4622 lines
166 KiB
Python
4622 lines
166 KiB
Python
|
#
|
||
|
# Authors: Travis Oliphant, Ed Schofield, Robert Cimrman, Nathan Bell, and others
|
||
|
|
||
|
""" Test functions for sparse matrices. Each class in the "Matrix class
|
||
|
based tests" section become subclasses of the classes in the "Generic
|
||
|
tests" section. This is done by the functions in the "Tailored base
|
||
|
class for generic tests" section.
|
||
|
|
||
|
"""
|
||
|
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
__usage__ = """
|
||
|
Build sparse:
|
||
|
python setup.py build
|
||
|
Run tests if scipy is installed:
|
||
|
python -c 'import scipy;scipy.sparse.test()'
|
||
|
Run tests if sparse is not installed:
|
||
|
python tests/test_base.py
|
||
|
"""
|
||
|
|
||
|
import operator
|
||
|
import contextlib
|
||
|
import functools
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy._lib.six import xrange, zip as izip
|
||
|
from numpy import (arange, zeros, array, dot, matrix, asmatrix, asarray,
|
||
|
vstack, ndarray, transpose, diag, kron, inf, conjugate,
|
||
|
int8, ComplexWarning)
|
||
|
|
||
|
import random
|
||
|
from numpy.testing import (assert_equal, assert_array_equal,
|
||
|
assert_array_almost_equal, assert_almost_equal, assert_,
|
||
|
assert_allclose)
|
||
|
from pytest import raises as assert_raises
|
||
|
from scipy._lib._numpy_compat import suppress_warnings
|
||
|
|
||
|
import scipy.linalg
|
||
|
|
||
|
import scipy.sparse as sparse
|
||
|
from scipy.sparse import (csc_matrix, csr_matrix, dok_matrix,
|
||
|
coo_matrix, lil_matrix, dia_matrix, bsr_matrix,
|
||
|
eye, isspmatrix, SparseEfficiencyWarning, issparse)
|
||
|
from scipy.sparse.sputils import supported_dtypes, isscalarlike, get_index_dtype
|
||
|
from scipy.sparse.linalg import splu, expm, inv
|
||
|
|
||
|
from scipy._lib._version import NumpyVersion
|
||
|
from scipy._lib.decorator import decorator
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
|
||
|
def assert_in(member, collection, msg=None):
|
||
|
assert_(member in collection, msg=msg if msg is not None else "%r not found in %r" % (member, collection))
|
||
|
|
||
|
|
||
|
# Only test matmul operator (A @ B) when available (Python 3.5+)
|
||
|
TEST_MATMUL = hasattr(operator, 'matmul')
|
||
|
|
||
|
sup_complex = suppress_warnings()
|
||
|
sup_complex.filter(ComplexWarning)
|
||
|
|
||
|
|
||
|
def with_64bit_maxval_limit(maxval_limit=None, random=False, fixed_dtype=None,
|
||
|
downcast_maxval=None, assert_32bit=False):
|
||
|
"""
|
||
|
Monkeypatch the maxval threshold at which scipy.sparse switches to
|
||
|
64-bit index arrays, or make it (pseudo-)random.
|
||
|
|
||
|
"""
|
||
|
if maxval_limit is None:
|
||
|
maxval_limit = 10
|
||
|
|
||
|
if assert_32bit:
|
||
|
def new_get_index_dtype(arrays=(), maxval=None, check_contents=False):
|
||
|
tp = get_index_dtype(arrays, maxval, check_contents)
|
||
|
assert_equal(np.iinfo(tp).max, np.iinfo(np.int32).max)
|
||
|
assert_(tp == np.int32 or tp == np.intc)
|
||
|
return tp
|
||
|
elif fixed_dtype is not None:
|
||
|
def new_get_index_dtype(arrays=(), maxval=None, check_contents=False):
|
||
|
return fixed_dtype
|
||
|
elif random:
|
||
|
counter = np.random.RandomState(seed=1234)
|
||
|
|
||
|
def new_get_index_dtype(arrays=(), maxval=None, check_contents=False):
|
||
|
return (np.int32, np.int64)[counter.randint(2)]
|
||
|
else:
|
||
|
def new_get_index_dtype(arrays=(), maxval=None, check_contents=False):
|
||
|
dtype = np.int32
|
||
|
if maxval is not None:
|
||
|
if maxval > maxval_limit:
|
||
|
dtype = np.int64
|
||
|
for arr in arrays:
|
||
|
arr = np.asarray(arr)
|
||
|
if arr.dtype > np.int32:
|
||
|
if check_contents:
|
||
|
if arr.size == 0:
|
||
|
# a bigger type not needed
|
||
|
continue
|
||
|
elif np.issubdtype(arr.dtype, np.integer):
|
||
|
maxval = arr.max()
|
||
|
minval = arr.min()
|
||
|
if minval >= -maxval_limit and maxval <= maxval_limit:
|
||
|
# a bigger type not needed
|
||
|
continue
|
||
|
dtype = np.int64
|
||
|
return dtype
|
||
|
|
||
|
if downcast_maxval is not None:
|
||
|
def new_downcast_intp_index(arr):
|
||
|
if arr.max() > downcast_maxval:
|
||
|
raise AssertionError("downcast limited")
|
||
|
return arr.astype(np.intp)
|
||
|
|
||
|
@decorator
|
||
|
def deco(func, *a, **kw):
|
||
|
backup = []
|
||
|
modules = [scipy.sparse.bsr, scipy.sparse.coo, scipy.sparse.csc,
|
||
|
scipy.sparse.csr, scipy.sparse.dia, scipy.sparse.dok,
|
||
|
scipy.sparse.lil, scipy.sparse.sputils,
|
||
|
scipy.sparse.compressed, scipy.sparse.construct]
|
||
|
try:
|
||
|
for mod in modules:
|
||
|
backup.append((mod, 'get_index_dtype',
|
||
|
getattr(mod, 'get_index_dtype', None)))
|
||
|
setattr(mod, 'get_index_dtype', new_get_index_dtype)
|
||
|
if downcast_maxval is not None:
|
||
|
backup.append((mod, 'downcast_intp_index',
|
||
|
getattr(mod, 'downcast_intp_index', None)))
|
||
|
setattr(mod, 'downcast_intp_index', new_downcast_intp_index)
|
||
|
return func(*a, **kw)
|
||
|
finally:
|
||
|
for mod, name, oldfunc in backup:
|
||
|
if oldfunc is not None:
|
||
|
setattr(mod, name, oldfunc)
|
||
|
|
||
|
return deco
|
||
|
|
||
|
|
||
|
def todense(a):
|
||
|
if isinstance(a, np.ndarray) or isscalarlike(a):
|
||
|
return a
|
||
|
return a.todense()
|
||
|
|
||
|
|
||
|
class BinopTester(object):
|
||
|
# Custom type to test binary operations on sparse matrices.
|
||
|
|
||
|
def __add__(self, mat):
|
||
|
return "matrix on the right"
|
||
|
|
||
|
def __mul__(self, mat):
|
||
|
return "matrix on the right"
|
||
|
|
||
|
def __sub__(self, mat):
|
||
|
return "matrix on the right"
|
||
|
|
||
|
def __radd__(self, mat):
|
||
|
return "matrix on the left"
|
||
|
|
||
|
def __rmul__(self, mat):
|
||
|
return "matrix on the left"
|
||
|
|
||
|
def __rsub__(self, mat):
|
||
|
return "matrix on the left"
|
||
|
|
||
|
def __matmul__(self, mat):
|
||
|
return "matrix on the right"
|
||
|
|
||
|
def __rmatmul__(self, mat):
|
||
|
return "matrix on the left"
|
||
|
|
||
|
class BinopTester_with_shape(object):
|
||
|
# Custom type to test binary operations on sparse matrices
|
||
|
# with object which has shape attribute.
|
||
|
def __init__(self,shape):
|
||
|
self._shape = shape
|
||
|
|
||
|
def shape(self):
|
||
|
return self._shape
|
||
|
|
||
|
def ndim(self):
|
||
|
return len(self._shape)
|
||
|
|
||
|
def __add__(self, mat):
|
||
|
return "matrix on the right"
|
||
|
|
||
|
def __mul__(self, mat):
|
||
|
return "matrix on the right"
|
||
|
|
||
|
def __sub__(self, mat):
|
||
|
return "matrix on the right"
|
||
|
|
||
|
def __radd__(self, mat):
|
||
|
return "matrix on the left"
|
||
|
|
||
|
def __rmul__(self, mat):
|
||
|
return "matrix on the left"
|
||
|
|
||
|
def __rsub__(self, mat):
|
||
|
return "matrix on the left"
|
||
|
|
||
|
def __matmul__(self, mat):
|
||
|
return "matrix on the right"
|
||
|
|
||
|
def __rmatmul__(self, mat):
|
||
|
return "matrix on the left"
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------------------------
|
||
|
# Generic tests
|
||
|
#------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
# TODO check that spmatrix( ... , copy=X ) is respected
|
||
|
# TODO test prune
|
||
|
# TODO test has_sorted_indices
|
||
|
class _TestCommon(object):
|
||
|
"""test common functionality shared by all sparse formats"""
|
||
|
math_dtypes = supported_dtypes
|
||
|
|
||
|
@classmethod
|
||
|
def init_class(cls):
|
||
|
# Canonical data.
|
||
|
cls.dat = matrix([[1,0,0,2],[3,0,1,0],[0,2,0,0]],'d')
|
||
|
cls.datsp = cls.spmatrix(cls.dat)
|
||
|
|
||
|
# Some sparse and dense matrices with data for every supported
|
||
|
# dtype.
|
||
|
# This set union is a workaround for numpy#6295, which means that
|
||
|
# two np.int64 dtypes don't hash to the same value.
|
||
|
cls.checked_dtypes = set(supported_dtypes).union(cls.math_dtypes)
|
||
|
cls.dat_dtypes = {}
|
||
|
cls.datsp_dtypes = {}
|
||
|
for dtype in cls.checked_dtypes:
|
||
|
cls.dat_dtypes[dtype] = cls.dat.astype(dtype)
|
||
|
cls.datsp_dtypes[dtype] = cls.spmatrix(cls.dat.astype(dtype))
|
||
|
|
||
|
# Check that the original data is equivalent to the
|
||
|
# corresponding dat_dtypes & datsp_dtypes.
|
||
|
assert_equal(cls.dat, cls.dat_dtypes[np.float64])
|
||
|
assert_equal(cls.datsp.todense(),
|
||
|
cls.datsp_dtypes[np.float64].todense())
|
||
|
|
||
|
def test_bool(self):
|
||
|
def check(dtype):
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
assert_raises(ValueError, bool, datsp)
|
||
|
assert_(self.spmatrix([1]))
|
||
|
assert_(not self.spmatrix([0]))
|
||
|
|
||
|
if isinstance(self, TestDOK):
|
||
|
pytest.skip("Cannot create a rank <= 2 DOK matrix.")
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_bool_rollover(self):
|
||
|
# bool's underlying dtype is 1 byte, check that it does not
|
||
|
# rollover True -> False at 256.
|
||
|
dat = np.matrix([[True, False]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
for _ in range(10):
|
||
|
datsp = datsp + datsp
|
||
|
dat = dat + dat
|
||
|
assert_array_equal(dat, datsp.todense())
|
||
|
|
||
|
def test_eq(self):
|
||
|
sup = suppress_warnings()
|
||
|
sup.filter(SparseEfficiencyWarning)
|
||
|
|
||
|
@sup
|
||
|
@sup_complex
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
datbsr = bsr_matrix(dat)
|
||
|
datcsr = csr_matrix(dat)
|
||
|
datcsc = csc_matrix(dat)
|
||
|
datlil = lil_matrix(dat)
|
||
|
|
||
|
# sparse/sparse
|
||
|
assert_array_equal(dat == dat2, (datsp == datsp2).todense())
|
||
|
# mix sparse types
|
||
|
assert_array_equal(dat == dat2, (datbsr == datsp2).todense())
|
||
|
assert_array_equal(dat == dat2, (datcsr == datsp2).todense())
|
||
|
assert_array_equal(dat == dat2, (datcsc == datsp2).todense())
|
||
|
assert_array_equal(dat == dat2, (datlil == datsp2).todense())
|
||
|
# sparse/dense
|
||
|
assert_array_equal(dat == datsp2, datsp2 == dat)
|
||
|
# sparse/scalar
|
||
|
assert_array_equal(dat == 0, (datsp == 0).todense())
|
||
|
assert_array_equal(dat == 1, (datsp == 1).todense())
|
||
|
assert_array_equal(dat == np.nan, (datsp == np.nan).todense())
|
||
|
|
||
|
if not isinstance(self, (TestBSR, TestCSC, TestCSR)):
|
||
|
pytest.skip("Bool comparisons only implemented for BSR, CSC, and CSR.")
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_ne(self):
|
||
|
sup = suppress_warnings()
|
||
|
sup.filter(SparseEfficiencyWarning)
|
||
|
|
||
|
@sup
|
||
|
@sup_complex
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
datbsr = bsr_matrix(dat)
|
||
|
datcsc = csc_matrix(dat)
|
||
|
datcsr = csr_matrix(dat)
|
||
|
datlil = lil_matrix(dat)
|
||
|
|
||
|
# sparse/sparse
|
||
|
assert_array_equal(dat != dat2, (datsp != datsp2).todense())
|
||
|
# mix sparse types
|
||
|
assert_array_equal(dat != dat2, (datbsr != datsp2).todense())
|
||
|
assert_array_equal(dat != dat2, (datcsc != datsp2).todense())
|
||
|
assert_array_equal(dat != dat2, (datcsr != datsp2).todense())
|
||
|
assert_array_equal(dat != dat2, (datlil != datsp2).todense())
|
||
|
# sparse/dense
|
||
|
assert_array_equal(dat != datsp2, datsp2 != dat)
|
||
|
# sparse/scalar
|
||
|
assert_array_equal(dat != 0, (datsp != 0).todense())
|
||
|
assert_array_equal(dat != 1, (datsp != 1).todense())
|
||
|
assert_array_equal(0 != dat, (0 != datsp).todense())
|
||
|
assert_array_equal(1 != dat, (1 != datsp).todense())
|
||
|
assert_array_equal(dat != np.nan, (datsp != np.nan).todense())
|
||
|
|
||
|
if not isinstance(self, (TestBSR, TestCSC, TestCSR)):
|
||
|
pytest.skip("Bool comparisons only implemented for BSR, CSC, and CSR.")
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_lt(self):
|
||
|
sup = suppress_warnings()
|
||
|
sup.filter(SparseEfficiencyWarning)
|
||
|
|
||
|
@sup
|
||
|
@sup_complex
|
||
|
def check(dtype):
|
||
|
# data
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
datcomplex = dat.astype(complex)
|
||
|
datcomplex[:,0] = 1 + 1j
|
||
|
datspcomplex = self.spmatrix(datcomplex)
|
||
|
datbsr = bsr_matrix(dat)
|
||
|
datcsc = csc_matrix(dat)
|
||
|
datcsr = csr_matrix(dat)
|
||
|
datlil = lil_matrix(dat)
|
||
|
|
||
|
# sparse/sparse
|
||
|
assert_array_equal(dat < dat2, (datsp < datsp2).todense())
|
||
|
assert_array_equal(datcomplex < dat2, (datspcomplex < datsp2).todense())
|
||
|
# mix sparse types
|
||
|
assert_array_equal(dat < dat2, (datbsr < datsp2).todense())
|
||
|
assert_array_equal(dat < dat2, (datcsc < datsp2).todense())
|
||
|
assert_array_equal(dat < dat2, (datcsr < datsp2).todense())
|
||
|
assert_array_equal(dat < dat2, (datlil < datsp2).todense())
|
||
|
|
||
|
assert_array_equal(dat2 < dat, (datsp2 < datbsr).todense())
|
||
|
assert_array_equal(dat2 < dat, (datsp2 < datcsc).todense())
|
||
|
assert_array_equal(dat2 < dat, (datsp2 < datcsr).todense())
|
||
|
assert_array_equal(dat2 < dat, (datsp2 < datlil).todense())
|
||
|
# sparse/dense
|
||
|
assert_array_equal(dat < dat2, datsp < dat2)
|
||
|
assert_array_equal(datcomplex < dat2, datspcomplex < dat2)
|
||
|
# sparse/scalar
|
||
|
assert_array_equal((datsp < 2).todense(), dat < 2)
|
||
|
assert_array_equal((datsp < 1).todense(), dat < 1)
|
||
|
assert_array_equal((datsp < 0).todense(), dat < 0)
|
||
|
assert_array_equal((datsp < -1).todense(), dat < -1)
|
||
|
assert_array_equal((datsp < -2).todense(), dat < -2)
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
assert_array_equal((datsp < np.nan).todense(), dat < np.nan)
|
||
|
|
||
|
assert_array_equal((2 < datsp).todense(), 2 < dat)
|
||
|
assert_array_equal((1 < datsp).todense(), 1 < dat)
|
||
|
assert_array_equal((0 < datsp).todense(), 0 < dat)
|
||
|
assert_array_equal((-1 < datsp).todense(), -1 < dat)
|
||
|
assert_array_equal((-2 < datsp).todense(), -2 < dat)
|
||
|
|
||
|
# data
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
|
||
|
# dense rhs
|
||
|
assert_array_equal(dat < datsp2, datsp < dat2)
|
||
|
|
||
|
if not isinstance(self, (TestBSR, TestCSC, TestCSR)):
|
||
|
pytest.skip("Bool comparisons only implemented for BSR, CSC, and CSR.")
