega(p)
# We can't use assert_equal(res, expected) because in older versions of
# numpy, assert_equal doesn't check the sign of the real and imaginary
# parts when comparing complex zeros. It does check the sign when the
# arguments are *real* scalars.
assert_equal(res.real, expected.real)
assert_equal(res.imag, expected.imag)
def test_wrightomega_inf():
pts = [complex(np.inf, 10),
complex(-np.inf, 10),
complex(10, np.inf),
complex(10, -np.inf)]
for p in pts:
assert_equal(sc.wrightomega(p), p)
def test_wrightomega_singular():
pts = [complex(-1.0, np.pi),
complex(-1.0, -np.pi)]
for p in pts:
res = sc.wrightomega(p)
assert_equal(res, -1.0)
assert_(np.signbit(res.imag) == False)