116 lines
5.2 KiB
Python
116 lines
5.2 KiB
Python
|
from __future__ import division, absolute_import, print_function
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import (assert_almost_equal,
|
||
|
assert_array_equal,
|
||
|
assert_equal,
|
||
|
assert_)
|
||
|
from scipy.spatial.distance import directed_hausdorff
|
||
|
from scipy.spatial import distance
|
||
|
from scipy._lib._util import check_random_state
|
||
|
|
||
|
class TestHausdorff(object):
|
||
|
# Test various properties of the directed Hausdorff code.
|
||
|
|
||
|
def setup_method(self):
|
||
|
np.random.seed(1234)
|
||
|
random_angles = np.random.random(100) * np.pi * 2
|
||
|
random_columns = np.column_stack(
|
||
|
(random_angles, random_angles, np.zeros(100)))
|
||
|
random_columns[..., 0] = np.cos(random_columns[..., 0])
|
||
|
random_columns[..., 1] = np.sin(random_columns[..., 1])
|
||
|
random_columns_2 = np.column_stack(
|
||
|
(random_angles, random_angles, np.zeros(100)))
|
||
|
random_columns_2[1:, 0] = np.cos(random_columns_2[1:, 0]) * 2.0
|
||
|
random_columns_2[1:, 1] = np.sin(random_columns_2[1:, 1]) * 2.0
|
||
|
# move one point farther out so we don't have two perfect circles
|
||
|
random_columns_2[0, 0] = np.cos(random_columns_2[0, 0]) * 3.3
|
||
|
random_columns_2[0, 1] = np.sin(random_columns_2[0, 1]) * 3.3
|
||
|
self.path_1 = random_columns
|
||
|
self.path_2 = random_columns_2
|
||
|
self.path_1_4d = np.insert(self.path_1, 3, 5, axis=1)
|
||
|
self.path_2_4d = np.insert(self.path_2, 3, 27, axis=1)
|
||
|
|
||
|
def test_symmetry(self):
|
||
|
# Ensure that the directed (asymmetric) Hausdorff distance is
|
||
|
# actually asymmetric
|
||
|
|
||
|
forward = directed_hausdorff(self.path_1, self.path_2)[0]
|
||
|
reverse = directed_hausdorff(self.path_2, self.path_1)[0]
|
||
|
assert_(forward != reverse)
|
||
|
|
||
|
def test_brute_force_comparison_forward(self):
|
||
|
# Ensure that the algorithm for directed_hausdorff gives the
|
||
|
# same result as the simple / brute force approach in the
|
||
|
# forward direction.
|
||
|
actual = directed_hausdorff(self.path_1, self.path_2)[0]
|
||
|
# brute force over rows:
|
||
|
expected = max(np.amin(distance.cdist(self.path_1, self.path_2),
|
||
|
axis=1))
|
||
|
assert_almost_equal(actual, expected, decimal=9)
|
||
|
|
||
|
def test_brute_force_comparison_reverse(self):
|
||
|
# Ensure that the algorithm for directed_hausdorff gives the
|
||
|
# same result as the simple / brute force approach in the
|
||
|
# reverse direction.
|
||
|
actual = directed_hausdorff(self.path_2, self.path_1)[0]
|
||
|
# brute force over columns:
|
||
|
expected = max(np.amin(distance.cdist(self.path_1, self.path_2),
|
||
|
axis=0))
|
||
|
assert_almost_equal(actual, expected, decimal=9)
|
||
|
|
||
|
def test_degenerate_case(self):
|
||
|
# The directed Hausdorff distance must be zero if both input
|
||
|
# data arrays match.
|
||
|
actual = directed_hausdorff(self.path_1, self.path_1)[0]
|
||
|
assert_almost_equal(actual, 0.0, decimal=9)
|
||
|
|
||
|
def test_2d_data_forward(self):
|
||
|
# Ensure that 2D data is handled properly for a simple case
|
||
|
# relative to brute force approach.
|
||
|
actual = directed_hausdorff(self.path_1[..., :2],
|
||
|
self.path_2[..., :2])[0]
|
||
|
expected = max(np.amin(distance.cdist(self.path_1[..., :2],
|
||
|
self.path_2[..., :2]),
|
||
|
axis=1))
|
||
|
assert_almost_equal(actual, expected, decimal=9)
|
||
|
|
||
|
def test_4d_data_reverse(self):
|
||
|
# Ensure that 4D data is handled properly for a simple case
|
||
|
# relative to brute force approach.
|
||
|
actual = directed_hausdorff(self.path_2_4d, self.path_1_4d)[0]
|
||
|
# brute force over columns:
|
||
|
expected = max(np.amin(distance.cdist(self.path_1_4d, self.path_2_4d),
|
||
|
axis=0))
|
||
|
assert_almost_equal(actual, expected, decimal=9)
|
||
|
|
||
|
def test_indices(self):
|
||
|
# Ensure that correct point indices are returned -- they should
|
||
|
# correspond to the Hausdorff pair
|
||
|
path_simple_1 = np.array([[-1,-12],[0,0], [1,1], [3,7], [1,2]])
|
||
|
path_simple_2 = np.array([[0,0], [1,1], [4,100], [10,9]])
|
||
|
actual = directed_hausdorff(path_simple_2, path_simple_1)[1:]
|
||
|
expected = (2, 3)
|
||
|
assert_array_equal(actual, expected)
|
||
|
|
||
|
def test_random_state(self):
|
||
|
# ensure that the global random state is not modified because
|
||
|
# the directed Hausdorff algorithm uses randomization
|
||
|
rs = check_random_state(None)
|
||
|
old_global_state = rs.get_state()
|
||
|
directed_hausdorff(self.path_1, self.path_2)
|
||
|
rs2 = check_random_state(None)
|
||
|
new_global_state = rs2.get_state()
|
||
|
assert_equal(new_global_state, old_global_state)
|
||
|
|
||
|
def test_random_state_None_int(self):
|
||
|
# check that seed values of None or int do not alter global
|
||
|
# random state
|
||
|
for seed in [None, 27870671]:
|
||
|
rs = check_random_state(None)
|
||
|
old_global_state = rs.get_state()
|
||
|
directed_hausdorff(self.path_1, self.path_2, seed)
|
||
|
rs2 = check_random_state(None)
|
||
|
new_global_state = rs2.get_state()
|
||
|
assert_equal(new_global_state, old_global_state)
|