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_gt(self):
|
||
|
sup = suppress_warnings()
|
||
|
sup.filter(SparseEfficiencyWarning)
|
||
|
|
||
|
@sup
|
||
|
@sup_complex
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
datcomplex = dat.astype(complex)
|
||
|
datcomplex[:,0] = 1 + 1j
|
||
|
datspcomplex = self.spmatrix(datcomplex)
|
||
|
datbsr = bsr_matrix(dat)
|
||
|
datcsc = csc_matrix(dat)
|
||
|
datcsr = csr_matrix(dat)
|
||
|
datlil = lil_matrix(dat)
|
||
|
|
||
|
# sparse/sparse
|
||
|
assert_array_equal(dat > dat2, (datsp > datsp2).todense())
|
||
|
assert_array_equal(datcomplex > dat2, (datspcomplex > datsp2).todense())
|
||
|
# mix sparse types
|
||
|
assert_array_equal(dat > dat2, (datbsr > datsp2).todense())
|
||
|
assert_array_equal(dat > dat2, (datcsc > datsp2).todense())
|
||
|
assert_array_equal(dat > dat2, (datcsr > datsp2).todense())
|
||
|
assert_array_equal(dat > dat2, (datlil > datsp2).todense())
|
||
|
|
||
|
assert_array_equal(dat2 > dat, (datsp2 > datbsr).todense())
|
||
|
assert_array_equal(dat2 > dat, (datsp2 > datcsc).todense())
|
||
|
assert_array_equal(dat2 > dat, (datsp2 > datcsr).todense())
|
||
|
assert_array_equal(dat2 > dat, (datsp2 > datlil).todense())
|
||
|
# sparse/dense
|
||
|
assert_array_equal(dat > dat2, datsp > dat2)
|
||
|
assert_array_equal(datcomplex > dat2, datspcomplex > dat2)
|
||
|
# sparse/scalar
|
||
|
assert_array_equal((datsp > 2).todense(), dat > 2)
|
||
|
assert_array_equal((datsp > 1).todense(), dat > 1)
|
||
|
assert_array_equal((datsp > 0).todense(), dat > 0)
|
||
|
assert_array_equal((datsp > -1).todense(), dat > -1)
|
||
|
assert_array_equal((datsp > -2).todense(), dat > -2)
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
assert_array_equal((datsp > np.nan).todense(), dat > np.nan)
|
||
|
|
||
|
assert_array_equal((2 > datsp).todense(), 2 > dat)
|
||
|
assert_array_equal((1 > datsp).todense(), 1 > dat)
|
||
|
assert_array_equal((0 > datsp).todense(), 0 > dat)
|
||
|
assert_array_equal((-1 > datsp).todense(), -1 > dat)
|
||
|
assert_array_equal((-2 > datsp).todense(), -2 > dat)
|
||
|
|
||
|
# data
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
|
||
|
# dense rhs
|
||
|
assert_array_equal(dat > datsp2, datsp > dat2)
|
||
|
|
||
|
if not isinstance(self, (TestBSR, TestCSC, TestCSR)):
|
||
|
pytest.skip("Bool comparisons only implemented for BSR, CSC, and CSR.")
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_le(self):
|
||
|
sup = suppress_warnings()
|
||
|
sup.filter(SparseEfficiencyWarning)
|
||
|
|
||
|
@sup
|
||
|
@sup_complex
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
datcomplex = dat.astype(complex)
|
||
|
datcomplex[:,0] = 1 + 1j
|
||
|
datspcomplex = self.spmatrix(datcomplex)
|
||
|
datbsr = bsr_matrix(dat)
|
||
|
datcsc = csc_matrix(dat)
|
||
|
datcsr = csr_matrix(dat)
|
||
|
datlil = lil_matrix(dat)
|
||
|
|
||
|
# sparse/sparse
|
||
|
assert_array_equal(dat <= dat2, (datsp <= datsp2).todense())
|
||
|
assert_array_equal(datcomplex <= dat2, (datspcomplex <= datsp2).todense())
|
||
|
# mix sparse types
|
||
|
assert_array_equal((datbsr <= datsp2).todense(), dat <= dat2)
|
||
|
assert_array_equal((datcsc <= datsp2).todense(), dat <= dat2)
|
||
|
assert_array_equal((datcsr <= datsp2).todense(), dat <= dat2)
|
||
|
assert_array_equal((datlil <= datsp2).todense(), dat <= dat2)
|
||
|
|
||
|
assert_array_equal((datsp2 <= datbsr).todense(), dat2 <= dat)
|
||
|
assert_array_equal((datsp2 <= datcsc).todense(), dat2 <= dat)
|
||
|
assert_array_equal((datsp2 <= datcsr).todense(), dat2 <= dat)
|
||
|
assert_array_equal((datsp2 <= datlil).todense(), dat2 <= dat)
|
||
|
# sparse/dense
|
||
|
assert_array_equal(datsp <= dat2, dat <= dat2)
|
||
|
assert_array_equal(datspcomplex <= dat2, datcomplex <= dat2)
|
||
|
# sparse/scalar
|
||
|
assert_array_equal((datsp <= 2).todense(), dat <= 2)
|
||
|
assert_array_equal((datsp <= 1).todense(), dat <= 1)
|
||
|
assert_array_equal((datsp <= -1).todense(), dat <= -1)
|
||
|
assert_array_equal((datsp <= -2).todense(), dat <= -2)
|
||
|
|
||
|
assert_array_equal((2 <= datsp).todense(), 2 <= dat)
|
||
|
assert_array_equal((1 <= datsp).todense(), 1 <= dat)
|
||
|
assert_array_equal((-1 <= datsp).todense(), -1 <= dat)
|
||
|
assert_array_equal((-2 <= datsp).todense(), -2 <= dat)
|
||
|
|
||
|
# data
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
|
||
|
# dense rhs
|
||
|
assert_array_equal(dat <= datsp2, datsp <= dat2)
|
||
|
|
||
|
if not isinstance(self, (TestBSR, TestCSC, TestCSR)):
|
||
|
pytest.skip("Bool comparisons only implemented for BSR, CSC, and CSR.")
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_ge(self):
|
||
|
sup = suppress_warnings()
|
||
|
sup.filter(SparseEfficiencyWarning)
|
||
|
|
||
|
@sup
|
||
|
@sup_complex
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
datcomplex = dat.astype(complex)
|
||
|
datcomplex[:,0] = 1 + 1j
|
||
|
datspcomplex = self.spmatrix(datcomplex)
|
||
|
datbsr = bsr_matrix(dat)
|
||
|
datcsc = csc_matrix(dat)
|
||
|
datcsr = csr_matrix(dat)
|
||
|
datlil = lil_matrix(dat)
|
||
|
|
||
|
# sparse/sparse
|
||
|
assert_array_equal(dat >= dat2, (datsp >= datsp2).todense())
|
||
|
assert_array_equal(datcomplex >= dat2, (datspcomplex >= datsp2).todense())
|
||
|
# mix sparse types
|
||
|
# mix sparse types
|
||
|
assert_array_equal((datbsr >= datsp2).todense(), dat >= dat2)
|
||
|
assert_array_equal((datcsc >= datsp2).todense(), dat >= dat2)
|
||
|
assert_array_equal((datcsr >= datsp2).todense(), dat >= dat2)
|
||
|
assert_array_equal((datlil >= datsp2).todense(), dat >= dat2)
|
||
|
|
||
|
assert_array_equal((datsp2 >= datbsr).todense(), dat2 >= dat)
|
||
|
assert_array_equal((datsp2 >= datcsc).todense(), dat2 >= dat)
|
||
|
assert_array_equal((datsp2 >= datcsr).todense(), dat2 >= dat)
|
||
|
assert_array_equal((datsp2 >= datlil).todense(), dat2 >= dat)
|
||
|
# sparse/dense
|
||
|
assert_array_equal(datsp >= dat2, dat >= dat2)
|
||
|
assert_array_equal(datspcomplex >= dat2, datcomplex >= dat2)
|
||
|
# sparse/scalar
|
||
|
assert_array_equal((datsp >= 2).todense(), dat >= 2)
|
||
|
assert_array_equal((datsp >= 1).todense(), dat >= 1)
|
||
|
assert_array_equal((datsp >= -1).todense(), dat >= -1)
|
||
|
assert_array_equal((datsp >= -2).todense(), dat >= -2)
|
||
|
|
||
|
assert_array_equal((2 >= datsp).todense(), 2 >= dat)
|
||
|
assert_array_equal((1 >= datsp).todense(), 1 >= dat)
|
||
|
assert_array_equal((-1 >= datsp).todense(), -1 >= dat)
|
||
|
assert_array_equal((-2 >= datsp).todense(), -2 >= dat)
|
||
|
|
||
|
# dense data
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
dat2 = dat.copy()
|
||
|
dat2[:,0] = 0
|
||
|
datsp2 = self.spmatrix(dat2)
|
||
|
|
||
|
# dense rhs
|
||
|
assert_array_equal(dat >= datsp2, datsp >= dat2)
|
||
|
|
||
|
if not isinstance(self, (TestBSR, TestCSC, TestCSR)):
|
||
|
pytest.skip("Bool comparisons only implemented for BSR, CSC, and CSR.")
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_empty(self):
|
||
|
# create empty matrices
|
||
|
assert_equal(self.spmatrix((3,3)).todense(), np.zeros((3,3)))
|
||
|
assert_equal(self.spmatrix((3,3)).nnz, 0)
|
||
|
assert_equal(self.spmatrix((3,3)).count_nonzero(), 0)
|
||
|
|
||
|
def test_count_nonzero(self):
|
||
|
expected = np.count_nonzero(self.datsp.toarray())
|
||
|
assert_equal(self.datsp.count_nonzero(), expected)
|
||
|
assert_equal(self.datsp.T.count_nonzero(), expected)
|
||
|
|
||
|
def test_invalid_shapes(self):
|
||
|
assert_raises(ValueError, self.spmatrix, (-1,3))
|
||
|
assert_raises(ValueError, self.spmatrix, (3,-1))
|
||
|
assert_raises(ValueError, self.spmatrix, (-1,-1))
|
||
|
|
||
|
def test_repr(self):
|
||
|
repr(self.datsp)
|
||
|
|
||
|
def test_str(self):
|
||
|
str(self.datsp)
|
||
|
|
||
|
def test_empty_arithmetic(self):
|
||
|
# Test manipulating empty matrices. Fails in SciPy SVN <= r1768
|
||
|
shape = (5, 5)
|
||
|
for mytype in [np.dtype('int32'), np.dtype('float32'),
|
||
|
np.dtype('float64'), np.dtype('complex64'),
|
||
|
np.dtype('complex128')]:
|
||
|
a = self.spmatrix(shape, dtype=mytype)
|
||
|
b = a + a
|
||
|
c = 2 * a
|
||
|
d = a * a.tocsc()
|
||
|
e = a * a.tocsr()
|
||
|
f = a * a.tocoo()
|
||
|
for m in [a,b,c,d,e,f]:
|
||
|
assert_equal(m.A, a.A*a.A)
|
||
|
# These fail in all revisions <= r1768:
|
||
|
assert_equal(m.dtype,mytype)
|
||
|
assert_equal(m.A.dtype,mytype)
|
||
|
|
||
|
def test_abs(self):
|
||
|
A = matrix([[-1, 0, 17],[0, -5, 0],[1, -4, 0],[0,0,0]],'d')
|
||
|
assert_equal(abs(A),abs(self.spmatrix(A)).todense())
|
||
|
|
||
|
def test_elementwise_power(self):
|
||
|
A = matrix([[-4, -3, -2],[-1, 0, 1],[2, 3, 4]], 'd')
|
||
|
assert_equal(np.power(A, 2), self.spmatrix(A).power(2).todense())
|
||
|
|
||
|
#it's element-wise power function, input has to be a scalar
|
||
|
assert_raises(NotImplementedError, self.spmatrix(A).power, A)
|
||
|
|
||
|
def test_neg(self):
|
||
|
A = matrix([[-1, 0, 17], [0, -5, 0], [1, -4, 0], [0, 0, 0]], 'd')
|
||
|
assert_equal(-A, (-self.spmatrix(A)).todense())
|
||
|
|
||
|
# see gh-5843
|
||
|
A = matrix([[True, False, False], [False, False, True]])
|
||
|
assert_raises(NotImplementedError, self.spmatrix(A).__neg__)
|
||
|
|
||
|
def test_real(self):
|
||
|
D = matrix([[1 + 3j, 2 - 4j]])
|
||
|
A = self.spmatrix(D)
|
||
|
assert_equal(A.real.todense(),D.real)
|
||
|
|
||
|
def test_imag(self):
|
||
|
D = matrix([[1 + 3j, 2 - 4j]])
|
||
|
A = self.spmatrix(D)
|
||
|
assert_equal(A.imag.todense(),D.imag)
|
||
|
|
||
|
def test_diagonal(self):
|
||
|
# Does the matrix's .diagonal() method work?
|
||
|
mats = []
|
||
|
mats.append([[1,0,2]])
|
||
|
mats.append([[1],[0],[2]])
|
||
|
mats.append([[0,1],[0,2],[0,3]])
|
||
|
mats.append([[0,0,1],[0,0,2],[0,3,0]])
|
||
|
|
||
|
mats.append(kron(mats[0],[[1,2]]))
|
||
|
mats.append(kron(mats[0],[[1],[2]]))
|
||
|
mats.append(kron(mats[1],[[1,2],[3,4]]))
|
||
|
mats.append(kron(mats[2],[[1,2],[3,4]]))
|
||
|
mats.append(kron(mats[3],[[1,2],[3,4]]))
|
||
|
mats.append(kron(mats[3],[[1,2,3,4]]))
|
||
|
|
||
|
for m in mats:
|
||
|
rows, cols = array(m).shape
|
||
|
sparse_mat = self.spmatrix(m)
|
||
|
for k in range(-rows + 1, cols):
|
||
|
assert_equal(sparse_mat.diagonal(k=k), diag(m, k=k))
|
||
|
assert_raises(ValueError, sparse_mat.diagonal, -rows)
|
||
|
assert_raises(ValueError, sparse_mat.diagonal, cols)
|
||
|
|
||
|
# Test all-zero matrix.
|
||
|
assert_equal(self.spmatrix((40, 16130)).diagonal(), np.zeros(40))
|
||
|
|
||
|
def test_reshape(self):
