2674 lines
81 KiB
Python
2674 lines
81 KiB
Python
|
"""
|
||
|
=====================================================
|
||
|
Distance computations (:mod:`scipy.spatial.distance`)
|
||
|
=====================================================
|
||
|
|
||
|
.. sectionauthor:: Damian Eads
|
||
|
|
||
|
Function Reference
|
||
|
------------------
|
||
|
|
||
|
Distance matrix computation from a collection of raw observation vectors
|
||
|
stored in a rectangular array.
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
pdist -- pairwise distances between observation vectors.
|
||
|
cdist -- distances between two collections of observation vectors
|
||
|
squareform -- convert distance matrix to a condensed one and vice versa
|
||
|
directed_hausdorff -- directed Hausdorff distance between arrays
|
||
|
|
||
|
Predicates for checking the validity of distance matrices, both
|
||
|
condensed and redundant. Also contained in this module are functions
|
||
|
for computing the number of observations in a distance matrix.
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
is_valid_dm -- checks for a valid distance matrix
|
||
|
is_valid_y -- checks for a valid condensed distance matrix
|
||
|
num_obs_dm -- # of observations in a distance matrix
|
||
|
num_obs_y -- # of observations in a condensed distance matrix
|
||
|
|
||
|
Distance functions between two numeric vectors ``u`` and ``v``. Computing
|
||
|
distances over a large collection of vectors is inefficient for these
|
||
|
functions. Use ``pdist`` for this purpose.
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
braycurtis -- the Bray-Curtis distance.
|
||
|
canberra -- the Canberra distance.
|
||
|
chebyshev -- the Chebyshev distance.
|
||
|
cityblock -- the Manhattan distance.
|
||
|
correlation -- the Correlation distance.
|
||
|
cosine -- the Cosine distance.
|
||
|
euclidean -- the Euclidean distance.
|
||
|
mahalanobis -- the Mahalanobis distance.
|
||
|
minkowski -- the Minkowski distance.
|
||
|
seuclidean -- the normalized Euclidean distance.
|
||
|
sqeuclidean -- the squared Euclidean distance.
|
||
|
wminkowski -- (deprecated) alias of `minkowski`.
|
||
|
|
||
|
Distance functions between two boolean vectors (representing sets) ``u`` and
|
||
|
``v``. As in the case of numerical vectors, ``pdist`` is more efficient for
|
||
|
computing the distances between all pairs.
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
dice -- the Dice dissimilarity.
|
||
|
hamming -- the Hamming distance.
|
||
|
jaccard -- the Jaccard distance.
|
||
|
kulsinski -- the Kulsinski distance.
|
||
|
rogerstanimoto -- the Rogers-Tanimoto dissimilarity.
|
||
|
russellrao -- the Russell-Rao dissimilarity.
|
||
|
sokalmichener -- the Sokal-Michener dissimilarity.
|
||
|
sokalsneath -- the Sokal-Sneath dissimilarity.
|
||
|
yule -- the Yule dissimilarity.
|
||
|
|
||
|
:func:`hamming` also operates over discrete numerical vectors.
|
||
|
"""
|
||
|
|
||
|
# Copyright (C) Damian Eads, 2007-2008. New BSD License.
|
||
|
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
__all__ = [
|
||
|
'braycurtis',
|
||
|
'canberra',
|
||
|
'cdist',
|
||
|
'chebyshev',
|
||
|
'cityblock',
|
||
|
'correlation',
|
||
|
'cosine',
|
||
|
'dice',
|
||
|
'directed_hausdorff',
|
||
|
'euclidean',
|
||
|
'hamming',
|
||
|
'is_valid_dm',
|
||
|
'is_valid_y',
|
||
|
'jaccard',
|
||
|
'kulsinski',
|
||
|
'mahalanobis',
|
||
|
'matching',
|
||
|
'minkowski',
|
||
|
'num_obs_dm',
|
||
|
'num_obs_y',
|
||
|
'pdist',
|
||
|
'rogerstanimoto',
|
||
|
'russellrao',
|
||
|
'seuclidean',
|
||
|
'sokalmichener',
|
||
|
'sokalsneath',
|
||
|
'sqeuclidean',
|
||
|
'squareform',
|
||
|
'wminkowski',
|
||
|
'yule'
|
||
|
]
|
||
|
|
||
|
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
|
||
|
from functools import partial
|
||
|
from collections import namedtuple
|
||
|
from scipy._lib.six import callable, string_types
|
||
|
from scipy._lib.six import xrange
|
||
|
from scipy._lib._util import _asarray_validated
|
||
|
|
||
|
from . import _distance_wrap
|
||
|
from . import _hausdorff
|
||
|
from ..linalg import norm
|
||
|
|
||
|
|
||
|
def _args_to_kwargs_xdist(args, kwargs, metric, func_name):
|
||
|
"""
|
||
|
Convert legacy positional arguments to keyword arguments for pdist/cdist.
|
||
|
"""
|
||
|
if not args:
|
||
|
return kwargs
|
||
|
|
||
|
if (callable(metric) and metric not in [
|
||
|
braycurtis, canberra, chebyshev, cityblock, correlation, cosine,
|
||
|
dice, euclidean, hamming, jaccard, kulsinski, mahalanobis,
|
||
|
matching, minkowski, rogerstanimoto, russellrao, seuclidean,
|
||
|
sokalmichener, sokalsneath, sqeuclidean, yule, wminkowski]):
|
||
|
raise TypeError('When using a custom metric arguments must be passed'
|
||
|
'as keyword (i.e., ARGNAME=ARGVALUE)')
|
||
|
|
||
|
if func_name == 'pdist':
|
||
|
old_arg_names = ['p', 'w', 'V', 'VI']
|
||
|
else:
|
||
|
old_arg_names = ['p', 'V', 'VI', 'w']
|
||
|
|
||
|
num_args = len(args)
|
||
|
warnings.warn('%d metric parameters have been passed as positional.'
|
||
|
'This will raise an error in a future version.'
|
||
|
'Please pass arguments as keywords(i.e., ARGNAME=ARGVALUE)'
|
||
|
% num_args, DeprecationWarning)
|
||
|
|
||
|
if num_args > 4:
|
||
|
raise ValueError('Deprecated %s signature accepts only 4'
|
||
|
'positional arguments (%s), %d given.'
|
||
|
% (func_name, ', '.join(old_arg_names), num_args))
|
||
|
|
||
|
for old_arg, arg in zip(old_arg_names, args):
|
||
|
if old_arg in kwargs:
|
||
|
raise TypeError('%s() got multiple values for argument %s'
|
||
|
% (func_name, old_arg))
|
||
|
kwargs[old_arg] = arg
|
||
|
return kwargs
|
||
|
|
||
|
|
||
|
def _copy_array_if_base_present(a):
|
||
|
"""Copy the array if its base points to a parent array."""
|
||
|
if a.base is not None:
|
||
|
return a.copy()
|
||
|
return a
|
||
|
|
||
|
|
||
|
def _correlation_cdist_wrap(XA, XB, dm, **kwargs):
|
||
|
XA = XA - XA.mean(axis=1, keepdims=True)
|
||
|
XB = XB - XB.mean(axis=1, keepdims=True)
|
||
|
_distance_wrap.cdist_cosine_double_wrap(XA, XB, dm, **kwargs)
|
||
|
|
||
|
|
||
|
def _correlation_pdist_wrap(X, dm, **kwargs):
|
||
|
X2 = X - X.mean(axis=1, keepdims=True)
|
||
|
_distance_wrap.pdist_cosine_double_wrap(X2, dm, **kwargs)
|
||
|
|
||
|
|
||
|
def _convert_to_type(X, out_type):
|
||
|
return np.ascontiguousarray(X, dtype=out_type)
|
||
|
|
||
|
|
||
|
def _filter_deprecated_kwargs(kwargs, args_blacklist):
|
||
|
# Filtering out old default keywords
|
||
|
for k in args_blacklist:
|
||
|
if k in kwargs:
|
||
|
del kwargs[k]
|
||
|
warnings.warn('Got unexpected kwarg %s. This will raise an error'
|
||
|
' in a future version.' % k, DeprecationWarning)
|
||
|
|
||
|
|
||
|
def _nbool_correspond_all(u, v, w=None):
|
||
|
if u.dtype == v.dtype == bool and w is None:
|
||
|
not_u = ~u
|
||
|
not_v = ~v
|
||
|
nff = (not_u & not_v).sum()
|
||
|
nft = (not_u & v).sum()
|
||
|
ntf = (u & not_v).sum()
|
||
|
ntt = (u & v).sum()
|
||
|
else:
|
||
|
dtype = np.find_common_type([int], [u.dtype, v.dtype])
|
||
|
u = u.astype(dtype)
|
||
|
v = v.astype(dtype)
|
||
|
not_u = 1.0 - u
|
||
|
not_v = 1.0 - v
|
||
|
if w is not None:
|
||
|
not_u = w * not_u
|
||
|
u = w * u
|
||
|
nff = (not_u * not_v).sum()
|
||
|
nft = (not_u * v).sum()
|
||
|
ntf = (u * not_v).sum()
|
||
|
ntt = (u * v).sum()
|
||
|
return (nff, nft, ntf, ntt)
|
||
|
|
||
|
|
||
|
def _nbool_correspond_ft_tf(u, v, w=None):
|
||
|
if u.dtype == v.dtype == bool and w is None:
|
||
|
not_u = ~u
|
||
|
not_v = ~v
|
||
|
nft = (not_u & v).sum()
|
||
|
ntf = (u & not_v).sum()
|
||
|
else:
|
||
|
dtype = np.find_common_type([int], [u.dtype, v.dtype])
|
||
|
u = u.astype(dtype)
|
||
|
v = v.astype(dtype)
|
||
|
not_u = 1.0 - u
|
||
|
not_v = 1.0 - v
|
||
|
if w is not None:
|
||
|
not_u = w * not_u
|
||
|
u = w * u
|
||
|
nft = (not_u * v).sum()
|
||
|
ntf = (u * not_v).sum()
|
||
|
return (nft, ntf)
|
||
|
|
||
|
|
||
|
def _validate_cdist_input(XA, XB, mA, mB, n, metric_name, **kwargs):
|
||
|
if metric_name is not None:
|
||
|
# get supported types
|
||
|
types = _METRICS[metric_name].types
|
||
|
# choose best type
|
||
|
typ = types[types.index(XA.dtype)] if XA.dtype in types else types[0]
|
||
|
# validate data
|
||
|
XA = _convert_to_type(XA, out_type=typ)
|
||
|
XB = _convert_to_type(XB, out_type=typ)
|
||
|
|
||
|
# validate kwargs
|
||
|
_validate_kwargs = _METRICS[metric_name].validator
|
||
|
if _validate_kwargs:
|
||
|
kwargs = _validate_kwargs(np.vstack([XA, XB]), mA + mB, n, **kwargs)
|
||
|
else:
|
||
|
typ = None
|
||
|
return XA, XB, typ, kwargs
|
||
|
|
||
|
|
||
|
def _validate_mahalanobis_kwargs(X, m, n, **kwargs):
|
||
|
VI = kwargs.pop('VI', None)
|
||
|
if VI is None:
|
||
|
if m <= n:
|
||
|
# There are fewer observations than the dimension of
|
||
|
# the observations.
|
||
|
raise ValueError("The number of observations (%d) is too "
|
||
|
"small; the covariance matrix is "
|
||
|
"singular. For observations with %d "
|
||
|
"dimensions, at least %d observations "
|
||
|
"are required." % (m, n, n + 1))
|
||
|
CV = np.atleast_2d(np.cov(X.astype(np.double).T))
|
||
|
VI = np.linalg.inv(CV).T.copy()
|
||
|
kwargs["VI"] = _convert_to_double(VI)
|
||
|
return kwargs
|
||
|
|
||
|
|
||
|
def _validate_minkowski_kwargs(X, m, n, **kwargs):
|
||
|
if 'p' not in kwargs:
|
||
|
kwargs['p'] = 2.
|
||
|
return kwargs
|
||
|
|
||
|
|
||
|
def _validate_pdist_input(X, m, n, metric_name, **kwargs):
|
||
|
if metric_name is not None:
|
||
|
# get supported types
|
||
|
types = _METRICS[metric_name].types
|
||
|
# choose best type
|
||
|
typ = types[types.index(X.dtype)] if X.dtype in types else types[0]
|
||
|
# validate data
|
||
|
X = _convert_to_type(X, out_type=typ)
|
||
|
|
||
|
# validate kwargs
|
||
|
_validate_kwargs = _METRICS[metric_name].validator
|
||
|
if _validate_kwargs:
|
||
|
kwargs = _validate_kwargs(X, m, n, **kwargs)
|
||
|
else:
|
||
|
typ = None
|
||
|
return X, typ, kwargs
|
||
|
|
||
|
|
||
|
def _validate_seuclidean_kwargs(X, m, n, **kwargs):
|
||
|
V = kwargs.pop('V', None)
|
||
|
if V is None:
|
||
|
V = np.var(X.astype(np.double), axis=0, ddof=1)
|
||
|
else:
|
||
|
V = np.asarray(V, order='c')
|
||
|
if V.dtype != np.double:
|
||
|
raise TypeError('Variance vector V must contain doubles.')
|
||
|
if len(V.shape) != 1:
|
||
|
raise ValueError('Variance vector V must '
|
||
|
'be one-dimensional.')
|
||
|
if V.shape[0] != n:
|
||
|
raise ValueError('Variance vector V must be of the same '
|
||
|
'dimension as the vectors on which the distances '
|
||
|
'are computed.')
|
||
|
kwargs['V'] = _convert_to_double(V)
|
||
|
return kwargs
|
||
|
|
||
|
|
||
|
def _validate_vector(u, dtype=None):
|
||
|
# XXX Is order='c' really necessary?
|
||
|
u = np.asarray(u, dtype=dtype, order='c').squeeze()
|
||
|
# Ensure values such as u=1 and u=[1] still return 1-D arrays.
|
||
|
u = np.atleast_1d(u)
|
||
|
if u.ndim > 1:
|
||
|
raise ValueError("Input vector should be 1-D.")
|
||
|
return u
|
||
|
|
||
|
|
||
|
def _validate_weights(w, dtype=np.double):
|
||
|
w = _validate_vector(w, dtype=dtype)
|
||
|
if np.any(w < 0):
|
||
|
raise ValueError("Input weights should be all non-negative")
|
||
|
return w
|
||
|
|
||
|
|
||
|
def _validate_wminkowski_kwargs(X, m, n, **kwargs):
|
||
|
w = kwargs.pop('w', None)
|
||
|
if w is None:
|
||
|
raise ValueError('weighted minkowski requires a weight '
|
||
|
'vector `w` to be given.')
|
||
|
kwargs['w'] = _convert_to_double(w)
|
||
|
if 'p' not in kwargs:
|
||
|
kwargs['p'] = 2.
|
||
|
return kwargs
|
||
|
|
||
|
|
||
|
def directed_hausdorff(u, v, seed=0):
|
||
|
"""
|
||
|
Compute the directed Hausdorff distance between two N-D arrays.
|
||
|
|
||
|
Distances between pairs are calculated using a Euclidean metric.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (M,N) ndarray
|
||
|
Input array.
|
||
|
v : (O,N) ndarray
|
||
|
Input array.
|
||
|
seed : int or None
|
||
|
Local `np.random.RandomState` seed. Default is 0, a random shuffling of
|
||
|
u and v that guarantees reproducibility.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
d : double
|
||
|
The directed Hausdorff distance between arrays `u` and `v`,
|
||
|
|
||
|
index_1 : int
|
||
|
index of point contributing to Hausdorff pair in `u`
|
||
|
|
||
|
index_2 : int
|
||
|
index of point contributing to Hausdorff pair in `v`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Uses the early break technique and the random sampling approach
|
||
|
described by [1]_. Although worst-case performance is ``O(m * o)``
|
||
|
(as with the brute force algorithm), this is unlikely in practice
|
||
|
as the input data would have to require the algorithm to explore
|
||
|
every single point interaction, and after the algorithm shuffles
|
||
|
the input points at that. The best case performance is O(m), which
|
||
|
is satisfied by selecting an inner loop distance that is less than
|
||
|
cmax and leads to an early break as often as possible. The authors
|
||
|
have formally shown that the average runtime is closer to O(m).
|
||
|
|
||
|
.. versionadded:: 0.19.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] A. A. Taha and A. Hanbury, "An efficient algorithm for
|
||
|
calculating the exact Hausdorff distance." IEEE Transactions On
|
||
|
Pattern Analysis And Machine Intelligence, vol. 37 pp. 2153-63,
|
||
|
2015.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.spatial.procrustes : Another similarity test for two data sets
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Find the directed Hausdorff distance between two 2-D arrays of
|
||
|
coordinates:
|
||
|
|
||
|
>>> from scipy.spatial.distance import directed_hausdorff
|
||
|
>>> u = np.array([(1.0, 0.0),
|
||
|
... (0.0, 1.0),
|
||
|
... (-1.0, 0.0),
|
||
|
... (0.0, -1.0)])
|
||
|
>>> v = np.array([(2.0, 0.0),
|
||
|
... (0.0, 2.0),
|
||
|
... (-2.0, 0.0),
|
||
|
... (0.0, -4.0)])
|
||
|
|
||
|
>>> directed_hausdorff(u, v)[0]
|
||
|
2.23606797749979
|
||
|
>>> directed_hausdorff(v, u)[0]
|
||
|
3.0
|
||
|
|
||
|
Find the general (symmetric) Hausdorff distance between two 2-D
|
||
|
arrays of coordinates:
|
||
|
|
||
|
>>> max(directed_hausdorff(u, v)[0], directed_hausdorff(v, u)[0])
|
||
|
3.0
|
||
|
|
||
|
Find the indices of the points that generate the Hausdorff distance
|
||
|
(the Hausdorff pair):
|
||
|
|
||
|
>>> directed_hausdorff(v, u)[1:]
|
||
|
(3, 3)
|
||
|
|
||
|
"""
|
||
|
u = np.asarray(u, dtype=np.float64, order='c')
|
||
|
v = np.asarray(v, dtype=np.float64, order='c')
|
||
|
result = _hausdorff.directed_hausdorff(u, v, seed)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def minkowski(u, v, p=2, w=None):
|
||
|
"""
|
||
|
Compute the Minkowski distance between two 1-D arrays.
|
||
|
|
||
|
The Minkowski distance between 1-D arrays `u` and `v`,
|
||
|
is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
{||u-v||}_p = (\\sum{|u_i - v_i|^p})^{1/p}.
|
||
|
|
||
|
|
||
|
\\left(\\sum{w_i(|(u_i - v_i)|^p)}\\right)^{1/p}.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
p : int
|
||
|
The order of the norm of the difference :math:`{||u-v||}_p`.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
minkowski : double
|
||
|
The Minkowski distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 1)
|
||
|
2.0
|
||
|
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 2)
|
||
|
1.4142135623730951
|
||
|
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 3)
|
||
|
1.2599210498948732
|
||
|
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 1)
|
||
|
1.0
|
||
|
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 2)
|
||
|
1.0
|
||
|
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 3)
|
||
|
1.0
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if p < 1:
|
||
|
raise ValueError("p must be at least 1")
|
||
|
u_v = u - v
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
if p == 1:
|
||
|
root_w = w
|
||
|
if p == 2:
|
||
|
# better precision and speed
|
||
|
root_w = np.sqrt(w)
|
||
|
else:
|
||
|
root_w = np.power(w, 1/p)
|
||
|
u_v = root_w * u_v
|
||
|
dist = norm(u_v, ord=p)
|
||
|
return dist
|
||
|
|
||
|
|
||
|
# `minkowski` gained weights in scipy 1.0. Once we're at say version 1.3,
|
||
|
# deprecated `wminkowski`. Not done at once because it would be annoying for
|
||
|
# downstream libraries that used `wminkowski` and support multiple scipy
|
||
|
# versions.
|
||
|
def wminkowski(u, v, p, w):
|
||
|
"""
|
||
|
Compute the weighted Minkowski distance between two 1-D arrays.
|
||
|
|
||
|
The weighted Minkowski distance between `u` and `v`, defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\left(\\sum{(|w_i (u_i - v_i)|^p)}\\right)^{1/p}.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
p : int
|
||
|
The order of the norm of the difference :math:`{||u-v||}_p`.
|
||
|
w : (N,) array_like
|
||
|
The weight vector.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
wminkowski : double
|
||
|
The weighted Minkowski distance between vectors `u` and `v`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`wminkowski` is DEPRECATED. It implements a definition where weights
|
||
|
are powered. It is recommended to use the weighted version of `minkowski`
|
||
|
instead. This function will be removed in a future version of scipy.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.wminkowski([1, 0, 0], [0, 1, 0], 1, np.ones(3))
|
||
|
2.0
|
||
|
>>> distance.wminkowski([1, 0, 0], [0, 1, 0], 2, np.ones(3))
|
||
|
1.4142135623730951
|
||
|
>>> distance.wminkowski([1, 0, 0], [0, 1, 0], 3, np.ones(3))
|
||
|
1.2599210498948732
|
||
|
>>> distance.wminkowski([1, 1, 0], [0, 1, 0], 1, np.ones(3))
|
||
|
1.0
|
||
|
>>> distance.wminkowski([1, 1, 0], [0, 1, 0], 2, np.ones(3))
|
||
|
1.0
|
||
|
>>> distance.wminkowski([1, 1, 0], [0, 1, 0], 3, np.ones(3))
|
||
|
1.0
|
||
|
|
||
|
"""
|
||
|
w = _validate_weights(w)
|
||
|
return minkowski(u, v, p=p, w=w**p)
|
||
|
|
||
|
|
||
|
def euclidean(u, v, w=None):
|
||
|
"""
|
||
|
Computes the Euclidean distance between two 1-D arrays.
|
||
|
|
||
|
The Euclidean distance between 1-D arrays `u` and `v`, is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
{||u-v||}_2
|
||
|
|
||
|
\\left(\\sum{(w_i |(u_i - v_i)|^2)}\\right)^{1/2}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
euclidean : double
|
||
|
The Euclidean distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.euclidean([1, 0, 0], [0, 1, 0])
|
||
|
1.4142135623730951
|
||
|
>>> distance.euclidean([1, 1, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
|
||
|
"""
|
||
|
return minkowski(u, v, p=2, w=w)
|
||
|
|
||
|
|
||
|
def sqeuclidean(u, v, w=None):
|
||
|
"""
|
||
|
Compute the squared Euclidean distance between two 1-D arrays.
|
||
|
|
||
|
The squared Euclidean distance between `u` and `v` is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
{||u-v||}_2^2
|
||
|
|
||
|
\\left(\\sum{(w_i |(u_i - v_i)|^2)}\\right)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sqeuclidean : double
|
||
|
The squared Euclidean distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.sqeuclidean([1, 0, 0], [0, 1, 0])
|
||
|
2.0
|
||
|
>>> distance.sqeuclidean([1, 1, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
|
||
|
"""
|
||
|
# Preserve float dtypes, but convert everything else to np.float64
|
||
|
# for stability.
|
||
|
utype, vtype = None, None
|
||
|
if not (hasattr(u, "dtype") and np.issubdtype(u.dtype, np.inexact)):
|
||
|
utype = np.float64
|
||
|
if not (hasattr(v, "dtype") and np.issubdtype(v.dtype, np.inexact)):
|
||
|
vtype = np.float64
|
||
|
|
||
|
u = _validate_vector(u, dtype=utype)
|
||
|
v = _validate_vector(v, dtype=vtype)
|
||
|
u_v = u - v
|
||
|
u_v_w = u_v # only want weights applied once
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
u_v_w = w * u_v
|
||
|
return np.dot(u_v, u_v_w)
|
||
|
|
||
|
|
||
|
def correlation(u, v, w=None, centered=True):
|
||
|
"""
|
||
|
Compute the correlation distance between two 1-D arrays.
|
||
|
|
||
|
The correlation distance between `u` and `v`, is
|
||
|
defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
|
||
|
{{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2}
|
||
|
|
||
|
where :math:`\\bar{u}` is the mean of the elements of `u`
|
||
|
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
correlation : double
|
||
|
The correlation distance between 1-D array `u` and `v`.