|
||
|
# This first example is taken from the lil_matrix reshaping test.
|
||
|
x = self.spmatrix([[1, 0, 7], [0, 0, 0], [0, 3, 0], [0, 0, 5]])
|
||
|
for order in ['C', 'F']:
|
||
|
for s in [(12, 1), (1, 12)]:
|
||
|
assert_array_equal(x.reshape(s, order=order).todense(),
|
||
|
x.todense().reshape(s, order=order))
|
||
|
|
||
|
# This example is taken from the stackoverflow answer at
|
||
|
# http://stackoverflow.com/questions/16511879
|
||
|
x = self.spmatrix([[0, 10, 0, 0], [0, 0, 0, 0], [0, 20, 30, 40]])
|
||
|
y = x.reshape((2, 6)) # Default order is 'C'
|
||
|
desired = [[0, 10, 0, 0, 0, 0], [0, 0, 0, 20, 30, 40]]
|
||
|
assert_array_equal(y.A, desired)
|
||
|
|
||
|
# Reshape with negative indexes
|
||
|
y = x.reshape((2, -1))
|
||
|
assert_array_equal(y.A, desired)
|
||
|
y = x.reshape((-1, 6))
|
||
|
assert_array_equal(y.A, desired)
|
||
|
assert_raises(ValueError, x.reshape, (-1, -1))
|
||
|
|
||
|
# Reshape with star args
|
||
|
y = x.reshape(2, 6)
|
||
|
assert_array_equal(y.A, desired)
|
||
|
assert_raises(TypeError, x.reshape, 2, 6, not_an_arg=1)
|
||
|
|
||
|
# Reshape with same size is noop unless copy=True
|
||
|
y = x.reshape((3, 4))
|
||
|
assert_(y is x)
|
||
|
y = x.reshape((3, 4), copy=True)
|
||
|
assert_(y is not x)
|
||
|
|
||
|
# Ensure reshape did not alter original size
|
||
|
assert_array_equal(x.shape, (3, 4))
|
||
|
|
||
|
# Reshape in place
|
||
|
x.shape = (2, 6)
|
||
|
assert_array_equal(x.A, desired)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_setdiag_comprehensive(self):
|
||
|
def dense_setdiag(a, v, k):
|
||
|
v = np.asarray(v)
|
||
|
if k >= 0:
|
||
|
n = min(a.shape[0], a.shape[1] - k)
|
||
|
if v.ndim != 0:
|
||
|
n = min(n, len(v))
|
||
|
v = v[:n]
|
||
|
i = np.arange(0, n)
|
||
|
j = np.arange(k, k + n)
|
||
|
a[i,j] = v
|
||
|
elif k < 0:
|
||
|
dense_setdiag(a.T, v, -k)
|
||
|
|
||
|
def check_setdiag(a, b, k):
|
||
|
# Check setting diagonal using a scalar, a vector of
|
||
|
# correct length, and too short or too long vectors
|
||
|
for r in [-1, len(np.diag(a, k)), 2, 30]:
|
||
|
if r < 0:
|
||
|
v = int(np.random.randint(1, 20, size=1))
|
||
|
else:
|
||
|
v = np.random.randint(1, 20, size=r)
|
||
|
|
||
|
dense_setdiag(a, v, k)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning, "Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
b.setdiag(v, k)
|
||
|
|
||
|
# check that dense_setdiag worked
|
||
|
d = np.diag(a, k)
|
||
|
if np.asarray(v).ndim == 0:
|
||
|
assert_array_equal(d, v, err_msg="%s %d" % (msg, r))
|
||
|
else:
|
||
|
n = min(len(d), len(v))
|
||
|
assert_array_equal(d[:n], v[:n], err_msg="%s %d" % (msg, r))
|
||
|
# check that sparse setdiag worked
|
||
|
assert_array_equal(b.A, a, err_msg="%s %d" % (msg, r))
|
||
|
|
||
|
# comprehensive test
|
||
|
np.random.seed(1234)
|
||
|
shapes = [(0,5), (5,0), (1,5), (5,1), (5,5)]
|
||
|
for dtype in [np.int8, np.float64]:
|
||
|
for m,n in shapes:
|
||
|
ks = np.arange(-m+1, n-1)
|
||
|
for k in ks:
|
||
|
msg = repr((dtype, m, n, k))
|
||
|
a = np.zeros((m, n), dtype=dtype)
|
||
|
b = self.spmatrix((m, n), dtype=dtype)
|
||
|
|
||
|
check_setdiag(a, b, k)
|
||
|
|
||
|
# check overwriting etc
|
||
|
for k2 in np.random.choice(ks, size=min(len(ks), 5)):
|
||
|
check_setdiag(a, b, k2)
|
||
|
|
||
|
def test_setdiag(self):
|
||
|
# simple test cases
|
||
|
m = self.spmatrix(np.eye(3))
|
||
|
values = [3, 2, 1]
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
assert_raises(ValueError, m.setdiag, values, k=4)
|
||
|
m.setdiag(values)
|
||
|
assert_array_equal(m.diagonal(), values)
|
||
|
m.setdiag(values, k=1)
|
||
|
assert_array_equal(m.A, np.array([[3, 3, 0],
|
||
|
[0, 2, 2],
|
||
|
[0, 0, 1]]))
|
||
|
m.setdiag(values, k=-2)
|
||
|
assert_array_equal(m.A, np.array([[3, 3, 0],
|
||
|
[0, 2, 2],
|
||
|
[3, 0, 1]]))
|
||
|
m.setdiag((9,), k=2)
|
||
|
assert_array_equal(m.A[0,2], 9)
|
||
|
m.setdiag((9,), k=-2)
|
||
|
assert_array_equal(m.A[2,0], 9)
|
||
|
|
||
|
def test_nonzero(self):
|
||
|
A = array([[1, 0, 1],[0, 1, 1],[0, 0, 1]])
|
||
|
Asp = self.spmatrix(A)
|
||
|
|
||
|
A_nz = set([tuple(ij) for ij in transpose(A.nonzero())])
|
||
|
Asp_nz = set([tuple(ij) for ij in transpose(Asp.nonzero())])
|
||
|
|
||
|
assert_equal(A_nz, Asp_nz)
|
||
|
|
||
|
def test_numpy_nonzero(self):
|
||
|
# See gh-5987
|
||
|
A = array([[1, 0, 1], [0, 1, 1], [0, 0, 1]])
|
||
|
Asp = self.spmatrix(A)
|
||
|
|
||
|
A_nz = set([tuple(ij) for ij in transpose(np.nonzero(A))])
|
||
|
Asp_nz = set([tuple(ij) for ij in transpose(np.nonzero(Asp))])
|
||
|
|
||
|
assert_equal(A_nz, Asp_nz)
|
||
|
|
||
|
def test_getrow(self):
|
||
|
assert_array_equal(self.datsp.getrow(1).todense(), self.dat[1,:])
|
||
|
assert_array_equal(self.datsp.getrow(-1).todense(), self.dat[-1,:])
|
||
|
|
||
|
def test_getcol(self):
|
||
|
assert_array_equal(self.datsp.getcol(1).todense(), self.dat[:,1])
|
||
|
assert_array_equal(self.datsp.getcol(-1).todense(), self.dat[:,-1])
|
||
|
|
||
|
def test_sum(self):
|
||
|
np.random.seed(1234)
|
||
|
dat_1 = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
dat_2 = np.random.rand(5, 5)
|
||
|
dat_3 = np.array([[]])
|
||
|
dat_4 = np.zeros((40, 40))
|
||
|
dat_5 = sparse.rand(5, 5, density=1e-2).A
|
||
|
matrices = [dat_1, dat_2, dat_3, dat_4, dat_5]
|
||
|
|
||
|
def check(dtype, j):
|
||
|
dat = np.matrix(matrices[j], dtype=dtype)
|
||
|
datsp = self.spmatrix(dat, dtype=dtype)
|
||
|
with np.errstate(over='ignore'):
|
||
|
assert_array_almost_equal(dat.sum(), datsp.sum())
|
||
|
assert_equal(dat.sum().dtype, datsp.sum().dtype)
|
||
|
assert_(np.isscalar(datsp.sum(axis=None)))
|
||
|
assert_array_almost_equal(dat.sum(axis=None),
|
||
|
datsp.sum(axis=None))
|
||
|
assert_equal(dat.sum(axis=None).dtype,
|
||
|
datsp.sum(axis=None).dtype)
|
||
|
assert_array_almost_equal(dat.sum(axis=0), datsp.sum(axis=0))
|
||
|
assert_equal(dat.sum(axis=0).dtype, datsp.sum(axis=0).dtype)
|
||
|
assert_array_almost_equal(dat.sum(axis=1), datsp.sum(axis=1))
|
||
|
assert_equal(dat.sum(axis=1).dtype, datsp.sum(axis=1).dtype)
|
||
|
assert_array_almost_equal(dat.sum(axis=-2), datsp.sum(axis=-2))
|
||
|
assert_equal(dat.sum(axis=-2).dtype, datsp.sum(axis=-2).dtype)
|
||
|
assert_array_almost_equal(dat.sum(axis=-1), datsp.sum(axis=-1))
|
||
|
assert_equal(dat.sum(axis=-1).dtype, datsp.sum(axis=-1).dtype)
|
||
|
|
||
|
for dtype in self.checked_dtypes:
|
||
|
for j in range(len(matrices)):
|
||
|
check(dtype, j)
|
||
|
|
||
|
def test_sum_invalid_params(self):
|
||
|
out = np.asmatrix(np.zeros((1, 3)))
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
assert_raises(ValueError, datsp.sum, axis=3)
|
||
|
assert_raises(TypeError, datsp.sum, axis=(0, 1))
|
||
|
assert_raises(TypeError, datsp.sum, axis=1.5)
|
||
|
assert_raises(ValueError, datsp.sum, axis=1, out=out)
|
||
|
|
||
|
def test_sum_dtype(self):
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
def check(dtype):
|
||
|
dat_mean = dat.mean(dtype=dtype)
|
||
|
datsp_mean = datsp.mean(dtype=dtype)
|
||
|
|
||
|
assert_array_almost_equal(dat_mean, datsp_mean)
|
||
|
assert_equal(dat_mean.dtype, datsp_mean.dtype)
|
||
|
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_sum_out(self):
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
dat_out = np.matrix(0)
|
||
|
datsp_out = np.matrix(0)
|
||
|
|
||
|
dat.sum(out=dat_out)
|
||
|
datsp.sum(out=datsp_out)
|
||
|
assert_array_almost_equal(dat_out, datsp_out)
|
||
|
|
||
|
dat_out = np.asmatrix(np.zeros((3, 1)))
|
||
|
datsp_out = np.asmatrix(np.zeros((3, 1)))
|
||
|
|
||
|
dat.sum(axis=1, out=dat_out)
|
||
|
datsp.sum(axis=1, out=datsp_out)
|
||
|
assert_array_almost_equal(dat_out, datsp_out)
|
||
|
|
||
|
def test_numpy_sum(self):
|
||
|
# See gh-5987
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
dat_mean = np.sum(dat)
|
||
|
datsp_mean = np.sum(datsp)
|
||
|
|
||
|
assert_array_almost_equal(dat_mean, datsp_mean)
|
||
|
assert_equal(dat_mean.dtype, datsp_mean.dtype)
|
||
|
|
||
|
def test_mean(self):
|
||
|
def check(dtype):
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]], dtype=dtype)
|
||
|
datsp = self.spmatrix(dat, dtype=dtype)
|
||
|
|
||
|
assert_array_almost_equal(dat.mean(), datsp.mean())
|
||
|
assert_equal(dat.mean().dtype, datsp.mean().dtype)
|
||
|
assert_(np.isscalar(datsp.mean(axis=None)))
|
||
|
assert_array_almost_equal(dat.mean(axis=None), datsp.mean(axis=None))
|
||
|
assert_equal(dat.mean(axis=None).dtype, datsp.mean(axis=None).dtype)
|
||
|
assert_array_almost_equal(dat.mean(axis=0), datsp.mean(axis=0))
|
||
|
assert_equal(dat.mean(axis=0).dtype, datsp.mean(axis=0).dtype)
|
||
|
assert_array_almost_equal(dat.mean(axis=1), datsp.mean(axis=1))
|
||
|
assert_equal(dat.mean(axis=1).dtype, datsp.mean(axis=1).dtype)
|
||
|
assert_array_almost_equal(dat.mean(axis=-2), datsp.mean(axis=-2))
|
||
|
assert_equal(dat.mean(axis=-2).dtype, datsp.mean(axis=-2).dtype)
|
||
|
assert_array_almost_equal(dat.mean(axis=-1), datsp.mean(axis=-1))
|
||
|
assert_equal(dat.mean(axis=-1).dtype, datsp.mean(axis=-1).dtype)
|
||
|
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_mean_invalid_params(self):
|
||
|
out = np.asmatrix(np.zeros((1, 3)))
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
assert_raises(ValueError, datsp.mean, axis=3)
|
||
|
assert_raises(TypeError, datsp.mean, axis=(0, 1))
|
||
|
assert_raises(TypeError, datsp.mean, axis=1.5)
|
||
|
assert_raises(ValueError, datsp.mean, axis=1, out=out)
|
||
|
|
||
|
def test_mean_dtype(self):
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
def check(dtype):
|
||
|
dat_mean = dat.mean(dtype=dtype)
|
||
|
datsp_mean = datsp.mean(dtype=dtype)
|
||
|
|
||
|
assert_array_almost_equal(dat_mean, datsp_mean)
|
||
|
assert_equal(dat_mean.dtype, datsp_mean.dtype)
|
||
|
|
||
|
for dtype in self.checked_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_mean_out(self):
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
dat_out = np.matrix(0)
|
||
|
datsp_out = np.matrix(0)
|
||
|
|
||
|
dat.mean(out=dat_out)
|
||
|
datsp.mean(out=datsp_out)
|
||
|
assert_array_almost_equal(dat_out, datsp_out)
|
||
|
|
||
|
dat_out = np.asmatrix(np.zeros((3, 1)))
|
||
|
datsp_out = np.asmatrix(np.zeros((3, 1)))
|
||
|
|
||
|
dat.mean(axis=1, out=dat_out)
|
||
|
datsp.mean(axis=1, out=datsp_out)
|
||
|
assert_array_almost_equal(dat_out, datsp_out)
|
||
|
|
||
|
def test_numpy_mean(self):
|
||
|
# See gh-5987
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
dat_mean = np.mean(dat)
|
||
|
datsp_mean = np.mean(datsp)
|
||
|
|
||
|
assert_array_almost_equal(dat_mean, datsp_mean)
|
||
|
assert_equal(dat_mean.dtype, datsp_mean.dtype)
|
||
|
|
||
|
def test_expm(self):
|
||
|
M = array([[1, 0, 2], [0, 0, 3], [-4, 5, 6]], float)
|
||
|
sM = self.spmatrix(M, shape=(3,3), dtype=float)
|
||
|
Mexp = scipy.linalg.expm(M)
|
||
|
|
||
|
N = array([[3., 0., 1.], [0., 2., 0.], [0., 0., 0.]])
|
||
|
sN = self.spmatrix(N, shape=(3,3), dtype=float)
|
||
|
Nexp = scipy.linalg.expm(N)
|
||
|
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning, "splu requires CSC matrix format")
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"spsolve is more efficient when sparse b is in the CSC matrix format")
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"spsolve requires A be CSC or CSR matrix format")
|
||
|
sMexp = expm(sM).todense()
|
||
|
sNexp = expm(sN).todense()
|
||
|
|
||
|
assert_array_almost_equal((sMexp - Mexp), zeros((3, 3)))
|
||
|
assert_array_almost_equal((sNexp - Nexp), zeros((3, 3)))
|
||
|
|
||
|
def test_inv(self):
|
||
|
def check(dtype):
|
||
|
M = array([[1, 0, 2], [0, 0, 3], [-4, 5, 6]], dtype)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"spsolve requires A be CSC or CSR matrix format")
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"spsolve is more efficient when sparse b is in the CSC matrix format")
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"splu requires CSC matrix format")
|
||
|
sM = self.spmatrix(M, shape=(3,3), dtype=dtype)
|
||
|
sMinv = inv(sM)
|
||
|
assert_array_almost_equal(sMinv.dot(sM).todense(), np.eye(3))
|
||
|
assert_raises(TypeError, inv, M)
|
||
|
for dtype in [float]:
|
||
|
check(dtype)
|
||
|
|
||
|
@sup_complex
|
||
|
def test_from_array(self):
|
||
|
A = array([[1,0,0],[2,3,4],[0,5,0],[0,0,0]])
|
||
|
assert_array_equal(self.spmatrix(A).toarray(), A)
|
||
|
|
||
|
A = array([[1.0 + 3j, 0, 0],
|
||
|
[0, 2.0 + 5, 0],
|
||
|
[0, 0, 0]])
|
||
|
assert_array_equal(self.spmatrix(A).toarray(), A)
|
||
|
assert_array_equal(self.spmatrix(A, dtype='int16').toarray(), A.astype('int16'))
|
||
|
|
||
|
@sup_complex
|
||
|
def test_from_matrix(self):
|
||
|
A = matrix([[1,0,0],[2,3,4],[0,5,0],[0,0,0]])
|
||
|
assert_array_equal(self.spmatrix(A).todense(), A)
|
||
|
|
||
|
A = matrix([[1.0 + 3j, 0, 0],
|
||
|
[0, 2.0 + 5, 0],
|
||
|
[0, 0, 0]])
|
||
|
assert_array_equal(self.spmatrix(A).toarray(), A)
|
||
|
assert_array_equal(self.spmatrix(A, dtype='int16').toarray(), A.astype('int16'))
|
||
|
|
||
|
@sup_complex
|
||
|
def test_from_list(self):
|
||
|
A = [[1,0,0],[2,3,4],[0,5,0],[0,0,0]]
|
||
|
assert_array_equal(self.spmatrix(A).todense(), A)
|
||
|
|
||
|
A = [[1.0 + 3j, 0, 0],
|
||
|
[0, 2.0 + 5, 0],
|
||
|
[0, 0, 0]]
|
||
|
assert_array_equal(self.spmatrix(A).toarray(), array(A))
|
||
|
assert_array_equal(self.spmatrix(A, dtype='int16').todense(), array(A).astype('int16'))
|
||
|
|
||
|
@sup_complex
|
||
|
def test_from_sparse(self):
|
||
|
D = array([[1,0,0],[2,3,4],[0,5,0],[0,0,0]])
|
||
|
S = csr_matrix(D)
|
||
|
assert_array_equal(self.spmatrix(S).toarray(), D)
|
||
|
S = self.spmatrix(D)
|
||
|
assert_array_equal(self.spmatrix(S).toarray(), D)
|
||
|
|
||
|
D = array([[1.0 + 3j, 0, 0],
|
||
|
[0, 2.0 + 5, 0],
|
||
|
[0, 0, 0]])
|
||
|
S = csr_matrix(D)
|
||
|
assert_array_equal(self.spmatrix(S).toarray(), D)
|
||
|
assert_array_equal(self.spmatrix(S, dtype='int16').toarray(), D.astype('int16'))
|
||
|
S = self.spmatrix(D)
|
||
|
assert_array_equal(self.spmatrix(S).toarray(), D)
|
||
|
assert_array_equal(self.spmatrix(S, dtype='int16').toarray(), D.astype('int16'))
|
||
|
|
||
|
# def test_array(self):
|
||
|
# """test array(A) where A is in sparse format"""
|
||
|
# assert_equal( array(self.datsp), self.dat )
|
||
|
|
||
|
def test_todense(self):
|
||
|
# Check C- or F-contiguous (default).
|
||
|
chk = self.datsp.todense()
|
||
|
assert_array_equal(chk, self.dat)
|
||
|
assert_(chk.flags.c_contiguous != chk.flags.f_contiguous)
|
||
|
# Check C-contiguous (with arg).
|
||
|
chk = self.datsp.todense(order='C')
|
||
|
assert_array_equal(chk, self.dat)
|
||
|
assert_(chk.flags.c_contiguous)
|
||
|
assert_(not chk.flags.f_contiguous)
|
||
|
# Check F-contiguous (with arg).
|
||
|
chk = self.datsp.todense(order='F')
|
||
|
assert_array_equal(chk, self.dat)
|
||
|
assert_(not chk.flags.c_contiguous)
|
||
|
assert_(chk.flags.f_contiguous)
|
||
|
# Check with out argument (array).
|
||
|
out = np.zeros(self.datsp.shape, dtype=self.datsp.dtype)
|
||
|
chk = self.datsp.todense(out=out)
|
||
|
assert_array_equal(self.dat, out)
|
||
|
assert_array_equal(self.dat, chk)
|
||
|
assert_(chk.base is out)
|
||
|
# Check with out array (matrix).
|
||
|
out = np.asmatrix(np.zeros(self.datsp.shape, dtype=self.datsp.dtype))
|
||
|
chk = self.datsp.todense(out=out)
|
||
|
assert_array_equal(self.dat, out)
|
||
|
assert_array_equal(self.dat, chk)
|
||
|
assert_(chk is out)
|
||
|
a = matrix([1.,2.,3.])
|
||
|
dense_dot_dense = a * self.dat
|
||
|
check = a * self.datsp.todense()
|
||
|
assert_array_equal(dense_dot_dense, check)
|
||
|
b = matrix([1.,2.,3.,4.]).T
|
||
|
dense_dot_dense = self.dat * b
|
||
|
check2 = self.datsp.todense() * b
|
||
|
assert_array_equal(dense_dot_dense, check2)
|
||
|
# Check bool data works.
|
||
|
spbool = self.spmatrix(self.dat, dtype=bool)
|
||
|
matbool = self.dat.astype(bool)
|
||
|
assert_array_equal(spbool.todense(), matbool)
|
||
|
|
||
|
def test_toarray(self):
|
||
|
# Check C- or F-contiguous (default).
|
||
|
dat = asarray(self.dat)
|
||
|
chk = self.datsp.toarray()
|
||
|
assert_array_equal(chk, dat)
|
||
|
assert_(chk.flags.c_contiguous != chk.flags.f_contiguous)
|
||
|
# Check C-contiguous (with arg).
|
||
|
chk = self.datsp.toarray(order='C')
|
||
|
assert_array_equal(chk, dat)
|
||
|
assert_(chk.flags.c_contiguous)
|
||
|
assert_(not chk.flags.f_contiguous)
|
||
|
# Check F-contiguous (with arg).
|
||
|
chk = self.datsp.toarray(order='F')
|
||
|
assert_array_equal(chk, dat)
|
||
|
assert_(not chk.flags.c_contiguous)
|
||
|
assert_(chk.flags.f_contiguous)
|
||
|
# Check with output arg.
|
||
|
out = np.zeros(self.datsp.shape, dtype=self.datsp.dtype)
|
||
|
self.datsp.toarray(out=out)
|
||
|
assert_array_equal(chk, dat)
|
||
|
# Check that things are fine when we don't initialize with zeros.
|
||
|
out[...] = 1.
|
||
|
self.datsp.toarray(out=out)
|
||
|
assert_array_equal(chk, dat)
|
||
|
a = array([1.,2.,3.])
|
||
|
dense_dot_dense = dot(a, dat)
|
||
|
check = dot(a, self.datsp.toarray())
|
||
|
assert_array_equal(dense_dot_dense, check)
|
||
|
b = array([1.,2.,3.,4.])
|
||
|
dense_dot_dense = dot(dat, b)
|
||
|
check2 = dot(self.datsp.toarray(), b)
|
||
|
assert_array_equal(dense_dot_dense, check2)
|
||
|
# Check bool data works.
|
||
|
spbool = self.spmatrix(self.dat, dtype=bool)
|
||
|
arrbool = dat.astype(bool)
|
||
|
assert_array_equal(spbool.toarray(), arrbool)
|
||
|
|
||
|
@sup_complex
|
||
|
def test_astype(self):
|
||
|
D = array([[2.0 + 3j, 0, 0],
|
||
|
[0, 4.0 + 5j, 0],
|
||
|
[0, 0, 0]])
|
||
|
S = self.spmatrix(D)
|
||
|
|
||
|
for x in supported_dtypes:
|
||
|
# Check correctly casted
|
||
|
D_casted = D.astype(x)
|
||
|
for copy in (True, False):
|
||
|
S_casted = S.astype(x, copy=copy)
|
||
|
assert_equal(S_casted.dtype, D_casted.dtype) # correct type
|
||
|
assert_equal(S_casted.toarray(), D_casted) # correct values
|
||
|
assert_equal(S_casted.format, S.format) # format preserved
|
||
|
# Check correctly copied
|
||
|
assert_(S_casted.astype(x, copy=False) is S_casted)
|
||
|
S_copied = S_casted.astype(x, copy=True)
|
||
|
assert_(S_copied is not S_casted)
|
||
|
|
||
|
def check_equal_but_not_same_array_attribute(attribute):
|
||
|
a = getattr(S_casted, attribute)
|
||
|
b = getattr(S_copied, attribute)
|
||
|
assert_array_equal(a, b)
|
||
|
assert_(a is not b)
|
||
|
i = (0,) * b.ndim
|
||
|
b_i = b[i]
|
||
|
b[i] = not b[i]
|
||
|
assert_(a[i] != b[i])
|
||
|
b[i] = b_i
|
||
|
|
||
|
if S_casted.format in ('csr', 'csc', 'bsr'):
|
||
|
for attribute in ('indices', 'indptr', 'data'):
|
||
|
check_equal_but_not_same_array_attribute(attribute)
|
||
|
elif S_casted.format == 'coo':
|
||
|
for attribute in ('row', 'col', 'data'):
|
||
|
check_equal_but_not_same_array_attribute(attribute)
|
||
|
elif S_casted.format == 'dia':
|
||
|
for attribute in ('offsets', 'data'):
|
||
|
check_equal_but_not_same_array_attribute(attribute)
|
||
|
|
||
|
def test_asfptype(self):
|
||
|
A = self.spmatrix(arange(6,dtype='int32').reshape(2,3))
|
||
|
|
||
|
assert_equal(A.dtype, np.dtype('int32'))
|
||
|
assert_equal(A.asfptype().dtype, np.dtype('float64'))
|
||
|
assert_equal(A.asfptype().format, A.format)
|
||
|
assert_equal(A.astype('int16').asfptype().dtype, np.dtype('float32'))
|
||
|
assert_equal(A.astype('complex128').asfptype().dtype, np.dtype('complex128'))
|
||
|
|
||
|
B = A.asfptype()
|
||
|
C = B.asfptype()
|
||
|
assert_(B is C)
|
||
|
|
||
|
def test_mul_scalar(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
assert_array_equal(dat*2,(datsp*2).todense())
|
||
|
assert_array_equal(dat*17.3,(datsp*17.3).todense())
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_rmul_scalar(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
assert_array_equal(2*dat,(2*datsp).todense())
|
||
|
assert_array_equal(17.3*dat,(17.3*datsp).todense())
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_add(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
a = dat.copy()
|
||
|
a[0,2] = 2.0
|
||
|
b = datsp
|
||
|
c = b + a
|
||
|
assert_array_equal(c, b.todense() + a)
|
||
|
|
||
|
c = b + b.tocsr()
|
||
|
assert_array_equal(c.todense(),
|
||
|
b.todense() + b.todense())
|
||
|
|
||
|
# test broadcasting
|
||
|
c = b + a[0]
|
||
|
assert_array_equal(c, b.todense() + a[0])
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_radd(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
a = dat.copy()
|
||
|
a[0,2] = 2.0
|
||
|
b = datsp
|
||
|
c = a + b
|
||
|
assert_array_equal(c, a + b.todense())
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_sub(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
assert_array_equal((datsp - datsp).todense(),[[0,0,0,0],[0,0,0,0],[0,0,0,0]])
|
||
|
assert_array_equal((datsp - 0).todense(), dat)
|
||
|
|
||
|
A = self.spmatrix(matrix([[1,0,0,4],[-1,0,0,0],[0,8,0,-5]],'d'))
|
||
|
assert_array_equal((datsp - A).todense(),dat - A.todense())
|
||
|
assert_array_equal((A - datsp).todense(),A.todense() - dat)
|
||
|
|
||
|
# test broadcasting
|
||
|
assert_array_equal(datsp - dat[0], dat - dat[0])
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
if dtype == np.dtype('bool'):
|
||
|
# boolean array subtraction deprecated in 1.9.0
|
||
|
continue
|
||
|
|
||
|
check(dtype)
|
||
|
|
||
|
def test_rsub(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
assert_array_equal((dat - datsp),[[0,0,0,0],[0,0,0,0],[0,0,0,0]])
|
||
|
assert_array_equal((datsp - dat),[[0,0,0,0],[0,0,0,0],[0,0,0,0]])
|
||
|
assert_array_equal((0 - datsp).todense(), -dat)
|
||
|
|
||
|
A = self.spmatrix(matrix([[1,0,0,4],[-1,0,0,0],[0,8,0,-5]],'d'))
|
||
|
assert_array_equal((dat - A),dat - A.todense())
|
||
|
assert_array_equal((A - dat),A.todense() - dat)
|
||
|
assert_array_equal(A.todense() - datsp,A.todense() - dat)
|
||
|
assert_array_equal(datsp - A.todense(),dat - A.todense())
|
||
|
|
||
|
# test broadcasting
|
||
|
assert_array_equal(dat[0] - datsp, dat[0] - dat)
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
if dtype == np.dtype('bool'):
|
||
|
# boolean array subtraction deprecated in 1.9.0
|
||
|
continue
|
||
|
|
||
|
check(dtype)
|
||
|
|
||
|
def test_add0(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
# Adding 0 to a sparse matrix
|
||
|
assert_array_equal((datsp + 0).todense(), dat)
|
||
|
# use sum (which takes 0 as a starting value)
|
||
|
sumS = sum([k * datsp for k in range(1, 3)])
|
||
|
sumD = sum([k * dat for k in range(1, 3)])
|
||
|
assert_almost_equal(sumS.todense(), sumD)
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_elementwise_multiply(self):
|
||
|
# real/real
|
||
|
A = array([[4,0,9],[2,-3,5]])
|
||
|
B = array([[0,7,0],[0,-4,0]])
|
||
|
Asp = self.spmatrix(A)
|
||
|
Bsp = self.spmatrix(B)
|
||
|
assert_almost_equal(Asp.multiply(Bsp).todense(), A*B) # sparse/sparse
|
||
|
assert_almost_equal(Asp.multiply(B).todense(), A*B) # sparse/dense
|
||
|
|
||
|
# complex/complex
|
||
|
C = array([[1-2j,0+5j,-1+0j],[4-3j,-3+6j,5]])
|
||
|
D = array([[5+2j,7-3j,-2+1j],[0-1j,-4+2j,9]])
|
||
|
Csp = self.spmatrix(C)
|
||
|
Dsp = self.spmatrix(D)
|
||
|
assert_almost_equal(Csp.multiply(Dsp).todense(), C*D) # sparse/sparse
|
||
|
assert_almost_equal(Csp.multiply(D).todense(), C*D) # sparse/dense
|
||
|
|
||
|
# real/complex
|
||
|
assert_almost_equal(Asp.multiply(Dsp).todense(), A*D) # sparse/sparse
|
||
|
assert_almost_equal(Asp.multiply(D).todense(), A*D) # sparse/dense
|
||
|
|
||
|
def test_elementwise_multiply_broadcast(self):
|
||
|
A = array([4])
|
||
|
B = array([[-9]])
|
||
|
C = array([1,-1,0])
|
||
|
D = array([[7,9,-9]])
|
||
|
E = array([[3],[2],[1]])
|
||
|
F = array([[8,6,3],[-4,3,2],[6,6,6]])
|
||
|
G = [1, 2, 3]
|
||
|
H = np.ones((3, 4))
|
||
|
J = H.T
|
||
|
K = array([[0]])
|
||
|
L = array([[[1,2],[0,1]]])