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
if centered:
|
||
|
umu = np.average(u, weights=w)
|
||
|
vmu = np.average(v, weights=w)
|
||
|
u = u - umu
|
||
|
v = v - vmu
|
||
|
uv = np.average(u * v, weights=w)
|
||
|
uu = np.average(np.square(u), weights=w)
|
||
|
vv = np.average(np.square(v), weights=w)
|
||
|
dist = 1.0 - uv / np.sqrt(uu * vv)
|
||
|
return dist
|
||
|
|
||
|
|
||
|
def cosine(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Cosine distance between 1-D arrays.
|
||
|
|
||
|
The Cosine distance between `u` and `v`, is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
1 - \\frac{u \\cdot v}
|
||
|
{||u||_2 ||v||_2}.
|
||
|
|
||
|
where :math:`u \\cdot v` is the dot product of :math:`u` and
|
||
|
:math:`v`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cosine : double
|
||
|
The Cosine distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.cosine([1, 0, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
>>> distance.cosine([100, 0, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
>>> distance.cosine([1, 1, 0], [0, 1, 0])
|
||
|
0.29289321881345254
|
||
|
|
||
|
"""
|
||
|
# cosine distance is also referred to as 'uncentered correlation',
|
||
|
# or 'reflective correlation'
|
||
|
return correlation(u, v, w=w, centered=False)
|
||
|
|
||
|
|
||
|
def hamming(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Hamming distance between two 1-D arrays.
|
||
|
|
||
|
The Hamming distance between 1-D arrays `u` and `v`, is simply the
|
||
|
proportion of disagreeing components in `u` and `v`. If `u` and `v` are
|
||
|
boolean vectors, the Hamming distance is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\frac{c_{01} + c_{10}}{n}
|
||
|
|
||
|
where :math:`c_{ij}` is the number of occurrences of
|
||
|
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
||
|
:math:`k < n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
hamming : double
|
||
|
The Hamming distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.hamming([1, 0, 0], [0, 1, 0])
|
||
|
0.66666666666666663
|
||
|
>>> distance.hamming([1, 0, 0], [1, 1, 0])
|
||
|
0.33333333333333331
|
||
|
>>> distance.hamming([1, 0, 0], [2, 0, 0])
|
||
|
0.33333333333333331
|
||
|
>>> distance.hamming([1, 0, 0], [3, 0, 0])
|
||
|
0.33333333333333331
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if u.shape != v.shape:
|
||
|
raise ValueError('The 1d arrays must have equal lengths.')
|
||
|
u_ne_v = u != v
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
return np.average(u_ne_v, weights=w)
|
||
|
|
||
|
|
||
|
def jaccard(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Jaccard-Needham dissimilarity between two boolean 1-D arrays.
|
||
|
|
||
|
The Jaccard-Needham dissimilarity between 1-D boolean arrays `u` and `v`,
|
||
|
is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\frac{c_{TF} + c_{FT}}
|
||
|
{c_{TT} + c_{FT} + c_{TF}}
|
||
|
|
||
|
where :math:`c_{ij}` is the number of occurrences of
|
||
|
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
||
|
:math:`k < n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like, bool
|
||
|
Input array.
|
||
|
v : (N,) array_like, bool
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
jaccard : double
|
||
|
The Jaccard distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.jaccard([1, 0, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
>>> distance.jaccard([1, 0, 0], [1, 1, 0])
|
||
|
0.5
|
||
|
>>> distance.jaccard([1, 0, 0], [1, 2, 0])
|
||
|
0.5
|
||
|
>>> distance.jaccard([1, 0, 0], [1, 1, 1])
|
||
|
0.66666666666666663
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
nonzero = np.bitwise_or(u != 0, v != 0)
|
||
|
unequal_nonzero = np.bitwise_and((u != v), nonzero)
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
nonzero = w * nonzero
|
||
|
unequal_nonzero = w * unequal_nonzero
|
||
|
dist = np.double(unequal_nonzero.sum()) / np.double(nonzero.sum())
|
||
|
return dist
|
||
|
|
||
|
|
||
|
def kulsinski(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Kulsinski dissimilarity between two boolean 1-D arrays.
|
||
|
|
||
|
The Kulsinski dissimilarity between two boolean 1-D arrays `u` and `v`,
|
||
|
is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\frac{c_{TF} + c_{FT} - c_{TT} + n}
|
||
|
{c_{FT} + c_{TF} + n}
|
||
|
|
||
|
where :math:`c_{ij}` is the number of occurrences of
|
||
|
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
||
|
:math:`k < n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like, bool
|
||
|
Input array.
|
||
|
v : (N,) array_like, bool
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
kulsinski : double
|
||
|
The Kulsinski distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.kulsinski([1, 0, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
>>> distance.kulsinski([1, 0, 0], [1, 1, 0])
|
||
|
0.75
|
||
|
>>> distance.kulsinski([1, 0, 0], [2, 1, 0])
|
||
|
0.33333333333333331
|
||
|
>>> distance.kulsinski([1, 0, 0], [3, 1, 0])
|
||
|
-0.5
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if w is None:
|
||
|
n = float(len(u))
|
||
|
else:
|
||
|
w = _validate_weights(w)
|
||
|
n = w.sum()
|
||
|
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
|
||
|
|
||
|
return (ntf + nft - ntt + n) / (ntf + nft + n)
|
||
|
|
||
|
|
||
|
def seuclidean(u, v, V):
|
||
|
"""
|
||
|
Return the standardized Euclidean distance between two 1-D arrays.
|
||
|
|
||
|
The standardized Euclidean distance between `u` and `v`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
V : (N,) array_like
|
||
|
`V` is an 1-D array of component variances. It is usually computed
|
||
|
among a larger collection vectors.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
seuclidean : double
|
||
|
The standardized Euclidean distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [0.1, 0.1, 0.1])
|
||
|
4.4721359549995796
|
||
|
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [1, 0.1, 0.1])
|
||
|
3.3166247903553998
|
||
|
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [10, 0.1, 0.1])
|
||
|
3.1780497164141406
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
V = _validate_vector(V, dtype=np.float64)
|
||
|
if V.shape[0] != u.shape[0] or u.shape[0] != v.shape[0]:
|
||
|
raise TypeError('V must be a 1-D array of the same dimension '
|
||
|
'as u and v.')
|
||
|
return euclidean(u, v, w=1/V)
|
||
|
|
||
|
|
||
|
def cityblock(u, v, w=None):
|
||
|
"""
|
||
|
Compute the City Block (Manhattan) distance.
|
||
|
|
||
|
Computes the Manhattan distance between two 1-D arrays `u` and `v`,
|
||
|
which is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\sum_i {\\left| u_i - v_i \\right|}.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cityblock : double
|
||
|
The City Block (Manhattan) distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.cityblock([1, 0, 0], [0, 1, 0])
|
||
|
2
|
||
|
>>> distance.cityblock([1, 0, 0], [0, 2, 0])
|
||
|
3
|
||
|
>>> distance.cityblock([1, 0, 0], [1, 1, 0])
|
||
|
1
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
l1_diff = abs(u - v)
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
l1_diff = w * l1_diff
|
||
|
return l1_diff.sum()
|
||
|
|
||
|
|
||
|
def mahalanobis(u, v, VI):
|
||
|
"""
|
||
|
Compute the Mahalanobis distance between two 1-D arrays.
|
||
|
|
||
|
The Mahalanobis distance between 1-D arrays `u` and `v`, is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\sqrt{ (u-v) V^{-1} (u-v)^T }
|
||
|
|
||
|
where ``V`` is the covariance matrix. Note that the argument `VI`
|
||
|
is the inverse of ``V``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
VI : ndarray
|
||
|
The inverse of the covariance matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mahalanobis : double
|
||
|
The Mahalanobis distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]
|
||
|
>>> distance.mahalanobis([1, 0, 0], [0, 1, 0], iv)
|
||
|
1.0
|
||
|
>>> distance.mahalanobis([0, 2, 0], [0, 1, 0], iv)
|
||
|
1.0
|
||
|
>>> distance.mahalanobis([2, 0, 0], [0, 1, 0], iv)
|
||
|
1.7320508075688772
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
VI = np.atleast_2d(VI)
|
||
|
delta = u - v
|
||
|
m = np.dot(np.dot(delta, VI), delta)
|
||
|
return np.sqrt(m)
|
||
|
|
||
|
|
||
|
def chebyshev(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Chebyshev distance.
|
||
|
|
||
|
Computes the Chebyshev distance between two 1-D arrays `u` and `v`,
|
||
|
which is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\max_i {|u_i-v_i|}.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input vector.
|
||
|
v : (N,) array_like
|
||
|
Input vector.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
chebyshev : double
|
||
|
The Chebyshev distance between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.chebyshev([1, 0, 0], [0, 1, 0])
|
||
|
1
|
||
|
>>> distance.chebyshev([1, 1, 0], [0, 1, 0])
|
||
|
1
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
has_weight = w > 0
|
||
|
if has_weight.sum() < w.size:
|
||
|
u = u[has_weight]
|
||
|
v = v[has_weight]
|
||
|
return max(abs(u - v))
|
||
|
|
||
|
|
||
|
def braycurtis(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Bray-Curtis distance between two 1-D arrays.
|
||
|
|
||
|
Bray-Curtis distance is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\sum{|u_i-v_i|} / \\sum{|u_i+v_i|}
|
||
|
|
||
|
The Bray-Curtis distance is in the range [0, 1] if all coordinates are
|
||
|
positive, and is undefined if the inputs are of length zero.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
braycurtis : double
|
||
|
The Bray-Curtis distance between 1-D arrays `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.braycurtis([1, 0, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
>>> distance.braycurtis([1, 1, 0], [0, 1, 0])
|
||
|
0.33333333333333331
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v, dtype=np.float64)
|
||
|
l1_diff = abs(u - v)
|
||
|
l1_sum = abs(u + v)
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
l1_diff = w * l1_diff
|
||
|
l1_sum = w * l1_sum
|
||
|
return l1_diff.sum() / l1_sum.sum()
|
||
|
|
||
|
|
||
|
def canberra(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Canberra distance between two 1-D arrays.
|
||
|
|
||
|
The Canberra distance is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
|
||
|
{|u_i|+|v_i|}.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like
|
||
|
Input array.
|
||
|
v : (N,) array_like
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
canberra : double
|
||
|
The Canberra distance between vectors `u` and `v`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
When `u[i]` and `v[i]` are 0 for given i, then the fraction 0/0 = 0 is
|
||
|
used in the calculation.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.canberra([1, 0, 0], [0, 1, 0])
|
||
|
2.0
|
||
|
>>> distance.canberra([1, 1, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v, dtype=np.float64)
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
olderr = np.seterr(invalid='ignore')
|
||
|
try:
|
||
|
abs_uv = abs(u - v)
|
||
|
abs_u = abs(u)
|
||
|
abs_v = abs(v)
|
||
|
d = abs_uv / (abs_u + abs_v)
|
||
|
if w is not None:
|
||
|
d = w * d
|
||
|
d = np.nansum(d)
|
||
|
finally:
|
||
|
np.seterr(**olderr)
|
||
|
return d
|
||
|
|
||
|
|
||
|
def yule(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Yule dissimilarity between two boolean 1-D arrays.
|
||
|
|
||
|
The Yule dissimilarity is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\frac{R}{c_{TT} * c_{FF} + \\frac{R}{2}}
|
||
|
|
||
|
where :math:`c_{ij}` is the number of occurrences of
|
||
|
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
||
|
:math:`k < n` and :math:`R = 2.0 * c_{TF} * c_{FT}`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like, bool
|
||
|
Input array.
|
||
|
v : (N,) array_like, bool
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
yule : double
|
||
|
The Yule dissimilarity between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.yule([1, 0, 0], [0, 1, 0])
|
||
|
2.0
|
||
|
>>> distance.yule([1, 1, 0], [0, 1, 0])
|
||
|
0.0
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
|
||
|
return float(2.0 * ntf * nft / np.array(ntt * nff + ntf * nft))
|
||
|
|
||
|
@np.deprecate(message="spatial.distance.matching is deprecated in scipy 1.0.0; "
|
||
|
"use spatial.distance.hamming instead.")
|
||
|
def matching(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Hamming distance between two boolean 1-D arrays.
|
||
|
|
||
|
This is a deprecated synonym for :func:`hamming`.
|
||
|
"""
|
||
|
return hamming(u, v, w=w)
|
||
|
|
||
|
|
||
|
def dice(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Dice dissimilarity between two boolean 1-D arrays.
|
||
|
|
||
|
The Dice dissimilarity between `u` and `v`, is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\frac{c_{TF} + c_{FT}}
|
||
|
{2c_{TT} + c_{FT} + c_{TF}}
|
||
|
|
||
|
where :math:`c_{ij}` is the number of occurrences of
|
||
|
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
||
|
:math:`k < n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) ndarray, bool
|
||
|
Input 1-D array.
|
||
|
v : (N,) ndarray, bool
|
||
|
Input 1-D array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dice : double
|
||
|
The Dice dissimilarity between 1-D arrays `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.dice([1, 0, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
>>> distance.dice([1, 0, 0], [1, 1, 0])
|
||
|
0.3333333333333333
|
||
|
>>> distance.dice([1, 0, 0], [2, 0, 0])
|
||
|
-0.3333333333333333
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
if u.dtype == v.dtype == bool and w is None:
|
||
|
ntt = (u & v).sum()
|
||
|
else:
|
||
|
dtype = np.find_common_type([int], [u.dtype, v.dtype])
|
||
|
u = u.astype(dtype)
|
||
|
v = v.astype(dtype)
|
||
|
if w is None:
|
||
|
ntt = (u * v).sum()
|
||
|
else:
|
||
|
ntt = (u * v * w).sum()
|
||
|
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w)
|
||
|
return float((ntf + nft) / np.array(2.0 * ntt + ntf + nft))
|
||
|
|
||
|
|
||
|
def rogerstanimoto(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.
|
||
|
|
||
|
The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays
|
||
|
`u` and `v`, is defined as
|
||
|
|
||
|
.. math::
|
||
|
\\frac{R}
|
||
|
{c_{TT} + c_{FF} + R}
|
||
|
|
||
|
where :math:`c_{ij}` is the number of occurrences of
|
||
|
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
||
|
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like, bool
|
||
|
Input array.
|
||
|
v : (N,) array_like, bool
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rogerstanimoto : double
|
||
|
The Rogers-Tanimoto dissimilarity between vectors
|
||
|
`u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0])
|
||
|
0.8
|
||
|
>>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0])
|
||
|
0.5
|
||
|
>>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0])
|
||
|
-1.0
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if w is not None:
|
||
|
w = _validate_weights(w)
|
||
|
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
|
||
|
return float(2.0 * (ntf + nft)) / float(ntt + nff + (2.0 * (ntf + nft)))
|
||
|
|
||
|
|
||
|
def russellrao(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Russell-Rao dissimilarity between two boolean 1-D arrays.
|
||
|
|
||
|
The Russell-Rao dissimilarity between two boolean 1-D arrays, `u` and
|
||
|
`v`, is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\frac{n - c_{TT}}
|
||
|
{n}
|
||
|
|
||
|
where :math:`c_{ij}` is the number of occurrences of
|
||
|
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
||
|
:math:`k < n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like, bool
|
||
|
Input array.
|
||
|
v : (N,) array_like, bool
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
russellrao : double
|
||
|
The Russell-Rao dissimilarity between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.russellrao([1, 0, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
>>> distance.russellrao([1, 0, 0], [1, 1, 0])
|
||
|
0.6666666666666666
|
||
|
>>> distance.russellrao([1, 0, 0], [2, 0, 0])
|
||
|
0.3333333333333333
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if u.dtype == v.dtype == bool and w is None:
|
||
|
ntt = (u & v).sum()
|
||
|
n = float(len(u))
|
||
|
elif w is None:
|
||
|
ntt = (u * v).sum()
|
||
|
n = float(len(u))
|
||
|
else:
|
||
|
w = _validate_weights(w)
|
||
|
ntt = (u * v * w).sum()
|
||
|
n = w.sum()
|
||
|
return float(n - ntt) / n
|
||
|
|
||
|
|
||
|
def sokalmichener(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays.
|
||
|
|
||
|
The Sokal-Michener dissimilarity between boolean 1-D arrays `u` and `v`,
|
||
|
is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\frac{R}
|
||
|
{S + R}
|
||
|
|
||
|
where :math:`c_{ij}` is the number of occurrences of
|
||
|
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
||
|
:math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and
|
||
|
:math:`S = c_{FF} + c_{TT}`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like, bool
|
||
|
Input array.
|
||
|
v : (N,) array_like, bool
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sokalmichener : double
|
||
|
The Sokal-Michener dissimilarity between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.sokalmichener([1, 0, 0], [0, 1, 0])
|
||
|
0.8
|
||
|
>>> distance.sokalmichener([1, 0, 0], [1, 1, 0])
|
||
|
0.5
|
||
|
>>> distance.sokalmichener([1, 0, 0], [2, 0, 0])
|
||
|
-1.0
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if u.dtype == v.dtype == bool and w is None:
|
||
|
ntt = (u & v).sum()
|
||
|
nff = (~u & ~v).sum()
|
||
|
elif w is None:
|
||
|
ntt = (u * v).sum()
|
||
|
nff = ((1.0 - u) * (1.0 - v)).sum()
|
||
|
else:
|
||
|
w = _validate_weights(w)
|
||
|
ntt = (u * v * w).sum()
|
||
|
nff = ((1.0 - u) * (1.0 - v) * w).sum()
|
||
|
(nft, ntf) = _nbool_correspond_ft_tf(u, v)
|
||
|
return float(2.0 * (ntf + nft)) / float(ntt + nff + 2.0 * (ntf + nft))
|
||
|
|
||
|
|
||
|
def sokalsneath(u, v, w=None):
|
||
|
"""
|
||
|
Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays.
|
||
|
|
||
|
The Sokal-Sneath dissimilarity between `u` and `v`,
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\frac{R}
|
||
|
{c_{TT} + R}
|
||
|
|
||
|
where :math:`c_{ij}` is the number of occurrences of
|
||
|
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
||
|
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : (N,) array_like, bool
|
||
|
Input array.
|
||
|
v : (N,) array_like, bool
|
||
|
Input array.
|
||
|
w : (N,) array_like, optional
|
||
|
The weights for each value in `u` and `v`. Default is None,
|
||
|
which gives each value a weight of 1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sokalsneath : double
|
||
|
The Sokal-Sneath dissimilarity between vectors `u` and `v`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> distance.sokalsneath([1, 0, 0], [0, 1, 0])
|
||
|
1.0
|
||
|
>>> distance.sokalsneath([1, 0, 0], [1, 1, 0])
|
||
|
0.66666666666666663
|
||
|
>>> distance.sokalsneath([1, 0, 0], [2, 1, 0])
|
||
|
0.0
|
||
|
>>> distance.sokalsneath([1, 0, 0], [3, 1, 0])
|
||
|
-2.0
|
||
|
|
||
|
"""
|
||
|
u = _validate_vector(u)
|
||
|
v = _validate_vector(v)
|
||
|
if u.dtype == v.dtype == bool and w is None:
|
||
|
ntt = (u & v).sum()
|
||
|
elif w is None:
|
||
|
ntt = (u * v).sum()
|
||
|
else:
|
||
|
w = _validate_weights(w)
|
||
|
ntt = (u * v * w).sum()
|
||
|
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w)
|
||
|
denom = np.array(ntt + 2.0 * (ntf + nft))
|
||
|
if not denom.any():
|
||
|
raise ValueError('Sokal-Sneath dissimilarity is not defined for '
|
||
|
'vectors that are entirely false.')
|
||
|
return float(2.0 * (ntf + nft)) / denom
|
||
|
|
||
|
|
||
|
_convert_to_double = partial(_convert_to_type, out_type=np.double)
|
||
|
_convert_to_bool = partial(_convert_to_type, out_type=bool)