|
||
|
|
||
|
# Some arrays can't be cast as spmatrices (A,C,L) so leave
|
||
|
# them out.
|
||
|
Bsp = self.spmatrix(B)
|
||
|
Dsp = self.spmatrix(D)
|
||
|
Esp = self.spmatrix(E)
|
||
|
Fsp = self.spmatrix(F)
|
||
|
Hsp = self.spmatrix(H)
|
||
|
Hspp = self.spmatrix(H[0,None])
|
||
|
Jsp = self.spmatrix(J)
|
||
|
Jspp = self.spmatrix(J[:,0,None])
|
||
|
Ksp = self.spmatrix(K)
|
||
|
|
||
|
matrices = [A, B, C, D, E, F, G, H, J, K, L]
|
||
|
spmatrices = [Bsp, Dsp, Esp, Fsp, Hsp, Hspp, Jsp, Jspp, Ksp]
|
||
|
|
||
|
# sparse/sparse
|
||
|
for i in spmatrices:
|
||
|
for j in spmatrices:
|
||
|
try:
|
||
|
dense_mult = np.multiply(i.todense(), j.todense())
|
||
|
except ValueError:
|
||
|
assert_raises(ValueError, i.multiply, j)
|
||
|
continue
|
||
|
sp_mult = i.multiply(j)
|
||
|
assert_almost_equal(sp_mult.todense(), dense_mult)
|
||
|
|
||
|
# sparse/dense
|
||
|
for i in spmatrices:
|
||
|
for j in matrices:
|
||
|
try:
|
||
|
dense_mult = np.multiply(i.todense(), j)
|
||
|
except TypeError:
|
||
|
continue
|
||
|
except ValueError:
|
||
|
assert_raises(ValueError, i.multiply, j)
|
||
|
continue
|
||
|
sp_mult = i.multiply(j)
|
||
|
if isspmatrix(sp_mult):
|
||
|
assert_almost_equal(sp_mult.todense(), dense_mult)
|
||
|
else:
|
||
|
assert_almost_equal(sp_mult, dense_mult)
|
||
|
|
||
|
def test_elementwise_divide(self):
|
||
|
expected = [[1,np.nan,np.nan,1],
|
||
|
[1,np.nan,1,np.nan],
|
||
|
[np.nan,1,np.nan,np.nan]]
|
||
|
assert_array_equal(todense(self.datsp / self.datsp),expected)
|
||
|
|
||
|
denom = self.spmatrix(matrix([[1,0,0,4],[-1,0,0,0],[0,8,0,-5]],'d'))
|
||
|
expected = [[1,np.nan,np.nan,0.5],
|
||
|
[-3,np.nan,inf,np.nan],
|
||
|
[np.nan,0.25,np.nan,0]]
|
||
|
assert_array_equal(todense(self.datsp / denom), expected)
|
||
|
|
||
|
# complex
|
||
|
A = array([[1-2j,0+5j,-1+0j],[4-3j,-3+6j,5]])
|
||
|
B = array([[5+2j,7-3j,-2+1j],[0-1j,-4+2j,9]])
|
||
|
Asp = self.spmatrix(A)
|
||
|
Bsp = self.spmatrix(B)
|
||
|
assert_almost_equal(todense(Asp / Bsp), A/B)
|
||
|
|
||
|
# integer
|
||
|
A = array([[1,2,3],[-3,2,1]])
|
||
|
B = array([[0,1,2],[0,-2,3]])
|
||
|
Asp = self.spmatrix(A)
|
||
|
Bsp = self.spmatrix(B)
|
||
|
with np.errstate(divide='ignore'):
|
||
|
assert_array_equal(todense(Asp / Bsp), A / B)
|
||
|
|
||
|
# mismatching sparsity patterns
|
||
|
A = array([[0,1],[1,0]])
|
||
|
B = array([[1,0],[1,0]])
|
||
|
Asp = self.spmatrix(A)
|
||
|
Bsp = self.spmatrix(B)
|
||
|
with np.errstate(divide='ignore', invalid='ignore'):
|
||
|
assert_array_equal(np.array(todense(Asp / Bsp)), A / B)
|
||
|
|
||
|
def test_pow(self):
|
||
|
A = matrix([[1,0,2,0],[0,3,4,0],[0,5,0,0],[0,6,7,8]])
|
||
|
B = self.spmatrix(A)
|
||
|
|
||
|
for exponent in [0,1,2,3]:
|
||
|
assert_array_equal((B**exponent).todense(),A**exponent)
|
||
|
|
||
|
# invalid exponents
|
||
|
for exponent in [-1, 2.2, 1 + 3j]:
|
||
|
assert_raises(Exception, B.__pow__, exponent)
|
||
|
|
||
|
# nonsquare matrix
|
||
|
B = self.spmatrix(A[:3,:])
|
||
|
assert_raises(Exception, B.__pow__, 1)
|
||
|
|
||
|
def test_rmatvec(self):
|
||
|
M = self.spmatrix(matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]))
|
||
|
assert_array_almost_equal([1,2,3,4]*M, dot([1,2,3,4], M.toarray()))
|
||
|
row = matrix([[1,2,3,4]])
|
||
|
assert_array_almost_equal(row*M, row*M.todense())
|
||
|
|
||
|
def test_small_multiplication(self):
|
||
|
# test that A*x works for x with shape () (1,) (1,1) and (1,0)
|
||
|
A = self.spmatrix([[1],[2],[3]])
|
||
|
|
||
|
assert_(isspmatrix(A * array(1)))
|
||
|
assert_equal((A * array(1)).todense(), [[1],[2],[3]])
|
||
|
assert_equal(A * array([1]), array([1,2,3]))
|
||
|
assert_equal(A * array([[1]]), array([[1],[2],[3]]))
|
||
|
assert_equal(A * np.ones((1,0)), np.ones((3,0)))
|
||
|
|
||
|
def test_binop_custom_type(self):
|
||
|
# Non-regression test: previously, binary operations would raise
|
||
|
# NotImplementedError instead of returning NotImplemented
|
||
|
# (https://docs.python.org/library/constants.html#NotImplemented)
|
||
|
# so overloading Custom + matrix etc. didn't work.
|
||
|
A = self.spmatrix([[1], [2], [3]])
|
||
|
B = BinopTester()
|
||
|
assert_equal(A + B, "matrix on the left")
|
||
|
assert_equal(A - B, "matrix on the left")
|
||
|
assert_equal(A * B, "matrix on the left")
|
||
|
assert_equal(B + A, "matrix on the right")
|
||
|
assert_equal(B - A, "matrix on the right")
|
||
|
assert_equal(B * A, "matrix on the right")
|
||
|
|
||
|
if TEST_MATMUL:
|
||
|
assert_equal(eval('A @ B'), "matrix on the left")
|
||
|
assert_equal(eval('B @ A'), "matrix on the right")
|
||
|
|
||
|
def test_binop_custom_type_with_shape(self):
|
||
|
A = self.spmatrix([[1], [2], [3]])
|
||
|
B = BinopTester_with_shape((3,1))
|
||
|
assert_equal(A + B, "matrix on the left")
|
||
|
assert_equal(A - B, "matrix on the left")
|
||
|
assert_equal(A * B, "matrix on the left")
|
||
|
assert_equal(B + A, "matrix on the right")
|
||
|
assert_equal(B - A, "matrix on the right")
|
||
|
assert_equal(B * A, "matrix on the right")
|
||
|
|
||
|
if TEST_MATMUL:
|
||
|
assert_equal(eval('A @ B'), "matrix on the left")
|
||
|
assert_equal(eval('B @ A'), "matrix on the right")
|
||
|
|
||
|
def test_matmul(self):
|
||
|
if not TEST_MATMUL:
|
||
|
pytest.skip("matmul is only tested in Python 3.5+")
|
||
|
|
||
|
M = self.spmatrix(matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]))
|
||
|
B = self.spmatrix(matrix([[0,1],[1,0],[0,2]],'d'))
|
||
|
col = matrix([1,2,3]).T
|
||
|
|
||
|
# check matrix-vector
|
||
|
assert_array_almost_equal(operator.matmul(M, col),
|
||
|
M.todense() * col)
|
||
|
|
||
|
# check matrix-matrix
|
||
|
assert_array_almost_equal(operator.matmul(M, B).todense(),
|
||
|
(M * B).todense())
|
||
|
assert_array_almost_equal(operator.matmul(M.todense(), B),
|
||
|
(M * B).todense())
|
||
|
assert_array_almost_equal(operator.matmul(M, B.todense()),
|
||
|
(M * B).todense())
|
||
|
|
||
|
# check error on matrix-scalar
|
||
|
assert_raises(ValueError, operator.matmul, M, 1)
|
||
|
assert_raises(ValueError, operator.matmul, 1, M)
|
||
|
|
||
|
def test_matvec(self):
|
||
|
M = self.spmatrix(matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]]))
|
||
|
col = matrix([1,2,3]).T
|
||
|
assert_array_almost_equal(M * col, M.todense() * col)
|
||
|
|
||
|
# check result dimensions (ticket #514)
|
||
|
assert_equal((M * array([1,2,3])).shape,(4,))
|
||
|
assert_equal((M * array([[1],[2],[3]])).shape,(4,1))
|
||
|
assert_equal((M * matrix([[1],[2],[3]])).shape,(4,1))
|
||
|
|
||
|
# check result type
|
||
|
assert_(isinstance(M * array([1,2,3]), ndarray))
|
||
|
assert_(isinstance(M * matrix([1,2,3]).T, matrix))
|
||
|
|
||
|
# ensure exception is raised for improper dimensions
|
||
|
bad_vecs = [array([1,2]), array([1,2,3,4]), array([[1],[2]]),
|
||
|
matrix([1,2,3]), matrix([[1],[2]])]
|
||
|
for x in bad_vecs:
|
||
|
assert_raises(ValueError, M.__mul__, x)
|
||
|
|
||
|
# Should this be supported or not?!
|
||
|
# flat = array([1,2,3])
|
||
|
# assert_array_almost_equal(M*flat, M.todense()*flat)
|
||
|
# Currently numpy dense matrices promote the result to a 1x3 matrix,
|
||
|
# whereas sparse matrices leave the result as a rank-1 array. Which
|
||
|
# is preferable?
|
||
|
|
||
|
# Note: the following command does not work. Both NumPy matrices
|
||
|
# and spmatrices should raise exceptions!
|
||
|
# assert_array_almost_equal(M*[1,2,3], M.todense()*[1,2,3])
|
||
|
|
||
|
# The current relationship between sparse matrix products and array
|
||
|
# products is as follows:
|
||
|
assert_array_almost_equal(M*array([1,2,3]), dot(M.A,[1,2,3]))
|
||
|
assert_array_almost_equal(M*[[1],[2],[3]], asmatrix(dot(M.A,[1,2,3])).T)
|
||
|
# Note that the result of M * x is dense if x has a singleton dimension.
|
||
|
|
||
|
# Currently M.matvec(asarray(col)) is rank-1, whereas M.matvec(col)
|
||
|
# is rank-2. Is this desirable?
|
||
|
|
||
|
def test_matmat_sparse(self):
|
||
|
a = matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]])
|
||
|
a2 = array([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]])
|
||
|
b = matrix([[0,1],[1,0],[0,2]],'d')
|
||
|
asp = self.spmatrix(a)
|
||
|
bsp = self.spmatrix(b)
|
||
|
assert_array_almost_equal((asp*bsp).todense(), a*b)
|
||
|
assert_array_almost_equal(asp*b, a*b)
|
||
|
assert_array_almost_equal(a*bsp, a*b)
|
||
|
assert_array_almost_equal(a2*bsp, a*b)
|
||
|
|
||
|
# Now try performing cross-type multplication:
|
||
|
csp = bsp.tocsc()
|
||
|
c = b
|
||
|
assert_array_almost_equal((asp*csp).todense(), a*c)
|
||
|
assert_array_almost_equal(asp*c, a*c)
|
||
|
|
||
|
assert_array_almost_equal(a*csp, a*c)
|
||
|
assert_array_almost_equal(a2*csp, a*c)
|
||
|
csp = bsp.tocsr()
|
||
|
assert_array_almost_equal((asp*csp).todense(), a*c)
|
||
|
assert_array_almost_equal(asp*c, a*c)
|
||
|
|
||
|
assert_array_almost_equal(a*csp, a*c)
|
||
|
assert_array_almost_equal(a2*csp, a*c)
|
||
|
csp = bsp.tocoo()
|
||
|
assert_array_almost_equal((asp*csp).todense(), a*c)
|
||
|
assert_array_almost_equal(asp*c, a*c)
|
||
|
|
||
|
assert_array_almost_equal(a*csp, a*c)
|
||
|
assert_array_almost_equal(a2*csp, a*c)
|
||
|
|
||
|
# Test provided by Andy Fraser, 2006-03-26
|
||
|
L = 30
|
||
|
frac = .3
|
||
|
random.seed(0) # make runs repeatable
|
||
|
A = zeros((L,2))
|
||
|
for i in xrange(L):
|
||
|
for j in xrange(2):
|
||
|
r = random.random()
|
||
|
if r < frac:
|
||
|
A[i,j] = r/frac
|
||
|
|
||
|
A = self.spmatrix(A)
|
||
|
B = A*A.T
|
||
|
assert_array_almost_equal(B.todense(), A.todense() * A.T.todense())
|
||
|
assert_array_almost_equal(B.todense(), A.todense() * A.todense().T)
|
||
|
|
||
|
# check dimension mismatch 2x2 times 3x2
|
||
|
A = self.spmatrix([[1,2],[3,4]])
|
||
|
B = self.spmatrix([[1,2],[3,4],[5,6]])
|
||
|
assert_raises(ValueError, A.__mul__, B)
|
||
|
|
||
|
def test_matmat_dense(self):
|
||
|
a = matrix([[3,0,0],[0,1,0],[2,0,3.0],[2,3,0]])
|
||
|
asp = self.spmatrix(a)
|
||
|
|
||
|
# check both array and matrix types
|
||
|
bs = [array([[1,2],[3,4],[5,6]]), matrix([[1,2],[3,4],[5,6]])]
|
||
|
|
||
|
for b in bs:
|
||
|
result = asp*b
|
||
|
assert_(isinstance(result, type(b)))
|
||
|
assert_equal(result.shape, (4,2))
|
||
|
assert_equal(result, dot(a,b))
|
||
|
|
||
|
def test_sparse_format_conversions(self):
|
||
|
A = sparse.kron([[1,0,2],[0,3,4],[5,0,0]], [[1,2],[0,3]])
|
||
|
D = A.todense()
|
||
|
A = self.spmatrix(A)
|
||
|
|
||
|
for format in ['bsr','coo','csc','csr','dia','dok','lil']:
|
||
|
a = A.asformat(format)
|
||
|
assert_equal(a.format,format)
|
||
|
assert_array_equal(a.todense(), D)
|
||
|
|
||
|
b = self.spmatrix(D+3j).asformat(format)
|
||
|
assert_equal(b.format,format)
|
||
|
assert_array_equal(b.todense(), D+3j)
|
||
|
|
||
|
c = eval(format + '_matrix')(A)
|
||
|
assert_equal(c.format,format)
|
||
|
assert_array_equal(c.todense(), D)
|
||
|
|
||
|
def test_tobsr(self):
|
||
|
x = array([[1,0,2,0],[0,0,0,0],[0,0,4,5]])
|
||
|
y = array([[0,1,2],[3,0,5]])
|
||
|
A = kron(x,y)
|
||
|
Asp = self.spmatrix(A)
|
||
|
for format in ['bsr']:
|
||
|
fn = getattr(Asp, 'to' + format)
|
||
|
|
||
|
for X in [1, 2, 3, 6]:
|
||
|
for Y in [1, 2, 3, 4, 6, 12]:
|
||
|
assert_equal(fn(blocksize=(X,Y)).todense(), A)
|
||
|
|
||
|
def test_transpose(self):
|
||
|
dat_1 = self.dat
|
||
|
dat_2 = np.array([[]])
|
||
|
matrices = [dat_1, dat_2]
|
||
|
|
||
|
def check(dtype, j):
|
||
|
dat = np.matrix(matrices[j], dtype=dtype)
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
a = datsp.transpose()
|
||
|
b = dat.transpose()
|
||
|
|
||
|
assert_array_equal(a.todense(), b)
|
||
|
assert_array_equal(a.transpose().todense(), dat)
|
||
|
assert_equal(a.dtype, b.dtype)
|
||
|
|
||
|
# See gh-5987
|
||
|
empty = self.spmatrix((3, 4))
|
||
|
assert_array_equal(np.transpose(empty).todense(),
|
||
|
np.transpose(zeros((3, 4))))
|
||
|
assert_array_equal(empty.T.todense(), zeros((4, 3)))
|
||
|
assert_raises(ValueError, empty.transpose, axes=0)
|
||
|
|
||
|
for dtype in self.checked_dtypes:
|
||
|
for j in range(len(matrices)):
|
||
|
check(dtype, j)
|
||
|
|
||
|
def test_add_dense(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
# adding a dense matrix to a sparse matrix
|
||
|
sum1 = dat + datsp
|
||
|
assert_array_equal(sum1, dat + dat)
|
||
|
sum2 = datsp + dat
|
||
|
assert_array_equal(sum2, dat + dat)
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_sub_dense(self):