|
||
|
|
||
|
# adding python-only wrappers to _distance_wrap module
|
||
|
_distance_wrap.pdist_correlation_double_wrap = _correlation_pdist_wrap
|
||
|
_distance_wrap.cdist_correlation_double_wrap = _correlation_cdist_wrap
|
||
|
|
||
|
# Registry of implemented metrics:
|
||
|
# Dictionary with the following structure:
|
||
|
# {
|
||
|
# metric_name : MetricInfo(aka, types=[double], validator=None)
|
||
|
# }
|
||
|
#
|
||
|
# Where:
|
||
|
# `metric_name` must be equal to python metric name
|
||
|
#
|
||
|
# MetricInfo is a named tuple with fields:
|
||
|
# 'aka' : [list of aliases],
|
||
|
#
|
||
|
# 'validator': f(X, m, n, **kwargs) # function that check kwargs and
|
||
|
# # computes default values.
|
||
|
#
|
||
|
# 'types': [list of supported types], # X (pdist) and XA (cdist) are used to
|
||
|
# # choose the type. if there is no match
|
||
|
# # the first type is used. Default double
|
||
|
#}
|
||
|
MetricInfo = namedtuple("MetricInfo", 'aka types validator ')
|
||
|
MetricInfo.__new__.__defaults__ = (['double'], None)
|
||
|
|
||
|
_METRICS = {
|
||
|
'braycurtis': MetricInfo(aka=['braycurtis']),
|
||
|
'canberra': MetricInfo(aka=['canberra']),
|
||
|
'chebyshev': MetricInfo(aka=['chebychev', 'chebyshev', 'cheby', 'cheb', 'ch']),
|
||
|
'cityblock': MetricInfo(aka=['cityblock', 'cblock', 'cb', 'c']),
|
||
|
'correlation': MetricInfo(aka=['correlation', 'co']),
|
||
|
'cosine': MetricInfo(aka=['cosine', 'cos']),
|
||
|
'dice': MetricInfo(aka=['dice'], types=['bool']),
|
||
|
'euclidean': MetricInfo(aka=['euclidean', 'euclid', 'eu', 'e']),
|
||
|
'hamming': MetricInfo(aka=['matching', 'hamming', 'hamm', 'ha', 'h'],
|
||
|
types=['double', 'bool']),
|
||
|
'jaccard': MetricInfo(aka=['jaccard', 'jacc', 'ja', 'j'],
|
||
|
types=['double', 'bool']),
|
||
|
'kulsinski': MetricInfo(aka=['kulsinski'], types=['bool']),
|
||
|
'mahalanobis': MetricInfo(aka=['mahalanobis', 'mahal', 'mah'],
|
||
|
validator=_validate_mahalanobis_kwargs),
|
||
|
'minkowski': MetricInfo(aka=['minkowski', 'mi', 'm', 'pnorm'],
|
||
|
validator=_validate_minkowski_kwargs),
|
||
|
'rogerstanimoto': MetricInfo(aka=['rogerstanimoto'], types=['bool']),
|
||
|
'russellrao': MetricInfo(aka=['russellrao'], types=['bool']),
|
||
|
'seuclidean': MetricInfo(aka=['seuclidean', 'se', 's'],
|
||
|
validator=_validate_seuclidean_kwargs),
|
||
|
'sokalmichener': MetricInfo(aka=['sokalmichener'], types=['bool']),
|
||
|
'sokalsneath': MetricInfo(aka=['sokalsneath'], types=['bool']),
|
||
|
'sqeuclidean': MetricInfo(aka=['sqeuclidean', 'sqe', 'sqeuclid']),
|
||
|
'wminkowski': MetricInfo(aka=['wminkowski', 'wmi', 'wm', 'wpnorm'],
|
||
|
validator=_validate_wminkowski_kwargs),
|
||
|
'yule': MetricInfo(aka=['yule'], types=['bool']),
|
||
|
}
|
||
|
|
||
|
|
||
|
_METRIC_ALIAS = dict((alias, name)
|
||
|
for name, info in _METRICS.items()
|
||
|
for alias in info.aka)
|
||
|
|
||
|
_METRICS_NAMES = list(_METRICS.keys())
|
||
|
|
||
|
_TEST_METRICS = {'test_' + name: globals()[name] for name in _METRICS.keys()}
|
||
|
|
||
|
|
||
|
def pdist(X, metric='euclidean', *args, **kwargs):
|
||
|
"""
|
||
|
Pairwise distances between observations in n-dimensional space.
|
||
|
|
||
|
See Notes for common calling conventions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : ndarray
|
||
|
An m by n array of m original observations in an
|
||
|
n-dimensional space.
|
||
|
metric : str or function, optional
|
||
|
The distance metric to use. The distance function can
|
||
|
be 'braycurtis', 'canberra', 'chebyshev', 'cityblock',
|
||
|
'correlation', 'cosine', 'dice', 'euclidean', 'hamming',
|
||
|
'jaccard', 'kulsinski', 'mahalanobis', 'matching',
|
||
|
'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
|
||
|
'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.
|
||
|
*args : tuple. Deprecated.
|
||
|
Additional arguments should be passed as keyword arguments
|
||
|
**kwargs : dict, optional
|
||
|
Extra arguments to `metric`: refer to each metric documentation for a
|
||
|
list of all possible arguments.
|
||
|
|
||
|
Some possible arguments:
|
||
|
|
||
|
p : scalar
|
||
|
The p-norm to apply for Minkowski, weighted and unweighted.
|
||
|
Default: 2.
|
||
|
|
||
|
w : ndarray
|
||
|
The weight vector for metrics that support weights (e.g., Minkowski).
|
||
|
|
||
|
V : ndarray
|
||
|
The variance vector for standardized Euclidean.
|
||
|
Default: var(X, axis=0, ddof=1)
|
||
|
|
||
|
VI : ndarray
|
||
|
The inverse of the covariance matrix for Mahalanobis.
|
||
|
Default: inv(cov(X.T)).T
|
||
|
|
||
|
out : ndarray.
|
||
|
The output array
|
||
|
If not None, condensed distance matrix Y is stored in this array.
|
||
|
Note: metric independent, it will become a regular keyword arg in a
|
||
|
future scipy version
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : ndarray
|
||
|
Returns a condensed distance matrix Y. For
|
||
|
each :math:`i` and :math:`j` (where :math:`i<j<m`),where m is the number
|
||
|
of original observations. The metric ``dist(u=X[i], v=X[j])``
|
||
|
is computed and stored in entry ``ij``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
squareform : converts between condensed distance matrices and
|
||
|
square distance matrices.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
See ``squareform`` for information on how to calculate the index of
|
||
|
this entry or to convert the condensed distance matrix to a
|
||
|
redundant square matrix.
|
||
|
|
||
|
The following are common calling conventions.
|
||
|
|
||
|
1. ``Y = pdist(X, 'euclidean')``
|
||
|
|
||
|
Computes the distance between m points using Euclidean distance
|
||
|
(2-norm) as the distance metric between the points. The points
|
||
|
are arranged as m n-dimensional row vectors in the matrix X.
|
||
|
|
||
|
2. ``Y = pdist(X, 'minkowski', p=2.)``
|
||
|
|
||
|
Computes the distances using the Minkowski distance
|
||
|
:math:`||u-v||_p` (p-norm) where :math:`p \\geq 1`.
|
||
|
|
||
|
3. ``Y = pdist(X, 'cityblock')``
|
||
|
|
||
|
Computes the city block or Manhattan distance between the
|
||
|
points.
|
||
|
|
||
|
4. ``Y = pdist(X, 'seuclidean', V=None)``
|
||
|
|
||
|
Computes the standardized Euclidean distance. The standardized
|
||
|
Euclidean distance between two n-vectors ``u`` and ``v`` is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}
|
||
|
|
||
|
|
||
|
V is the variance vector; V[i] is the variance computed over all
|
||
|
the i'th components of the points. If not passed, it is
|
||
|
automatically computed.
|
||
|
|
||
|
5. ``Y = pdist(X, 'sqeuclidean')``
|
||
|
|
||
|
Computes the squared Euclidean distance :math:`||u-v||_2^2` between
|
||
|
the vectors.
|
||
|
|
||
|
6. ``Y = pdist(X, 'cosine')``
|
||
|
|
||
|
Computes the cosine distance between vectors u and v,
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
1 - \\frac{u \\cdot v}
|
||
|
{{||u||}_2 {||v||}_2}
|
||
|
|
||
|
where :math:`||*||_2` is the 2-norm of its argument ``*``, and
|
||
|
:math:`u \\cdot v` is the dot product of ``u`` and ``v``.
|
||
|
|
||
|
7. ``Y = pdist(X, 'correlation')``
|
||
|
|
||
|
Computes the correlation distance between vectors u and v. This is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
|
||
|
{{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2}
|
||
|
|
||
|
where :math:`\\bar{v}` is the mean of the elements of vector v,
|
||
|
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
|
||
|
|
||
|
8. ``Y = pdist(X, 'hamming')``
|
||
|
|
||
|
Computes the normalized Hamming distance, or the proportion of
|
||
|
those vector elements between two n-vectors ``u`` and ``v``
|
||
|
which disagree. To save memory, the matrix ``X`` can be of type
|
||
|
boolean.
|
||
|
|
||
|
9. ``Y = pdist(X, 'jaccard')``
|
||
|
|
||
|
Computes the Jaccard distance between the points. Given two
|
||
|
vectors, ``u`` and ``v``, the Jaccard distance is the
|
||
|
proportion of those elements ``u[i]`` and ``v[i]`` that
|
||
|
disagree.
|
||
|
|
||
|
10. ``Y = pdist(X, 'chebyshev')``
|
||
|
|
||
|
Computes the Chebyshev distance between the points. The
|
||
|
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
|
||
|
maximum norm-1 distance between their respective elements. More
|
||
|
precisely, the distance is given by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
d(u,v) = \\max_i {|u_i-v_i|}
|
||
|
|
||
|
11. ``Y = pdist(X, 'canberra')``
|
||
|
|
||
|
Computes the Canberra distance between the points. The
|
||
|
Canberra distance between two points ``u`` and ``v`` is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
|
||
|
{|u_i|+|v_i|}
|
||
|
|
||
|
|
||
|
12. ``Y = pdist(X, 'braycurtis')``
|
||
|
|
||
|
Computes the Bray-Curtis distance between the points. The
|
||
|
Bray-Curtis distance between two points ``u`` and ``v`` is
|
||
|
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
d(u,v) = \\frac{\\sum_i {|u_i-v_i|}}
|
||
|
{\\sum_i {|u_i+v_i|}}
|
||
|
|
||
|
13. ``Y = pdist(X, 'mahalanobis', VI=None)``
|
||
|
|
||
|
Computes the Mahalanobis distance between the points. The
|
||
|
Mahalanobis distance between two points ``u`` and ``v`` is
|
||
|
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
|
||
|
variable) is the inverse covariance. If ``VI`` is not None,
|
||
|
``VI`` will be used as the inverse covariance matrix.
|
||
|
|
||
|
14. ``Y = pdist(X, 'yule')``
|
||
|
|
||
|
Computes the Yule distance between each pair of boolean
|
||
|
vectors. (see yule function documentation)
|
||
|
|
||
|
15. ``Y = pdist(X, 'matching')``
|
||
|
|
||
|
Synonym for 'hamming'.
|
||
|
|
||
|
16. ``Y = pdist(X, 'dice')``
|
||
|
|
||
|
Computes the Dice distance between each pair of boolean
|
||
|
vectors. (see dice function documentation)
|
||
|
|
||
|
17. ``Y = pdist(X, 'kulsinski')``
|
||
|
|
||
|
Computes the Kulsinski distance between each pair of
|
||
|
boolean vectors. (see kulsinski function documentation)
|
||
|
|
||
|
18. ``Y = pdist(X, 'rogerstanimoto')``
|
||
|
|
||
|
Computes the Rogers-Tanimoto distance between each pair of
|
||
|
boolean vectors. (see rogerstanimoto function documentation)
|
||
|
|
||
|
19. ``Y = pdist(X, 'russellrao')``
|
||
|
|
||
|
Computes the Russell-Rao distance between each pair of
|
||
|
boolean vectors. (see russellrao function documentation)
|
||
|
|
||
|
20. ``Y = pdist(X, 'sokalmichener')``
|
||
|
|
||
|
Computes the Sokal-Michener distance between each pair of
|
||
|
boolean vectors. (see sokalmichener function documentation)
|
||
|
|
||
|
21. ``Y = pdist(X, 'sokalsneath')``
|
||
|
|
||
|
Computes the Sokal-Sneath distance between each pair of
|
||
|
boolean vectors. (see sokalsneath function documentation)
|
||
|
|
||
|
22. ``Y = pdist(X, 'wminkowski', p=2, w=w)``
|
||
|
|
||
|
Computes the weighted Minkowski distance between each pair of
|
||
|
vectors. (see wminkowski function documentation)
|
||
|
|
||
|
23. ``Y = pdist(X, f)``
|
||
|
|
||
|
Computes the distance between all pairs of vectors in X
|
||
|
using the user supplied 2-arity function f. For example,
|
||
|
Euclidean distance between the vectors could be computed
|
||
|
as follows::
|
||
|
|
||
|
dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))
|
||
|
|
||
|
Note that you should avoid passing a reference to one of
|
||
|
the distance functions defined in this library. For example,::
|
||
|
|
||
|
dm = pdist(X, sokalsneath)
|
||
|
|
||
|
would calculate the pair-wise distances between the vectors in
|
||
|
X using the Python function sokalsneath. This would result in
|
||
|
sokalsneath being called :math:`{n \\choose 2}` times, which
|
||
|
is inefficient. Instead, the optimized C version is more
|
||
|
efficient, and we call it using the following syntax.::
|
||
|
|
||
|
dm = pdist(X, 'sokalsneath')
|
||
|
|
||
|
"""
|
||
|
# You can also call this as:
|
||
|
# Y = pdist(X, 'test_abc')
|
||
|
# where 'abc' is the metric being tested. This computes the distance
|
||
|
# between all pairs of vectors in X using the distance metric 'abc' but
|
||
|
# with a more succinct, verifiable, but less efficient implementation.
|
||
|
|
||
|
X = _asarray_validated(X, sparse_ok=False, objects_ok=True, mask_ok=True,
|
||
|
check_finite=False)
|
||
|
kwargs = _args_to_kwargs_xdist(args, kwargs, metric, "pdist")
|
||
|
|
||
|
X = np.asarray(X, order='c')
|
||
|
|
||
|
s = X.shape
|
||
|
if len(s) != 2:
|
||
|
raise ValueError('A 2-dimensional array must be passed.')
|
||
|
|
||
|
m, n = s
|
||
|
out = kwargs.pop("out", None)
|
||
|
if out is None:
|
||
|
dm = np.empty((m * (m - 1)) // 2, dtype=np.double)
|
||
|
else:
|
||
|
if out.shape != (m * (m - 1) // 2,):
|
||
|
raise ValueError("output array has incorrect shape.")
|
||
|
if not out.flags.c_contiguous:
|
||
|
raise ValueError("Output array must be C-contiguous.")
|
||
|
if out.dtype != np.double:
|
||
|
raise ValueError("Output array must be double type.")
|
||
|
dm = out
|
||
|
|
||
|
# compute blacklist for deprecated kwargs
|
||
|
if(metric in _METRICS['minkowski'].aka or
|
||
|
metric in _METRICS['wminkowski'].aka or
|
||
|
metric in ['test_minkowski', 'test_wminkowski'] or
|
||
|
metric in [minkowski, wminkowski]):
|
||
|
kwargs_blacklist = ["V", "VI"]
|
||
|
elif(metric in _METRICS['seuclidean'].aka or
|
||
|
metric == 'test_seuclidean' or metric == seuclidean):
|
||
|
kwargs_blacklist = ["p", "w", "VI"]
|
||
|
elif(metric in _METRICS['mahalanobis'].aka or
|
||
|
metric == 'test_mahalanobis' or metric == mahalanobis):
|
||
|
kwargs_blacklist = ["p", "w", "V"]
|
||
|
else:
|
||
|
kwargs_blacklist = ["p", "V", "VI"]
|
||
|
|
||
|
_filter_deprecated_kwargs(kwargs, kwargs_blacklist)
|
||
|
|
||
|
if callable(metric):
|
||
|
mstr = getattr(metric, '__name__', 'UnknownCustomMetric')
|
||
|
metric_name = _METRIC_ALIAS.get(mstr, None)
|
||
|
|
||
|
if metric_name is not None:
|
||
|
X, typ, kwargs = _validate_pdist_input(X, m, n,
|
||
|
metric_name, **kwargs)
|
||
|
|
||
|
k = 0
|
||
|
for i in xrange(0, m - 1):
|
||
|
for j in xrange(i + 1, m):
|
||
|
dm[k] = metric(X[i], X[j], **kwargs)
|
||
|
k = k + 1
|
||
|
|
||
|
elif isinstance(metric, string_types):
|
||
|
mstr = metric.lower()
|
||
|
|
||
|
# NOTE: C-version still does not support weights
|
||
|
if "w" in kwargs and not mstr.startswith("test_"):
|
||
|
if(mstr in _METRICS['seuclidean'].aka or
|
||
|
mstr in _METRICS['mahalanobis'].aka):
|
||
|
raise ValueError("metric %s incompatible with weights" % mstr)
|
||
|
# need to use python version for weighting
|
||
|
kwargs['out'] = out
|
||
|
mstr = "test_%s" % mstr
|
||
|
|
||
|
metric_name = _METRIC_ALIAS.get(mstr, None)
|
||
|
|
||
|
if metric_name is not None:
|
||
|
X, typ, kwargs = _validate_pdist_input(X, m, n,
|
||
|
metric_name, **kwargs)
|
||
|
|
||
|
# get pdist wrapper
|
||
|
pdist_fn = getattr(_distance_wrap,
|
||
|
"pdist_%s_%s_wrap" % (metric_name, typ))
|
||
|
pdist_fn(X, dm, **kwargs)
|
||
|
return dm
|
||
|
|
||
|
elif mstr in ['old_cosine', 'old_cos']:
|
||
|
warnings.warn('"old_cosine" is deprecated and will be removed in '
|
||
|
'a future version. Use "cosine" instead.',
|
||
|
DeprecationWarning)
|
||
|
X = _convert_to_double(X)
|
||
|
norms = np.einsum('ij,ij->i', X, X, dtype=np.double)
|
||
|
np.sqrt(norms, out=norms)
|
||
|
nV = norms.reshape(m, 1)
|
||
|
# The numerator u * v
|
||
|
nm = np.dot(X, X.T)
|
||
|
# The denom. ||u||*||v||
|
||
|
de = np.dot(nV, nV.T)
|
||
|
dm = 1.0 - (nm / de)
|
||
|
dm[xrange(0, m), xrange(0, m)] = 0.0
|
||
|
dm = squareform(dm)
|
||
|
elif mstr.startswith("test_"):
|
||
|
if mstr in _TEST_METRICS:
|
||
|
dm = pdist(X, _TEST_METRICS[mstr], **kwargs)
|
||
|
else:
|
||
|
raise ValueError('Unknown "Test" Distance Metric: %s' % mstr[5:])
|
||
|
else:
|
||
|
raise ValueError('Unknown Distance Metric: %s' % mstr)
|
||
|
else:
|
||
|
raise TypeError('2nd argument metric must be a string identifier '
|
||
|
'or a function.')
|
||
|
return dm
|
||
|
|
||
|
|
||
|
def squareform(X, force="no", checks=True):
|
||
|
"""
|
||
|
Convert a vector-form distance vector to a square-form distance
|
||
|
matrix, and vice-versa.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : ndarray
|
||
|
Either a condensed or redundant distance matrix.
|
||
|
force : str, optional
|
||
|
As with MATLAB(TM), if force is equal to ``'tovector'`` or
|
||
|
``'tomatrix'``, the input will be treated as a distance matrix or
|
||
|
distance vector respectively.
|
||
|
checks : bool, optional
|
||
|
If set to False, no checks will be made for matrix
|
||
|
symmetry nor zero diagonals. This is useful if it is known that
|
||
|
``X - X.T1`` is small and ``diag(X)`` is close to zero.
|
||
|
These values are ignored any way so they do not disrupt the
|
||
|
squareform transformation.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : ndarray
|
||
|
If a condensed distance matrix is passed, a redundant one is
|
||
|
returned, or if a redundant one is passed, a condensed distance
|
||
|
matrix is returned.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
1. v = squareform(X)
|
||
|
|
||
|
Given a square d-by-d symmetric distance matrix X,
|
||
|
``v = squareform(X)`` returns a ``d * (d-1) / 2`` (or
|
||
|
:math:`{n \\choose 2}`) sized vector v.
|
||
|
|
||
|
:math:`v[{n \\choose 2}-{n-i \\choose 2} + (j-i-1)]` is the distance
|
||
|
between points i and j. If X is non-square or asymmetric, an error
|
||
|
is returned.
|
||
|
|
||
|
2. X = squareform(v)
|
||
|
|
||
|
Given a ``d*(d-1)/2`` sized v for some integer ``d >= 2`` encoding
|
||
|
distances as described, ``X = squareform(v)`` returns a d by d distance
|
||
|
matrix X. The ``X[i, j]`` and ``X[j, i]`` values are set to
|
||
|
:math:`v[{n \\choose 2}-{n-i \\choose 2} + (j-i-1)]` and all
|
||
|
diagonal elements are zero.
|
||
|
|
||
|
In Scipy 0.19.0, ``squareform`` stopped casting all input types to
|
||
|
float64, and started returning arrays of the same dtype as the input.
|
||
|
|
||
|
"""
|
||
|
|
||
|
X = np.ascontiguousarray(X)
|
||
|
|
||
|
s = X.shape
|
||
|
|
||
|
if force.lower() == 'tomatrix':
|
||
|
if len(s) != 1:
|
||
|
raise ValueError("Forcing 'tomatrix' but input X is not a "
|
||
|
"distance vector.")
|
||
|
elif force.lower() == 'tovector':
|
||
|
if len(s) != 2:
|
||
|
raise ValueError("Forcing 'tovector' but input X is not a "
|
||
|
"distance matrix.")
|
||
|
|
||
|
# X = squareform(v)
|
||
|
if len(s) == 1:
|
||
|
if s[0] == 0:
|
||
|
return np.zeros((1, 1), dtype=X.dtype)
|
||
|
|
||
|
# Grab the closest value to the square root of the number
|
||
|
# of elements times 2 to see if the number of elements
|
||
|
# is indeed a binomial coefficient.
|
||
|
d = int(np.ceil(np.sqrt(s[0] * 2)))
|
||
|
|
||
|
# Check that v is of valid dimensions.
|
||
|
if d * (d - 1) != s[0] * 2:
|
||
|
raise ValueError('Incompatible vector size. It must be a binomial '
|
||
|
'coefficient n choose 2 for some integer n >= 2.')
|
||
|
|
||
|
# Allocate memory for the distance matrix.
|
||
|
M = np.zeros((d, d), dtype=X.dtype)
|
||
|
|
||
|
# Since the C code does not support striding using strides.
|
||
|
# The dimensions are used instead.
|
||
|
X = _copy_array_if_base_present(X)
|
||
|
|
||
|
# Fill in the values of the distance matrix.
|
||
|
_distance_wrap.to_squareform_from_vector_wrap(M, X)
|
||
|
|
||
|
# Return the distance matrix.
|
||
|
return M
|
||
|
elif len(s) == 2:
|
||
|
if s[0] != s[1]:
|
||
|
raise ValueError('The matrix argument must be square.')
|
||
|
if checks:
|
||
|
is_valid_dm(X, throw=True, name='X')
|
||
|
|
||
|
# One-side of the dimensions is set here.
|
||
|
d = s[0]
|
||
|
|
||
|
if d <= 1:
|
||
|
return np.array([], dtype=X.dtype)
|
||
|
|
||
|
# Create a vector.
|
||
|
v = np.zeros((d * (d - 1)) // 2, dtype=X.dtype)
|
||
|
|
||
|
# Since the C code does not support striding using strides.
|
||
|
# The dimensions are used instead.
|
||
|
X = _copy_array_if_base_present(X)
|
||
|
|
||
|
# Convert the vector to squareform.
|
||
|
_distance_wrap.to_vector_from_squareform_wrap(X, v)
|
||
|
return v
|
||
|
else:
|
||
|
raise ValueError(('The first argument must be one or two dimensional '
|
||
|
'array. A %d-dimensional array is not '
|
||
|
'permitted') % len(s))
|
||
|
|
||
|
|
||
|
def is_valid_dm(D, tol=0.0, throw=False, name="D", warning=False):
|
||
|
"""
|
||
|
Return True if input array is a valid distance matrix.
|
||
|
|
||
|
Distance matrices must be 2-dimensional numpy arrays.
|
||
|
They must have a zero-diagonal, and they must be symmetric.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
D : ndarray
|
||
|
The candidate object to test for validity.
|
||
|
tol : float, optional
|
||
|
The distance matrix should be symmetric. `tol` is the maximum
|
||
|
difference between entries ``ij`` and ``ji`` for the distance
|
||
|
metric to be considered symmetric.
|
||
|
throw : bool, optional
|
||
|
An exception is thrown if the distance matrix passed is not valid.