|
||
|
# subtracting a dense matrix to/from a sparse matrix
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
# Behavior is different for bool.
|
||
|
if dat.dtype == bool:
|
||
|
sum1 = dat - datsp
|
||
|
assert_array_equal(sum1, dat - dat)
|
||
|
sum2 = datsp - dat
|
||
|
assert_array_equal(sum2, dat - dat)
|
||
|
else:
|
||
|
# Manually add to avoid upcasting from scalar
|
||
|
# multiplication.
|
||
|
sum1 = (dat + dat + dat) - datsp
|
||
|
assert_array_equal(sum1, dat + dat)
|
||
|
sum2 = (datsp + datsp + datsp) - dat
|
||
|
assert_array_equal(sum2, dat + dat)
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
if (dtype == np.dtype('bool')) and (
|
||
|
NumpyVersion(np.__version__) >= '1.9.0.dev'):
|
||
|
# boolean array subtraction deprecated in 1.9.0
|
||
|
continue
|
||
|
|
||
|
check(dtype)
|
||
|
|
||
|
def test_maximum_minimum(self):
|
||
|
A_dense = np.array([[1, 0, 3], [0, 4, 5], [0, 0, 0]])
|
||
|
B_dense = np.array([[1, 1, 2], [0, 3, 6], [1, -1, 0]])
|
||
|
|
||
|
A_dense_cpx = np.array([[1, 0, 3], [0, 4+2j, 5], [0, 1j, -1j]])
|
||
|
|
||
|
def check(dtype, dtype2, btype):
|
||
|
if np.issubdtype(dtype, np.complexfloating):
|
||
|
A = self.spmatrix(A_dense_cpx.astype(dtype))
|
||
|
else:
|
||
|
A = self.spmatrix(A_dense.astype(dtype))
|
||
|
if btype == 'scalar':
|
||
|
B = dtype2.type(1)
|
||
|
elif btype == 'scalar2':
|
||
|
B = dtype2.type(-1)
|
||
|
elif btype == 'dense':
|
||
|
B = B_dense.astype(dtype2)
|
||
|
elif btype == 'sparse':
|
||
|
B = self.spmatrix(B_dense.astype(dtype2))
|
||
|
else:
|
||
|
raise ValueError()
|
||
|
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Taking maximum .minimum. with > 0 .< 0. number results to a dense matrix")
|
||
|
|
||
|
max_s = A.maximum(B)
|
||
|
min_s = A.minimum(B)
|
||
|
|
||
|
max_d = np.maximum(todense(A), todense(B))
|
||
|
assert_array_equal(todense(max_s), max_d)
|
||
|
assert_equal(max_s.dtype, max_d.dtype)
|
||
|
|
||
|
min_d = np.minimum(todense(A), todense(B))
|
||
|
assert_array_equal(todense(min_s), min_d)
|
||
|
assert_equal(min_s.dtype, min_d.dtype)
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
for dtype2 in [np.int8, np.float_, np.complex_]:
|
||
|
for btype in ['scalar', 'scalar2', 'dense', 'sparse']:
|
||
|
check(np.dtype(dtype), np.dtype(dtype2), btype)
|
||
|
|
||
|
def test_copy(self):
|
||
|
# Check whether the copy=True and copy=False keywords work
|
||
|
A = self.datsp
|
||
|
|
||
|
# check that copy preserves format
|
||
|
assert_equal(A.copy().format, A.format)
|
||
|
assert_equal(A.__class__(A,copy=True).format, A.format)
|
||
|
assert_equal(A.__class__(A,copy=False).format, A.format)
|
||
|
|
||
|
assert_equal(A.copy().todense(), A.todense())
|
||
|
assert_equal(A.__class__(A,copy=True).todense(), A.todense())
|
||
|
assert_equal(A.__class__(A,copy=False).todense(), A.todense())
|
||
|
|
||
|
# check that XXX_matrix.toXXX() works
|
||
|
toself = getattr(A,'to' + A.format)
|
||
|
assert_equal(toself().format, A.format)
|
||
|
assert_equal(toself(copy=True).format, A.format)
|
||
|
assert_equal(toself(copy=False).format, A.format)
|
||
|
|
||
|
assert_equal(toself().todense(), A.todense())
|
||
|
assert_equal(toself(copy=True).todense(), A.todense())
|
||
|
assert_equal(toself(copy=False).todense(), A.todense())
|
||
|
|
||
|
# check whether the data is copied?
|
||
|
# TODO: deal with non-indexable types somehow
|
||
|
B = A.copy()
|
||
|
try:
|
||
|
B[0,0] += 1
|
||
|
assert_(B[0,0] != A[0,0])
|
||
|
except NotImplementedError:
|
||
|
# not all sparse matrices can be indexed
|
||
|
pass
|
||
|
except TypeError:
|
||
|
# not all sparse matrices can be indexed
|
||
|
pass
|
||
|
|
||
|
# test that __iter__ is compatible with NumPy matrix
|
||
|
def test_iterator(self):
|
||
|
B = np.matrix(np.arange(50).reshape(5, 10))
|
||
|
A = self.spmatrix(B)
|
||
|
|
||
|
for x, y in zip(A, B):
|
||
|
assert_equal(x.todense(), y)
|
||
|
|
||
|
def test_size_zero_matrix_arithmetic(self):
|
||
|
# Test basic matrix arithmetic with shapes like (0,0), (10,0),
|
||
|
# (0, 3), etc.
|
||
|
mat = np.matrix([])
|
||
|
a = mat.reshape((0, 0))
|
||
|
b = mat.reshape((0, 1))
|
||
|
c = mat.reshape((0, 5))
|
||
|
d = mat.reshape((1, 0))
|
||
|
e = mat.reshape((5, 0))
|
||
|
f = np.matrix(np.ones([5, 5]))
|
||
|
|
||
|
asp = self.spmatrix(a)
|
||
|
bsp = self.spmatrix(b)
|
||
|
csp = self.spmatrix(c)
|
||
|
dsp = self.spmatrix(d)
|
||
|
esp = self.spmatrix(e)
|
||
|
fsp = self.spmatrix(f)
|
||
|
|
||
|
# matrix product.
|
||
|
assert_array_equal(asp.dot(asp).A, np.dot(a, a).A)
|
||
|
assert_array_equal(bsp.dot(dsp).A, np.dot(b, d).A)
|
||
|
assert_array_equal(dsp.dot(bsp).A, np.dot(d, b).A)
|
||
|
assert_array_equal(csp.dot(esp).A, np.dot(c, e).A)
|
||
|
assert_array_equal(csp.dot(fsp).A, np.dot(c, f).A)
|
||
|
assert_array_equal(esp.dot(csp).A, np.dot(e, c).A)
|
||
|
assert_array_equal(dsp.dot(csp).A, np.dot(d, c).A)
|
||
|
assert_array_equal(fsp.dot(esp).A, np.dot(f, e).A)
|
||
|
|
||
|
# bad matrix products
|
||
|
assert_raises(ValueError, dsp.dot, e)
|
||
|
assert_raises(ValueError, asp.dot, d)
|
||
|
|
||
|
# elemente-wise multiplication
|
||
|
assert_array_equal(asp.multiply(asp).A, np.multiply(a, a).A)
|
||
|
assert_array_equal(bsp.multiply(bsp).A, np.multiply(b, b).A)
|
||
|
assert_array_equal(dsp.multiply(dsp).A, np.multiply(d, d).A)
|
||
|
|
||
|
assert_array_equal(asp.multiply(a).A, np.multiply(a, a).A)
|
||
|
assert_array_equal(bsp.multiply(b).A, np.multiply(b, b).A)
|
||
|
assert_array_equal(dsp.multiply(d).A, np.multiply(d, d).A)
|
||
|
|
||
|
assert_array_equal(asp.multiply(6).A, np.multiply(a, 6).A)
|
||
|
assert_array_equal(bsp.multiply(6).A, np.multiply(b, 6).A)
|
||
|
assert_array_equal(dsp.multiply(6).A, np.multiply(d, 6).A)
|
||
|
|
||
|
# bad element-wise multiplication
|
||
|
assert_raises(ValueError, asp.multiply, c)
|
||
|
assert_raises(ValueError, esp.multiply, c)
|
||
|
|
||
|
# Addition
|
||
|
assert_array_equal(asp.__add__(asp).A, a.__add__(a).A)
|
||
|
assert_array_equal(bsp.__add__(bsp).A, b.__add__(b).A)
|
||
|
assert_array_equal(dsp.__add__(dsp).A, d.__add__(d).A)
|
||
|
|
||
|
# bad addition
|
||
|
assert_raises(ValueError, asp.__add__, dsp)
|
||
|
assert_raises(ValueError, bsp.__add__, asp)
|
||
|
|
||
|
def test_size_zero_conversions(self):
|
||
|
mat = np.matrix([])
|
||
|
a = mat.reshape((0, 0))
|
||
|
b = mat.reshape((0, 5))
|
||
|
c = mat.reshape((5, 0))
|
||
|
|
||
|
for m in [a, b, c]:
|
||
|
spm = self.spmatrix(m)
|
||
|
assert_array_equal(spm.tocoo().A, m)
|
||
|
assert_array_equal(spm.tocsr().A, m)
|
||
|
assert_array_equal(spm.tocsc().A, m)
|
||
|
assert_array_equal(spm.tolil().A, m)
|
||
|
assert_array_equal(spm.todok().A, m)
|
||
|
assert_array_equal(spm.tobsr().A, m)
|
||
|
|
||
|
def test_pickle(self):
|
||
|
import pickle
|
||
|
sup = suppress_warnings()
|
||
|
sup.filter(SparseEfficiencyWarning)
|
||
|
|
||
|
@sup
|
||
|
def check():
|
||
|
datsp = self.datsp.copy()
|
||
|
for protocol in range(pickle.HIGHEST_PROTOCOL):
|
||
|
sploaded = pickle.loads(pickle.dumps(datsp, protocol=protocol))
|
||
|
assert_equal(datsp.shape, sploaded.shape)
|
||
|
assert_array_equal(datsp.toarray(), sploaded.toarray())
|
||
|
assert_equal(datsp.format, sploaded.format)
|
||
|
for key, val in datsp.__dict__.items():
|
||
|
if isinstance(val, np.ndarray):
|
||
|
assert_array_equal(val, sploaded.__dict__[key])
|
||
|
else:
|
||
|
assert_(val == sploaded.__dict__[key])
|
||
|
check()
|
||
|
|
||
|
def test_unary_ufunc_overrides(self):
|
||
|
def check(name):
|
||
|
if name == "sign":
|
||
|
pytest.skip("sign conflicts with comparison op "
|
||
|
"support on Numpy")
|
||
|
if self.spmatrix in (dok_matrix, lil_matrix):
|
||
|
pytest.skip("Unary ops not implemented for dok/lil")
|
||
|
ufunc = getattr(np, name)
|
||
|
|
||
|
X = self.spmatrix(np.arange(20).reshape(4, 5) / 20.)
|
||
|
X0 = ufunc(X.toarray())
|
||
|
|
||
|
X2 = ufunc(X)
|
||
|
assert_array_equal(X2.toarray(), X0)
|
||
|
|
||
|
for name in ["sin", "tan", "arcsin", "arctan", "sinh", "tanh",
|
||
|
"arcsinh", "arctanh", "rint", "sign", "expm1", "log1p",
|
||
|
"deg2rad", "rad2deg", "floor", "ceil", "trunc", "sqrt",
|
||
|
"abs"]:
|
||
|
check(name)
|
||
|
|
||
|
def test_resize(self):
|
||
|
# resize(shape) resizes the matrix in-place
|
||
|
D = np.array([[1, 0, 3, 4],
|
||
|
[2, 0, 0, 0],
|
||
|
[3, 0, 0, 0]])
|
||
|
S = self.spmatrix(D)
|
||
|
assert_(S.resize((3, 2)) is None)
|
||
|
assert_array_equal(S.A, [[1, 0],
|
||
|
[2, 0],
|
||
|
[3, 0]])
|
||
|
S.resize((2, 2))
|
||
|
assert_array_equal(S.A, [[1, 0],
|
||
|
[2, 0]])
|
||
|
S.resize((3, 2))
|
||
|
assert_array_equal(S.A, [[1, 0],
|
||
|
[2, 0],
|
||
|
[0, 0]])
|
||
|
S.resize((3, 3))
|
||
|
assert_array_equal(S.A, [[1, 0, 0],
|
||
|
[2, 0, 0],
|
||
|
[0, 0, 0]])
|
||
|
# test no-op
|
||
|
S.resize((3, 3))
|
||
|
assert_array_equal(S.A, [[1, 0, 0],
|
||
|
[2, 0, 0],
|
||
|
[0, 0, 0]])
|
||
|
|
||
|
# test *args
|
||
|
S.resize(3, 2)
|
||
|
assert_array_equal(S.A, [[1, 0],
|
||
|
[2, 0],
|
||
|
[0, 0]])
|
||
|
|
||
|
for bad_shape in [1, (-1, 2), (2, -1), (1, 2, 3)]:
|
||
|
assert_raises(ValueError, S.resize, bad_shape)
|
||
|
|
||
|
|
||
|
class _TestInplaceArithmetic(object):
|
||
|
@pytest.mark.skipif(NumpyVersion(np.__version__) < "1.13.0",
|
||
|
reason="numpy version doesn't respect array priority")
|
||
|
def test_inplace_dense(self):
|
||
|
a = np.ones((3, 4))
|
||
|
b = self.spmatrix(a)
|
||
|
|
||
|
x = a.copy()
|
||
|
y = a.copy()
|
||
|
x += a
|
||
|
y += b
|
||
|
assert_array_equal(x, y)
|
||
|
|
||
|
x = a.copy()
|
||
|
y = a.copy()
|
||
|
x -= a
|
||
|
y -= b
|
||
|
assert_array_equal(x, y)
|
||
|
|
||
|
# This is matrix product, from __rmul__
|
||
|
assert_raises(ValueError, operator.imul, x, b)
|
||
|
x = a.copy()
|
||
|
y = a.copy()
|
||
|
x = x.dot(a.T)
|
||
|
y *= b.T
|
||
|
assert_array_equal(x, y)
|
||
|
|
||
|
# Matrix (non-elementwise) floor division is not defined
|
||
|
assert_raises(TypeError, operator.ifloordiv, x, b)
|
||
|
|
||
|
def test_imul_scalar(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
# Avoid implicit casting.
|
||
|
if np.can_cast(type(2), dtype, casting='same_kind'):
|
||
|
a = datsp.copy()
|
||
|
a *= 2
|
||
|
b = dat.copy()
|
||
|
b *= 2
|
||
|
assert_array_equal(b, a.todense())
|
||
|
|
||
|
if np.can_cast(type(17.3), dtype, casting='same_kind'):
|
||
|
a = datsp.copy()
|
||
|
a *= 17.3
|
||
|
b = dat.copy()
|
||
|
b *= 17.3
|
||
|
assert_array_equal(b, a.todense())
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
check(dtype)
|
||
|
|
||
|
def test_idiv_scalar(self):
|
||
|
def check(dtype):
|
||
|
dat = self.dat_dtypes[dtype]
|
||
|
datsp = self.datsp_dtypes[dtype]
|
||
|
|
||
|
if np.can_cast(type(2), dtype, casting='same_kind'):
|
||
|
a = datsp.copy()
|
||
|
a /= 2
|
||
|
b = dat.copy()
|
||
|
b /= 2
|
||
|
assert_array_equal(b, a.todense())
|
||
|
|
||
|
if np.can_cast(type(17.3), dtype, casting='same_kind'):
|
||
|
a = datsp.copy()
|
||
|
a /= 17.3
|
||
|
b = dat.copy()
|
||
|
b /= 17.3
|
||
|
assert_array_equal(b, a.todense())