|
||
|
name : str, optional
|
||
|
The name of the variable to checked. This is useful if
|
||
|
throw is set to True so the offending variable can be identified
|
||
|
in the exception message when an exception is thrown.
|
||
|
warning : bool, optional
|
||
|
Instead of throwing an exception, a warning message is
|
||
|
raised.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
valid : bool
|
||
|
True if the variable `D` passed is a valid distance matrix.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Small numerical differences in `D` and `D.T` and non-zeroness of
|
||
|
the diagonal are ignored if they are within the tolerance specified
|
||
|
by `tol`.
|
||
|
|
||
|
"""
|
||
|
D = np.asarray(D, order='c')
|
||
|
valid = True
|
||
|
try:
|
||
|
s = D.shape
|
||
|
if len(D.shape) != 2:
|
||
|
if name:
|
||
|
raise ValueError(('Distance matrix \'%s\' must have shape=2 '
|
||
|
'(i.e. be two-dimensional).') % name)
|
||
|
else:
|
||
|
raise ValueError('Distance matrix must have shape=2 (i.e. '
|
||
|
'be two-dimensional).')
|
||
|
if tol == 0.0:
|
||
|
if not (D == D.T).all():
|
||
|
if name:
|
||
|
raise ValueError(('Distance matrix \'%s\' must be '
|
||
|
'symmetric.') % name)
|
||
|
else:
|
||
|
raise ValueError('Distance matrix must be symmetric.')
|
||
|
if not (D[xrange(0, s[0]), xrange(0, s[0])] == 0).all():
|
||
|
if name:
|
||
|
raise ValueError(('Distance matrix \'%s\' diagonal must '
|
||
|
'be zero.') % name)
|
||
|
else:
|
||
|
raise ValueError('Distance matrix diagonal must be zero.')
|
||
|
else:
|
||
|
if not (D - D.T <= tol).all():
|
||
|
if name:
|
||
|
raise ValueError(('Distance matrix \'%s\' must be '
|
||
|
'symmetric within tolerance %5.5f.')
|
||
|
% (name, tol))
|
||
|
else:
|
||
|
raise ValueError('Distance matrix must be symmetric within'
|
||
|
' tolerance %5.5f.' % tol)
|
||
|
if not (D[xrange(0, s[0]), xrange(0, s[0])] <= tol).all():
|
||
|
if name:
|
||
|
raise ValueError(('Distance matrix \'%s\' diagonal must be'
|
||
|
' close to zero within tolerance %5.5f.')
|
||
|
% (name, tol))
|
||
|
else:
|
||
|
raise ValueError(('Distance matrix \'%s\' diagonal must be'
|
||
|
' close to zero within tolerance %5.5f.')
|
||
|
% tol)
|
||
|
except Exception as e:
|
||
|
if throw:
|
||
|
raise
|
||
|
if warning:
|
||
|
warnings.warn(str(e))
|
||
|
valid = False
|
||
|
return valid
|
||
|
|
||
|
|
||
|
def is_valid_y(y, warning=False, throw=False, name=None):
|
||
|
"""
|
||
|
Return True if the input array is a valid condensed distance matrix.
|
||
|
|
||
|
Condensed distance matrices must be 1-dimensional numpy arrays.
|
||
|
Their length must be a binomial coefficient :math:`{n \\choose 2}`
|
||
|
for some positive integer n.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : ndarray
|
||
|
The condensed distance matrix.
|
||
|
warning : bool, optional
|
||
|
Invokes a warning if the variable passed is not a valid
|
||
|
condensed distance matrix. The warning message explains why
|
||
|
the distance matrix is not valid. `name` is used when
|
||
|
referencing the offending variable.
|
||
|
throw : bool, optional
|
||
|
Throws an exception if the variable passed is not a valid
|
||
|
condensed distance matrix.
|
||
|
name : bool, optional
|
||
|
Used when referencing the offending variable in the
|
||
|
warning or exception message.
|
||
|
|
||
|
"""
|
||
|
y = np.asarray(y, order='c')
|
||
|
valid = True
|
||
|
try:
|
||
|
if len(y.shape) != 1:
|
||
|
if name:
|
||
|
raise ValueError(('Condensed distance matrix \'%s\' must '
|
||
|
'have shape=1 (i.e. be one-dimensional).')
|
||
|
% name)
|
||
|
else:
|
||
|
raise ValueError('Condensed distance matrix must have shape=1 '
|
||
|
'(i.e. be one-dimensional).')
|
||
|
n = y.shape[0]
|
||
|
d = int(np.ceil(np.sqrt(n * 2)))
|
||
|
if (d * (d - 1) / 2) != n:
|
||
|
if name:
|
||
|
raise ValueError(('Length n of condensed distance matrix '
|
||
|
'\'%s\' must be a binomial coefficient, i.e.'
|
||
|
'there must be a k such that '
|
||
|
'(k \\choose 2)=n)!') % name)
|
||
|
else:
|
||
|
raise ValueError('Length n of condensed distance matrix must '
|
||
|
'be a binomial coefficient, i.e. there must '
|
||
|
'be a k such that (k \\choose 2)=n)!')
|
||
|
except Exception as e:
|
||
|
if throw:
|
||
|
raise
|
||
|
if warning:
|
||
|
warnings.warn(str(e))
|
||
|
valid = False
|
||
|
return valid
|
||
|
|
||
|
|
||
|
def num_obs_dm(d):
|
||
|
"""
|
||
|
Return the number of original observations that correspond to a
|
||
|
square, redundant distance matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
d : ndarray
|
||
|
The target distance matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
num_obs_dm : int
|
||
|
The number of observations in the redundant distance matrix.
|
||
|
|
||
|
"""
|
||
|
d = np.asarray(d, order='c')
|
||
|
is_valid_dm(d, tol=np.inf, throw=True, name='d')
|
||
|
return d.shape[0]
|
||
|
|
||
|
|
||
|
def num_obs_y(Y):
|
||
|
"""
|
||
|
Return the number of original observations that correspond to a
|
||
|
condensed distance matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Y : ndarray
|
||
|
Condensed distance matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
n : int
|
||
|
The number of observations in the condensed distance matrix `Y`.
|
||
|
|
||
|
"""
|
||
|
Y = np.asarray(Y, order='c')
|
||
|
is_valid_y(Y, throw=True, name='Y')
|
||
|
k = Y.shape[0]
|
||
|
if k == 0:
|
||
|
raise ValueError("The number of observations cannot be determined on "
|
||
|
"an empty distance matrix.")
|
||
|
d = int(np.ceil(np.sqrt(k * 2)))
|
||
|
if (d * (d - 1) / 2) != k:
|
||
|
raise ValueError("Invalid condensed distance matrix passed. Must be "
|
||
|
"some k where k=(n choose 2) for some n >= 2.")
|
||
|
return d
|
||
|
|
||
|
|
||
|
def cdist(XA, XB, metric='euclidean', *args, **kwargs):
|
||
|
"""
|
||
|
Compute distance between each pair of the two collections of inputs.
|
||
|
|
||
|
See Notes for common calling conventions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
XA : ndarray
|
||
|
An :math:`m_A` by :math:`n` array of :math:`m_A`
|
||
|
original observations in an :math:`n`-dimensional space.
|
||
|
Inputs are converted to float type.
|
||
|
XB : ndarray
|
||
|
An :math:`m_B` by :math:`n` array of :math:`m_B`
|
||
|
original observations in an :math:`n`-dimensional space.
|
||
|
Inputs are converted to float type.
|
||
|
metric : str or callable, optional
|
||
|
The distance metric to use. If a string, the distance function can be
|
||
|
'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation',
|
||
|
'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski',
|
||
|
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao',
|
||
|
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
|
||
|
'wminkowski', 'yule'.
|
||
|
*args : tuple. Deprecated.
|
||
|
Additional arguments should be passed as keyword arguments
|
||
|
**kwargs : dict, optional
|
||
|
Extra arguments to `metric`: refer to each metric documentation for a
|
||
|
list of all possible arguments.
|
||
|
|
||
|
Some possible arguments:
|
||
|
|
||
|
p : scalar
|
||
|
The p-norm to apply for Minkowski, weighted and unweighted.
|
||
|
Default: 2.
|
||
|
|
||
|
w : ndarray
|
||
|
The weight vector for metrics that support weights (e.g., Minkowski).
|
||
|
|
||
|
V : ndarray
|
||
|
The variance vector for standardized Euclidean.
|
||
|
Default: var(vstack([XA, XB]), axis=0, ddof=1)
|
||
|
|
||
|
VI : ndarray
|
||
|
The inverse of the covariance matrix for Mahalanobis.
|
||
|
Default: inv(cov(vstack([XA, XB].T))).T
|
||
|
|
||
|
out : ndarray
|
||
|
The output array
|
||
|
If not None, the distance matrix Y is stored in this array.
|
||
|
Note: metric independent, it will become a regular keyword arg in a
|
||
|
future scipy version
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : ndarray
|
||
|
A :math:`m_A` by :math:`m_B` distance matrix is returned.
|
||
|
For each :math:`i` and :math:`j`, the metric
|
||
|
``dist(u=XA[i], v=XB[j])`` is computed and stored in the
|
||
|
:math:`ij` th entry.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
An exception is thrown if `XA` and `XB` do not have
|
||
|
the same number of columns.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The following are common calling conventions:
|
||
|
|
||
|
1. ``Y = cdist(XA, XB, 'euclidean')``
|
||
|
|
||
|
Computes the distance between :math:`m` points using
|
||
|
Euclidean distance (2-norm) as the distance metric between the
|
||
|
points. The points are arranged as :math:`m`
|
||
|
:math:`n`-dimensional row vectors in the matrix X.
|
||
|
|
||
|
2. ``Y = cdist(XA, XB, 'minkowski', p=2.)``
|
||
|
|
||
|
Computes the distances using the Minkowski distance
|
||
|
:math:`||u-v||_p` (:math:`p`-norm) where :math:`p \\geq 1`.
|
||
|
|
||
|
3. ``Y = cdist(XA, XB, 'cityblock')``
|
||
|
|
||
|
Computes the city block or Manhattan distance between the
|
||
|
points.
|
||
|
|
||
|
4. ``Y = cdist(XA, XB, 'seuclidean', V=None)``
|
||
|
|
||
|
Computes the standardized Euclidean distance. The standardized
|
||
|
Euclidean distance between two n-vectors ``u`` and ``v`` is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}.
|
||
|
|
||
|
V is the variance vector; V[i] is the variance computed over all
|
||
|
the i'th components of the points. If not passed, it is
|
||
|
automatically computed.
|
||
|
|
||
|
5. ``Y = cdist(XA, XB, 'sqeuclidean')``
|
||
|
|
||
|
Computes the squared Euclidean distance :math:`||u-v||_2^2` between
|
||
|
the vectors.
|
||
|
|
||
|
6. ``Y = cdist(XA, XB, 'cosine')``
|
||
|
|
||
|
Computes the cosine distance between vectors u and v,
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
1 - \\frac{u \\cdot v}
|
||
|
{{||u||}_2 {||v||}_2}
|
||
|
|
||
|
where :math:`||*||_2` is the 2-norm of its argument ``*``, and
|
||
|
:math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`.
|
||
|
|
||
|
7. ``Y = cdist(XA, XB, 'correlation')``
|
||
|
|
||
|
Computes the correlation distance between vectors u and v. This is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
|
||
|
{{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2}
|
||
|
|
||
|
where :math:`\\bar{v}` is the mean of the elements of vector v,
|
||
|
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
|
||
|
|
||
|
|
||
|
8. ``Y = cdist(XA, XB, 'hamming')``
|
||
|
|
||
|
Computes the normalized Hamming distance, or the proportion of
|
||
|
those vector elements between two n-vectors ``u`` and ``v``
|
||
|
which disagree. To save memory, the matrix ``X`` can be of type
|
||
|
boolean.
|
||
|
|
||
|
9. ``Y = cdist(XA, XB, 'jaccard')``
|
||
|
|
||
|
Computes the Jaccard distance between the points. Given two
|
||
|
vectors, ``u`` and ``v``, the Jaccard distance is the
|
||
|
proportion of those elements ``u[i]`` and ``v[i]`` that
|
||
|
disagree where at least one of them is non-zero.
|
||
|
|
||
|
10. ``Y = cdist(XA, XB, 'chebyshev')``
|
||
|
|
||
|
Computes the Chebyshev distance between the points. The
|
||
|
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
|
||
|
maximum norm-1 distance between their respective elements. More
|
||
|
precisely, the distance is given by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
d(u,v) = \\max_i {|u_i-v_i|}.
|
||
|
|
||
|
11. ``Y = cdist(XA, XB, 'canberra')``
|
||
|
|
||
|
Computes the Canberra distance between the points. The
|
||
|
Canberra distance between two points ``u`` and ``v`` is
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
|
||
|
{|u_i|+|v_i|}.
|
||
|
|
||
|
12. ``Y = cdist(XA, XB, 'braycurtis')``
|
||
|
|
||
|
Computes the Bray-Curtis distance between the points. The
|
||
|
Bray-Curtis distance between two points ``u`` and ``v`` is
|
||
|
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
d(u,v) = \\frac{\\sum_i (|u_i-v_i|)}
|
||
|
{\\sum_i (|u_i+v_i|)}
|
||
|
|
||
|
13. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)``
|
||
|
|
||
|
Computes the Mahalanobis distance between the points. The
|
||
|
Mahalanobis distance between two points ``u`` and ``v`` is
|
||
|
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
|
||
|
variable) is the inverse covariance. If ``VI`` is not None,
|
||
|
``VI`` will be used as the inverse covariance matrix.
|
||
|
|
||
|
14. ``Y = cdist(XA, XB, 'yule')``
|
||
|
|
||
|
Computes the Yule distance between the boolean
|
||
|
vectors. (see `yule` function documentation)
|
||
|
|
||
|
15. ``Y = cdist(XA, XB, 'matching')``
|
||
|
|
||
|
Synonym for 'hamming'.
|
||
|
|
||
|
16. ``Y = cdist(XA, XB, 'dice')``
|
||
|
|
||
|
Computes the Dice distance between the boolean vectors. (see
|
||
|
`dice` function documentation)
|
||
|
|
||
|
17. ``Y = cdist(XA, XB, 'kulsinski')``
|
||
|
|
||
|
Computes the Kulsinski distance between the boolean
|
||
|
vectors. (see `kulsinski` function documentation)
|
||
|
|
||
|
18. ``Y = cdist(XA, XB, 'rogerstanimoto')``
|
||
|
|
||
|
Computes the Rogers-Tanimoto distance between the boolean
|
||
|
vectors. (see `rogerstanimoto` function documentation)
|
||
|
|
||
|
19. ``Y = cdist(XA, XB, 'russellrao')``
|
||
|
|
||
|
Computes the Russell-Rao distance between the boolean
|
||
|
vectors. (see `russellrao` function documentation)
|
||
|
|
||
|
20. ``Y = cdist(XA, XB, 'sokalmichener')``
|
||
|
|
||
|
Computes the Sokal-Michener distance between the boolean
|
||
|
vectors. (see `sokalmichener` function documentation)
|
||
|
|
||
|
21. ``Y = cdist(XA, XB, 'sokalsneath')``
|
||
|
|
||
|
Computes the Sokal-Sneath distance between the vectors. (see
|
||
|
`sokalsneath` function documentation)
|
||
|
|
||
|
|
||
|
22. ``Y = cdist(XA, XB, 'wminkowski', p=2., w=w)``
|
||
|
|
||
|
Computes the weighted Minkowski distance between the
|
||
|
vectors. (see `wminkowski` function documentation)
|
||
|
|
||
|
23. ``Y = cdist(XA, XB, f)``
|
||
|
|
||
|
Computes the distance between all pairs of vectors in X
|
||
|
using the user supplied 2-arity function f. For example,
|
||
|
Euclidean distance between the vectors could be computed
|
||
|
as follows::
|
||
|
|
||
|
dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))
|
||
|
|
||
|
Note that you should avoid passing a reference to one of
|
||
|
the distance functions defined in this library. For example,::
|
||
|
|
||
|
dm = cdist(XA, XB, sokalsneath)
|
||
|
|
||
|
would calculate the pair-wise distances between the vectors in
|
||
|
X using the Python function `sokalsneath`. This would result in
|
||
|
sokalsneath being called :math:`{n \\choose 2}` times, which
|
||
|
is inefficient. Instead, the optimized C version is more
|
||
|
efficient, and we call it using the following syntax::
|
||
|
|
||
|
dm = cdist(XA, XB, 'sokalsneath')
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Find the Euclidean distances between four 2-D coordinates:
|
||
|
|
||
|
>>> from scipy.spatial import distance
|
||
|
>>> coords = [(35.0456, -85.2672),
|
||
|
... (35.1174, -89.9711),
|
||
|
... (35.9728, -83.9422),
|
||
|
... (36.1667, -86.7833)]
|
||
|
>>> distance.cdist(coords, coords, 'euclidean')
|
||
|
array([[ 0. , 4.7044, 1.6172, 1.8856],
|
||
|
[ 4.7044, 0. , 6.0893, 3.3561],
|
||
|
[ 1.6172, 6.0893, 0. , 2.8477],
|
||
|
[ 1.8856, 3.3561, 2.8477, 0. ]])
|
||
|
|
||
|
|
||
|
Find the Manhattan distance from a 3-D point to the corners of the unit
|
||
|
cube:
|
||
|
|
||
|
>>> a = np.array([[0, 0, 0],
|
||
|
... [0, 0, 1],
|
||
|
... [0, 1, 0],
|
||
|
... [0, 1, 1],
|
||
|
... [1, 0, 0],
|
||
|
... [1, 0, 1],
|
||
|
... [1, 1, 0],
|
||
|
... [1, 1, 1]])
|
||
|
>>> b = np.array([[ 0.1, 0.2, 0.4]])
|
||
|
>>> distance.cdist(a, b, 'cityblock')
|
||
|
array([[ 0.7],
|
||
|
[ 0.9],
|
||
|
[ 1.3],
|
||
|
[ 1.5],
|
||
|
[ 1.5],
|
||
|
[ 1.7],
|
||
|
[ 2.1],
|
||
|
[ 2.3]])
|
||
|
|
||
|
"""
|
||
|
# You can also call this as:
|
||
|
# Y = cdist(XA, XB, 'test_abc')
|
||
|
# where 'abc' is the metric being tested. This computes the distance
|
||
|
# between all pairs of vectors in XA and XB using the distance metric 'abc'
|
||
|
# but with a more succinct, verifiable, but less efficient implementation.
|
||
|
|
||
|
kwargs = _args_to_kwargs_xdist(args, kwargs, metric, "cdist")
|
||
|
|
||
|
XA = np.asarray(XA, order='c')
|
||
|
XB = np.asarray(XB, order='c')
|
||
|
|
||
|
s = XA.shape
|
||
|
sB = XB.shape
|
||
|
|
||
|
if len(s) != 2:
|
||
|
raise ValueError('XA must be a 2-dimensional array.')
|
||
|
if len(sB) != 2:
|
||
|
raise ValueError('XB must be a 2-dimensional array.')
|
||
|
if s[1] != sB[1]:
|
||
|
raise ValueError('XA and XB must have the same number of columns '
|
||
|
'(i.e. feature dimension.)')
|
||
|
|
||
|
mA = s[0]
|
||
|
mB = sB[0]
|
||
|
n = s[1]
|
||
|
out = kwargs.pop("out", None)
|
||
|
if out is None:
|
||
|
dm = np.empty((mA, mB), dtype=np.double)
|
||
|
else:
|
||
|
if out.shape != (mA, mB):
|
||
|
raise ValueError("Output array has incorrect shape.")
|
||
|
if not out.flags.c_contiguous:
|
||
|
raise ValueError("Output array must be C-contiguous.")
|
||
|
if out.dtype != np.double:
|
||
|
raise ValueError("Output array must be double type.")
|
||
|
dm = out
|
||
|
|
||
|
# compute blacklist for deprecated kwargs
|
||
|
if(metric in _METRICS['minkowski'].aka or
|
||
|
metric in _METRICS['wminkowski'].aka or
|
||
|
metric in ['test_minkowski', 'test_wminkowski'] or
|
||
|
metric in [minkowski, wminkowski]):
|
||
|
kwargs_blacklist = ["V", "VI"]
|
||
|
elif(metric in _METRICS['seuclidean'].aka or
|
||
|
metric == 'test_seuclidean' or metric == seuclidean):
|
||
|
kwargs_blacklist = ["p", "w", "VI"]
|
||
|
elif(metric in _METRICS['mahalanobis'].aka or
|
||
|
metric == 'test_mahalanobis' or metric == mahalanobis):
|
||
|
kwargs_blacklist = ["p", "w", "V"]
|
||
|
else:
|
||
|
kwargs_blacklist = ["p", "V", "VI"]
|
||
|
|
||
|
_filter_deprecated_kwargs(kwargs, kwargs_blacklist)
|
||
|
|
||
|
if callable(metric):
|
||
|
|
||
|
mstr = getattr(metric, '__name__', 'Unknown')
|
||
|
metric_name = _METRIC_ALIAS.get(mstr, None)
|
||
|
|
||
|
XA, XB, typ, kwargs = _validate_cdist_input(XA, XB, mA, mB, n,
|
||
|
metric_name, **kwargs)
|
||
|
|
||
|
for i in xrange(0, mA):
|
||
|
for j in xrange(0, mB):
|
||
|
dm[i, j] = metric(XA[i], XB[j], **kwargs)
|
||
|
|
||
|
elif isinstance(metric, string_types):
|
||
|
mstr = metric.lower()
|
||
|
|
||
|
# NOTE: C-version still does not support weights
|
||
|
if "w" in kwargs and not mstr.startswith("test_"):
|
||
|
if(mstr in _METRICS['seuclidean'].aka or
|
||
|
mstr in _METRICS['mahalanobis'].aka):
|
||
|
raise ValueError("metric %s incompatible with weights" % mstr)
|
||
|
# need to use python version for weighting
|
||
|
kwargs['out'] = out
|
||
|
mstr = "test_%s" % mstr
|
||
|
|
||
|
metric_name = _METRIC_ALIAS.get(mstr, None)
|
||
|
if metric_name is not None:
|
||
|
XA, XB, typ, kwargs = _validate_cdist_input(XA, XB, mA, mB, n,
|
||
|
metric_name, **kwargs)
|
||
|
# get cdist wrapper
|
||
|
cdist_fn = getattr(_distance_wrap,
|
||
|
"cdist_%s_%s_wrap" % (metric_name, typ))
|
||
|
cdist_fn(XA, XB, dm, **kwargs)
|
||
|
return dm
|
||
|
|
||
|
elif mstr.startswith("test_"):
|
||
|
if mstr in _TEST_METRICS:
|
||
|
dm = cdist(XA, XB, _TEST_METRICS[mstr], **kwargs)
|
||
|
else:
|
||
|
raise ValueError('Unknown "Test" Distance Metric: %s' % mstr[5:])
|
||
|
else:
|
||
|
raise ValueError('Unknown Distance Metric: %s' % mstr)
|
||
|
else:
|
||
|
raise TypeError('2nd argument metric must be a string identifier '
|
||
|
'or a function.')
|
||
|
return dm
|