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
# /= should only be used with float dtypes to avoid implicit
|
||
|
# casting.
|
||
|
if not np.can_cast(dtype, np.int_):
|
||
|
check(dtype)
|
||
|
|
||
|
def test_inplace_success(self):
|
||
|
# Inplace ops should work even if a specialized version is not
|
||
|
# implemented, falling back to x = x <op> y
|
||
|
a = self.spmatrix(np.eye(5))
|
||
|
b = self.spmatrix(np.eye(5))
|
||
|
bp = self.spmatrix(np.eye(5))
|
||
|
|
||
|
b += a
|
||
|
bp = bp + a
|
||
|
assert_allclose(b.A, bp.A)
|
||
|
|
||
|
b *= a
|
||
|
bp = bp * a
|
||
|
assert_allclose(b.A, bp.A)
|
||
|
|
||
|
b -= a
|
||
|
bp = bp - a
|
||
|
assert_allclose(b.A, bp.A)
|
||
|
|
||
|
assert_raises(TypeError, operator.ifloordiv, a, b)
|
||
|
|
||
|
|
||
|
class _TestGetSet(object):
|
||
|
def test_getelement(self):
|
||
|
def check(dtype):
|
||
|
D = array([[1,0,0],
|
||
|
[4,3,0],
|
||
|
[0,2,0],
|
||
|
[0,0,0]], dtype=dtype)
|
||
|
A = self.spmatrix(D)
|
||
|
|
||
|
M,N = D.shape
|
||
|
|
||
|
for i in range(-M, M):
|
||
|
for j in range(-N, N):
|
||
|
assert_equal(A[i,j], D[i,j])
|
||
|
|
||
|
for ij in [(0,3),(-1,3),(4,0),(4,3),(4,-1), (1, 2, 3)]:
|
||
|
assert_raises((IndexError, TypeError), A.__getitem__, ij)
|
||
|
|
||
|
for dtype in supported_dtypes:
|
||
|
check(np.dtype(dtype))
|
||
|
|
||
|
def test_setelement(self):
|
||
|
def check(dtype):
|
||
|
A = self.spmatrix((3,4), dtype=dtype)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
A[0, 0] = dtype.type(0) # bug 870
|
||
|
A[1, 2] = dtype.type(4.0)
|
||
|
A[0, 1] = dtype.type(3)
|
||
|
A[2, 0] = dtype.type(2.0)
|
||
|
A[0,-1] = dtype.type(8)
|
||
|
A[-1,-2] = dtype.type(7)
|
||
|
A[0, 1] = dtype.type(5)
|
||
|
|
||
|
if dtype != np.bool_:
|
||
|
assert_array_equal(A.todense(),[[0,5,0,8],[0,0,4,0],[2,0,7,0]])
|
||
|
|
||
|
for ij in [(0,4),(-1,4),(3,0),(3,4),(3,-1)]:
|
||
|
assert_raises(IndexError, A.__setitem__, ij, 123.0)
|
||
|
|
||
|
for v in [[1,2,3], array([1,2,3])]:
|
||
|
assert_raises(ValueError, A.__setitem__, (0,0), v)
|
||
|
|
||
|
if (not np.issubdtype(dtype, np.complexfloating) and
|
||
|
dtype != np.bool_):
|
||
|
for v in [3j]:
|
||
|
assert_raises(TypeError, A.__setitem__, (0,0), v)
|
||
|
|
||
|
for dtype in supported_dtypes:
|
||
|
check(np.dtype(dtype))
|
||
|
|
||
|
def test_negative_index_assignment(self):
|
||
|
# Regression test for github issue 4428.
|
||
|
|
||
|
def check(dtype):
|
||
|
A = self.spmatrix((3, 10), dtype=dtype)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
A[0, -4] = 1
|
||
|
assert_equal(A[0, -4], 1)
|
||
|
|
||
|
for dtype in self.math_dtypes:
|
||
|
check(np.dtype(dtype))
|
||
|
|
||
|
def test_scalar_assign_2(self):
|
||
|
n, m = (5, 10)
|
||
|
|
||
|
def _test_set(i, j, nitems):
|
||
|
msg = "%r ; %r ; %r" % (i, j, nitems)
|
||
|
A = self.spmatrix((n, m))
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
A[i, j] = 1
|
||
|
assert_almost_equal(A.sum(), nitems, err_msg=msg)
|
||
|
assert_almost_equal(A[i, j], 1, err_msg=msg)
|
||
|
|
||
|
# [i,j]
|
||
|
for i, j in [(2, 3), (-1, 8), (-1, -2), (array(-1), -2), (-1, array(-2)),
|
||
|
(array(-1), array(-2))]:
|
||
|
_test_set(i, j, 1)
|
||
|
|
||
|
def test_index_scalar_assign(self):
|
||
|
A = self.spmatrix((5, 5))
|
||
|
B = np.zeros((5, 5))
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
for C in [A, B]:
|
||
|
C[0,1] = 1
|
||
|
C[3,0] = 4
|
||
|
C[3,0] = 9
|
||
|
assert_array_equal(A.toarray(), B)
|
||
|
|
||
|
|
||
|
class _TestSolve(object):
|
||
|
def test_solve(self):
|
||
|
# Test whether the lu_solve command segfaults, as reported by Nils
|
||
|
# Wagner for a 64-bit machine, 02 March 2005 (EJS)
|
||
|
n = 20
|
||
|
np.random.seed(0) # make tests repeatable
|
||
|
A = zeros((n,n), dtype=complex)
|
||
|
x = np.random.rand(n)
|
||
|
y = np.random.rand(n-1)+1j*np.random.rand(n-1)
|
||
|
r = np.random.rand(n)
|
||
|
for i in range(len(x)):
|
||
|
A[i,i] = x[i]
|
||
|
for i in range(len(y)):
|
||
|
A[i,i+1] = y[i]
|
||
|
A[i+1,i] = conjugate(y[i])
|
||
|
A = self.spmatrix(A)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning, "splu requires CSC matrix format")
|
||
|
x = splu(A).solve(r)
|
||
|
assert_almost_equal(A*x,r)
|
||
|
|
||
|
|
||
|
class _TestSlicing(object):
|
||
|
def test_dtype_preservation(self):
|
||
|
assert_equal(self.spmatrix((1,10), dtype=np.int16)[0,1:5].dtype, np.int16)
|
||
|
assert_equal(self.spmatrix((1,10), dtype=np.int32)[0,1:5].dtype, np.int32)
|
||
|
assert_equal(self.spmatrix((1,10), dtype=np.float32)[0,1:5].dtype, np.float32)
|
||
|
assert_equal(self.spmatrix((1,10), dtype=np.float64)[0,1:5].dtype, np.float64)
|
||
|
|
||
|
def test_get_horiz_slice(self):
|
||
|
B = asmatrix(arange(50.).reshape(5,10))
|
||
|
A = self.spmatrix(B)
|
||
|
assert_array_equal(B[1,:], A[1,:].todense())
|
||
|
assert_array_equal(B[1,2:5], A[1,2:5].todense())
|
||
|
|
||
|
C = matrix([[1, 2, 1], [4, 0, 6], [0, 0, 0], [0, 0, 1]])
|
||
|
D = self.spmatrix(C)
|
||
|
assert_array_equal(C[1, 1:3], D[1, 1:3].todense())
|
||
|
|
||
|
# Now test slicing when a row contains only zeros
|
||
|
E = matrix([[1, 2, 1], [4, 0, 0], [0, 0, 0], [0, 0, 1]])
|
||
|
F = self.spmatrix(E)
|
||
|
assert_array_equal(E[1, 1:3], F[1, 1:3].todense())
|
||
|
assert_array_equal(E[2, -2:], F[2, -2:].A)
|
||
|
|
||
|
# The following should raise exceptions:
|
||
|
assert_raises(IndexError, A.__getitem__, (slice(None), 11))
|
||
|
assert_raises(IndexError, A.__getitem__, (6, slice(3, 7)))
|
||
|
|
||
|
def test_get_vert_slice(self):
|
||
|
B = asmatrix(arange(50.).reshape(5,10))
|
||
|
A = self.spmatrix(B)
|
||
|
assert_array_equal(B[2:5,0], A[2:5,0].todense())
|
||
|
assert_array_equal(B[:,1], A[:,1].todense())
|
||
|
|
||
|
C = matrix([[1, 2, 1], [4, 0, 6], [0, 0, 0], [0, 0, 1]])
|
||
|
D = self.spmatrix(C)
|
||
|
assert_array_equal(C[1:3, 1], D[1:3, 1].todense())
|
||
|
assert_array_equal(C[:, 2], D[:, 2].todense())
|
||
|
|
||
|
# Now test slicing when a column contains only zeros
|
||
|
E = matrix([[1, 0, 1], [4, 0, 0], [0, 0, 0], [0, 0, 1]])
|
||
|
F = self.spmatrix(E)
|
||
|
assert_array_equal(E[:, 1], F[:, 1].todense())
|
||
|
assert_array_equal(E[-2:, 2], F[-2:, 2].todense())
|
||
|
|
||
|
# The following should raise exceptions:
|
||
|
assert_raises(IndexError, A.__getitem__, (slice(None), 11))
|
||
|
assert_raises(IndexError, A.__getitem__, (6, slice(3, 7)))
|
||
|
|
||
|
def test_get_slices(self):
|
||
|
B = asmatrix(arange(50.).reshape(5,10))
|
||
|
A = self.spmatrix(B)
|
||
|
assert_array_equal(A[2:5,0:3].todense(), B[2:5,0:3])
|
||
|
assert_array_equal(A[1:,:-1].todense(), B[1:,:-1])
|
||
|
assert_array_equal(A[:-1,1:].todense(), B[:-1,1:])
|
||
|
|
||
|
# Now test slicing when a column contains only zeros
|
||
|
E = matrix([[1, 0, 1], [4, 0, 0], [0, 0, 0], [0, 0, 1]])
|
||
|
F = self.spmatrix(E)
|
||
|
assert_array_equal(E[1:2, 1:2], F[1:2, 1:2].todense())
|
||
|
assert_array_equal(E[:, 1:], F[:, 1:].todense())
|
||
|
|
||
|
def test_non_unit_stride_2d_indexing(self):
|
||
|
# Regression test -- used to silently ignore the stride.
|
||
|
v0 = np.random.rand(50, 50)
|
||
|
try:
|
||
|
v = self.spmatrix(v0)[0:25:2, 2:30:3]
|
||
|
except ValueError:
|
||
|
# if unsupported
|
||
|
raise pytest.skip("feature not implemented")
|
||
|
|
||
|
assert_array_equal(v.todense(),
|
||
|
v0[0:25:2, 2:30:3])
|
||
|
|
||
|
def test_slicing_2(self):
|
||
|
B = asmatrix(arange(50).reshape(5,10))
|
||
|
A = self.spmatrix(B)
|
||
|
|
||
|
# [i,j]
|
||
|
assert_equal(A[2,3], B[2,3])
|
||
|
assert_equal(A[-1,8], B[-1,8])
|
||
|
assert_equal(A[-1,-2],B[-1,-2])
|
||
|
assert_equal(A[array(-1),-2],B[-1,-2])
|
||
|
assert_equal(A[-1,array(-2)],B[-1,-2])
|
||
|
assert_equal(A[array(-1),array(-2)],B[-1,-2])
|
||
|
|
||
|
# [i,1:2]
|
||
|
assert_equal(A[2,:].todense(), B[2,:])
|
||
|
assert_equal(A[2,5:-2].todense(),B[2,5:-2])
|
||
|
assert_equal(A[array(2),5:-2].todense(),B[2,5:-2])
|
||
|
|
||
|
# [1:2,j]
|
||
|
assert_equal(A[:,2].todense(), B[:,2])
|
||
|
assert_equal(A[3:4,9].todense(), B[3:4,9])
|
||
|
assert_equal(A[1:4,-5].todense(),B[1:4,-5])
|
||
|
assert_equal(A[2:-1,3].todense(),B[2:-1,3])
|
||
|
assert_equal(A[2:-1,array(3)].todense(),B[2:-1,3])
|
||
|
|
||
|
# [1:2,1:2]
|
||
|
assert_equal(A[1:2,1:2].todense(),B[1:2,1:2])
|
||
|
assert_equal(A[4:,3:].todense(), B[4:,3:])
|
||
|
assert_equal(A[:4,:5].todense(), B[:4,:5])
|
||
|
assert_equal(A[2:-1,:5].todense(),B[2:-1,:5])
|
||
|
|
||
|
# [i]
|
||
|
assert_equal(A[1,:].todense(), B[1,:])
|
||
|
assert_equal(A[-2,:].todense(),B[-2,:])
|
||
|
assert_equal(A[array(-2),:].todense(),B[-2,:])
|
||
|
|
||
|
# [1:2]
|
||
|
assert_equal(A[1:4].todense(), B[1:4])
|
||
|
assert_equal(A[1:-2].todense(),B[1:-2])
|
||
|
|
||
|
# Check bug reported by Robert Cimrman:
|
||
|
# http://thread.gmane.org/gmane.comp.python.scientific.devel/7986
|
||
|
s = slice(int8(2),int8(4),None)
|
||
|
assert_equal(A[s,:].todense(), B[2:4,:])
|
||
|
assert_equal(A[:,s].todense(), B[:,2:4])
|
||
|
|
||
|
def test_slicing_3(self):
|
||
|
B = asmatrix(arange(50).reshape(5,10))
|
||
|
A = self.spmatrix(B)
|
||
|
|
||
|
s_ = np.s_
|
||
|
slices = [s_[:2], s_[1:2], s_[3:], s_[3::2],
|
||
|
s_[8:3:-1], s_[4::-2], s_[:5:-1],
|
||
|
0, 1, s_[:], s_[1:5], -1, -2, -5,
|
||
|
array(-1), np.int8(-3)]
|
||
|
|
||
|
def check_1(a):
|
||
|
x = A[a]
|
||
|
y = B[a]
|
||
|
if y.shape == ():
|
||
|
assert_equal(x, y, repr(a))
|
||
|
else:
|
||
|
if x.size == 0 and y.size == 0:
|
||
|
pass
|
||
|
else:
|
||
|
assert_array_equal(x.todense(), y, repr(a))
|
||
|
|
||
|
for j, a in enumerate(slices):
|
||
|
check_1(a)
|
||
|
|
||
|
def check_2(a, b):
|
||
|
# Indexing np.matrix with 0-d arrays seems to be broken,
|
||
|
# as they seem not to be treated as scalars.
|
||
|
# https://github.com/numpy/numpy/issues/3110
|
||
|
if isinstance(a, np.ndarray):
|
||
|
ai = int(a)
|
||
|
else:
|
||
|
ai = a
|
||
|
if isinstance(b, np.ndarray):
|
||
|
bi = int(b)
|
||
|
else:
|
||
|
bi = b
|
||
|
|
||
|
x = A[a, b]
|
||
|
y = B[ai, bi]
|
||
|
|
||
|
if y.shape == ():
|
||
|
assert_equal(x, y, repr((a, b)))
|
||
|
else:
|
||
|
if x.size == 0 and y.size == 0:
|
||
|
pass
|
||
|
else:
|
||
|
assert_array_equal(x.todense(), y, repr((a, b)))
|
||
|
|
||
|
for i, a in enumerate(slices):
|
||
|
for j, b in enumerate(slices):
|
||
|
check_2(a, b)
|
||
|
|
||
|
def test_ellipsis_slicing(self):
|
||
|
b = asmatrix(arange(50).reshape(5,10))
|
||
|
a = self.spmatrix(b)
|
||
|
|
||
|
assert_array_equal(a[...].A, b[...].A)
|
||
|
assert_array_equal(a[...,].A, b[...,].A)
|
||
|
|
||
|
assert_array_equal(a[1, ...].A, b[1, ...].A)
|
||
|
assert_array_equal(a[..., 1].A, b[..., 1].A)
|
||
|
assert_array_equal(a[1:, ...].A, b[1:, ...].A)
|
||
|
assert_array_equal(a[..., 1:].A, b[..., 1:].A)
|
||
|
|
||
|
assert_array_equal(a[1:, 1, ...].A, b[1:, 1, ...].A)
|
||
|
assert_array_equal(a[1, ..., 1:].A, b[1, ..., 1:].A)
|
||
|
# These return ints
|
||
|
assert_equal(a[1, 1, ...], b[1, 1, ...])
|
||
|
assert_equal(a[1, ..., 1], b[1, ..., 1])
|
||
|
|
||
|
@pytest.mark.skipif(NumpyVersion(np.__version__) >= '1.9.0.dev', reason="")
|
||
|
def test_multiple_ellipsis_slicing(self):
|
||
|
b = asmatrix(arange(50).reshape(5,10))
|
||
|
a = self.spmatrix(b)
|
||
|
|
||
|
assert_array_equal(a[..., ...].A, b[..., ...].A)
|
||
|
assert_array_equal(a[..., ..., ...].A, b[..., ..., ...].A)
|
||
|
assert_array_equal(a[1, ..., ...].A, b[1, ..., ...].A)
|
||
|
assert_array_equal(a[1:, ..., ...].A, b[1:, ..., ...].A)
|
||
|
assert_array_equal(a[..., ..., 1:].A, b[..., ..., 1:].A)
|
||
|
|
||
|
# Bug in NumPy's slicing
|
||
|
assert_array_equal(a[..., ..., 1].A, b[..., ..., 1].A.reshape((5,1)))
|
||
|
|
||
|
|
||
|
class _TestSlicingAssign(object):
|
||
|
def test_slice_scalar_assign(self):
|
||
|
A = self.spmatrix((5, 5))
|
||
|
B = np.zeros((5, 5))
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
for C in [A, B]:
|
||
|
C[0:1,1] = 1
|
||
|
C[3:0,0] = 4
|
||
|
C[3:4,0] = 9
|
||
|
C[0,4:] = 1
|
||
|
C[3::-1,4:] = 9
|
||
|
assert_array_equal(A.toarray(), B)
|
||
|
|
||
|
def test_slice_assign_2(self):
|
||
|
n, m = (5, 10)
|
||
|
|
||
|
def _test_set(i, j):
|
||
|
msg = "i=%r; j=%r" % (i, j)
|
||
|
A = self.spmatrix((n, m))
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
A[i, j] = 1
|
||
|
B = np.zeros((n, m))
|
||
|
B[i, j] = 1
|
||
|
assert_array_almost_equal(A.todense(), B, err_msg=msg)
|
||
|
# [i,1:2]
|
||
|
for i, j in [(2, slice(3)), (2, slice(None, 10, 4)), (2, slice(5, -2)),
|
||
|
(array(2), slice(5, -2))]:
|
||
|
_test_set(i, j)
|
||
|
|
||
|
def test_self_self_assignment(self):
|
||
|
# Tests whether a row of one lil_matrix can be assigned to
|
||
|
# another.
|
||
|
B = self.spmatrix((4,3))
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
B[0,0] = 2
|
||
|
B[1,2] = 7
|
||
|
B[2,1] = 3
|
||
|
B[3,0] = 10
|
||
|
|
||
|
A = B / 10
|
||
|
B[0,:] = A[0,:]
|
||
|
assert_array_equal(A[0,:].A, B[0,:].A)
|
||
|
|
||
|
A = B / 10
|
||
|
B[:,:] = A[:1,:1]
|
||
|
assert_array_equal(np.zeros((4,3)) + A[0,0], B.A)
|
||
|
|
||
|
A = B / 10
|
||
|
B[:-1,0] = A[0,:].T
|
||
|
assert_array_equal(A[0,:].A.T, B[:-1,0].A)
|
||
|
|
||
|
def test_slice_assignment(self):
|
||
|
B = self.spmatrix((4,3))
|
||
|
expected = array([[10,0,0],
|
||
|
[0,0,6],
|
||
|
[0,14,0],
|
||
|
[0,0,0]])
|
||
|
block = [[1,0],[0,4]]
|
||
|
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
B[0,0] = 5
|
||
|
B[1,2] = 3
|
||
|
B[2,1] = 7
|
||
|
B[:,:] = B+B
|
||
|
assert_array_equal(B.todense(),expected)
|
||
|
|
||
|
B[:2,:2] = csc_matrix(array(block))
|
||
|
assert_array_equal(B.todense()[:2,:2],block)
|
||
|
|
||
|
def test_sparsity_modifying_assignment(self):
|
||
|
B = self.spmatrix((4,3))
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
B[0,0] = 5
|
||
|
B[1,2] = 3
|
||
|
B[2,1] = 7
|
||
|
B[3,0] = 10
|
||
|
B[:3] = csr_matrix(np.eye(3))
|
||
|
|
||
|
expected = array([[1,0,0],[0,1,0],[0,0,1],[10,0,0]])
|
||
|
assert_array_equal(B.toarray(), expected)
|
||
|
|
||
|
def test_set_slice(self):
|
||
|
A = self.spmatrix((5,10))
|
||
|
B = matrix(zeros((5,10), float))
|
||
|
s_ = np.s_
|
||
|
slices = [s_[:2], s_[1:2], s_[3:], s_[3::2],
|
||
|
s_[8:3:-1], s_[4::-2], s_[:5:-1],
|
||
|
0, 1, s_[:], s_[1:5], -1, -2, -5,
|
||
|
array(-1), np.int8(-3)]
|
||
|
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
for j, a in enumerate(slices):
|
||
|
A[a] = j
|
||
|
B[a] = j
|
||
|
assert_array_equal(A.todense(), B, repr(a))
|
||
|
|
||
|
for i, a in enumerate(slices):
|
||
|
for j, b in enumerate(slices):
|
||
|
A[a,b] = 10*i + 1000*(j+1)
|
||
|
B[a,b] = 10*i + 1000*(j+1)
|
||
|
assert_array_equal(A.todense(), B, repr((a, b)))
|
||
|
|
||
|
A[0, 1:10:2] = xrange(1,10,2)
|
||
|
B[0, 1:10:2] = xrange(1,10,2)
|
||
|
assert_array_equal(A.todense(), B)
|
||
|
A[1:5:2,0] = np.array(range(1,5,2))[:,None]
|
||
|
B[1:5:2,0] = np.array(range(1,5,2))[:,None]
|
||
|
assert_array_equal(A.todense(), B)
|
||
|
|
||
|
# The next commands should raise exceptions
|
||
|
assert_raises(ValueError, A.__setitem__, (0, 0), list(range(100)))
|
||
|
assert_raises(ValueError, A.__setitem__, (0, 0), arange(100))
|
||
|
assert_raises(ValueError, A.__setitem__, (0, slice(None)),
|
||
|
list(range(100)))
|
||
|
assert_raises(ValueError, A.__setitem__, (slice(None), 1),
|
||
|
list(range(100)))
|
||
|
assert_raises(ValueError, A.__setitem__, (slice(None), 1), A.copy())
|
||
|
assert_raises(ValueError, A.__setitem__,
|
||
|
([[1, 2, 3], [0, 3, 4]], [1, 2, 3]), [1, 2, 3, 4])
|
||
|
assert_raises(ValueError, A.__setitem__,
|
||
|
([[1, 2, 3], [0, 3, 4], [4, 1, 3]],
|
||
|
[[1, 2, 4], [0, 1, 3]]), [2, 3, 4])
|
||
|
|
||
|
|
||
|
class _TestFancyIndexing(object):
|
||
|
"""Tests fancy indexing features. The tests for any matrix formats
|
||
|
that implement these features should derive from this class.
|
||
|
"""
|
||
|
|
||
|
def test_bad_index(self):
|
||
|
A = self.spmatrix(np.zeros([5, 5]))
|
||
|
assert_raises((IndexError, ValueError, TypeError), A.__getitem__, "foo")
|
||
|
assert_raises((IndexError, ValueError, TypeError), A.__getitem__, (2, "foo"))
|
||
|
assert_raises((IndexError, ValueError), A.__getitem__,
|
||
|
([1, 2, 3], [1, 2, 3, 4]))
|
||
|
|
||
|
def test_fancy_indexing(self):
|
||
|
B = asmatrix(arange(50).reshape(5,10))
|
||
|
A = self.spmatrix(B)
|
||
|
|
||
|
# [i]
|
||
|
assert_equal(A[[1,3]].todense(), B[[1,3]])
|
||
|
|
||
|
# [i,[1,2]]
|
||
|
assert_equal(A[3,[1,3]].todense(), B[3,[1,3]])
|
||
|
assert_equal(A[-1,[2,-5]].todense(),B[-1,[2,-5]])
|
||
|
assert_equal(A[array(-1),[2,-5]].todense(),B[-1,[2,-5]])
|
||
|
assert_equal(A[-1,array([2,-5])].todense(),B[-1,[2,-5]])
|
||
|
assert_equal(A[array(-1),array([2,-5])].todense(),B[-1,[2,-5]])
|
||
|
|
||
|
# [1:2,[1,2]]
|
||
|
assert_equal(A[:,[2,8,3,-1]].todense(),B[:,[2,8,3,-1]])
|
||
|
assert_equal(A[3:4,[9]].todense(), B[3:4,[9]])
|
||
|
assert_equal(A[1:4,[-1,-5]].todense(), B[1:4,[-1,-5]])
|
||
|
assert_equal(A[1:4,array([-1,-5])].todense(), B[1:4,[-1,-5]])
|
||
|
|
||
|
# [[1,2],j]
|
||
|
assert_equal(A[[1,3],3].todense(), B[[1,3],3])
|
||
|
assert_equal(A[[2,-5],-4].todense(), B[[2,-5],-4])
|
||
|
assert_equal(A[array([2,-5]),-4].todense(), B[[2,-5],-4])
|
||
|
assert_equal(A[[2,-5],array(-4)].todense(), B[[2,-5],-4])
|
||
|
assert_equal(A[array([2,-5]),array(-4)].todense(), B[[2,-5],-4])
|
||
|
|
||
|
# [[1,2],1:2]
|
||
|
assert_equal(A[[1,3],:].todense(), B[[1,3],:])
|
||
|
assert_equal(A[[2,-5],8:-1].todense(),B[[2,-5],8:-1])
|
||
|
assert_equal(A[array([2,-5]),8:-1].todense(),B[[2,-5],8:-1])
|
||
|
|
||
|
# [[1,2],[1,2]]
|
||
|
assert_equal(todense(A[[1,3],[2,4]]), B[[1,3],[2,4]])
|
||
|
assert_equal(todense(A[[-1,-3],[2,-4]]), B[[-1,-3],[2,-4]])
|
||
|
assert_equal(todense(A[array([-1,-3]),[2,-4]]), B[[-1,-3],[2,-4]])
|
||
|
assert_equal(todense(A[[-1,-3],array([2,-4])]), B[[-1,-3],[2,-4]])
|
||
|
assert_equal(todense(A[array([-1,-3]),array([2,-4])]), B[[-1,-3],[2,-4]])
|
||
|
|
||
|
# [[[1],[2]],[1,2]]
|
||
|
assert_equal(A[[[1],[3]],[2,4]].todense(), B[[[1],[3]],[2,4]])
|
||
|
assert_equal(A[[[-1],[-3],[-2]],[2,-4]].todense(),B[[[-1],[-3],[-2]],[2,-4]])
|
||
|
assert_equal(A[array([[-1],[-3],[-2]]),[2,-4]].todense(),B[[[-1],[-3],[-2]],[2,-4]])
|
||
|
assert_equal(A[[[-1],[-3],[-2]],array([2,-4])].todense(),B[[[-1],[-3],[-2]],[2,-4]])
|
||
|
assert_equal(A[array([[-1],[-3],[-2]]),array([2,-4])].todense(),B[[[-1],[-3],[-2]],[2,-4]])
|
||
|
|
||
|
# [[1,2]]
|
||
|
assert_equal(A[[1,3]].todense(), B[[1,3]])
|
||
|
assert_equal(A[[-1,-3]].todense(),B[[-1,-3]])
|
||
|
assert_equal(A[array([-1,-3])].todense(),B[[-1,-3]])
|
||
|
|
||
|
# [[1,2],:][:,[1,2]]
|
||
|
assert_equal(A[[1,3],:][:,[2,4]].todense(), B[[1,3],:][:,[2,4]])
|
||
|
assert_equal(A[[-1,-3],:][:,[2,-4]].todense(), B[[-1,-3],:][:,[2,-4]])
|
||
|
assert_equal(A[array([-1,-3]),:][:,array([2,-4])].todense(), B[[-1,-3],:][:,[2,-4]])
|
||
|
|
||
|
# [:,[1,2]][[1,2],:]
|
||
|
assert_equal(A[:,[1,3]][[2,4],:].todense(), B[:,[1,3]][[2,4],:])
|
||
|
assert_equal(A[:,[-1,-3]][[2,-4],:].todense(), B[:,[-1,-3]][[2,-4],:])
|
||
|
assert_equal(A[:,array([-1,-3])][array([2,-4]),:].todense(), B[:,[-1,-3]][[2,-4],:])
|
||
|
|
||
|
# Check bug reported by Robert Cimrman:
|
||
|
# http://thread.gmane.org/gmane.comp.python.scientific.devel/7986
|
||
|
s = slice(int8(2),int8(4),None)
|
||
|
assert_equal(A[s,:].todense(), B[2:4,:])
|
||
|
assert_equal(A[:,s].todense(), B[:,2:4])
|
||
|
|
||
|
# Regression for gh-4917: index with tuple of 2D arrays
|
||
|
i = np.array([[1]], dtype=int)
|
||
|
assert_equal(A[i,i].todense(), B[i,i])
|
||
|
|
||
|
# Regression for gh-4917: index with tuple of empty nested lists
|
||
|
assert_equal(A[[[]], [[]]].todense(), B[[[]], [[]]])
|
||
|
|
||
|
def test_fancy_indexing_randomized(self):
|
||
|
np.random.seed(1234) # make runs repeatable
|
||
|
|
||
|
NUM_SAMPLES = 50
|
||
|
M = 6
|
||
|
N = 4
|
||
|
|
||
|
D = np.asmatrix(np.random.rand(M,N))
|
||
|
D = np.multiply(D, D > 0.5)
|
||
|
|
||
|
I = np.random.randint(-M + 1, M, size=NUM_SAMPLES)
|
||
|
J = np.random.randint(-N + 1, N, size=NUM_SAMPLES)
|
||
|
|
||
|
S = self.spmatrix(D)
|
||
|
|
||
|
SIJ = S[I,J]
|
||
|
if isspmatrix(SIJ):
|
||
|
SIJ = SIJ.todense()
|
||
|
assert_equal(SIJ, D[I,J])
|
||
|
|
||
|
I_bad = I + M
|
||
|
J_bad = J - N
|
||
|
|
||
|
assert_raises(IndexError, S.__getitem__, (I_bad,J))
|
||
|
assert_raises(IndexError, S.__getitem__, (I,J_bad))
|
||
|
|
||
|
def test_fancy_indexing_boolean(self):
|
||
|
np.random.seed(1234) # make runs repeatable
|
||
|
|
||
|
B = asmatrix(arange(50).reshape(5,10))
|
||
|
A = self.spmatrix(B)
|
||
|
|
||
|
I = np.array(np.random.randint(0, 2, size=5), dtype=bool)
|
||
|
J = np.array(np.random.randint(0, 2, size=10), dtype=bool)
|
||
|
X = np.array(np.random.randint(0, 2, size=(5, 10)), dtype=bool)
|
||
|
|
||
|
assert_equal(todense(A[I]), B[I])
|
||
|
assert_equal(todense(A[:,J]), B[:, J])
|
||
|
assert_equal(todense(A[X]), B[X])
|
||
|
assert_equal(todense(A[B > 9]), B[B > 9])
|
||
|
|
||
|
I = np.array([True, False, True, True, False])
|
||
|
J = np.array([False, True, True, False, True,
|
||
|
False, False, False, False, False])
|
||
|
|
||
|
assert_equal(todense(A[I, J]), B[I, J])
|
||
|
|
||
|
Z1 = np.zeros((6, 11), dtype=bool)
|
||
|
Z2 = np.zeros((6, 11), dtype=bool)
|
||
|
Z2[0,-1] = True
|
||
|
Z3 = np.zeros((6, 11), dtype=bool)
|
||
|
Z3[-1,0] = True
|
||
|
|
||
|
assert_equal(A[Z1], np.array([]))
|
||
|
assert_raises(IndexError, A.__getitem__, Z2)
|
||
|
assert_raises(IndexError, A.__getitem__, Z3)
|
||
|
assert_raises((IndexError, ValueError), A.__getitem__, (X, 1))
|
||
|
|
||
|
def test_fancy_indexing_sparse_boolean(self):
|
||
|
np.random.seed(1234) # make runs repeatable
|
||
|
|
||
|
B = asmatrix(arange(50).reshape(5,10))
|
||
|
A = self.spmatrix(B)
|
||
|
|
||
|
X = np.array(np.random.randint(0, 2, size=(5, 10)), dtype=bool)
|
||
|
|
||
|
Xsp = csr_matrix(X)
|
||
|
|
||
|
assert_equal(todense(A[Xsp]), B[X])
|
||
|
assert_equal(todense(A[A > 9]), B[B > 9])
|
||
|
|
||
|
Z = np.array(np.random.randint(0, 2, size=(5, 11)), dtype=bool)
|
||
|
Y = np.array(np.random.randint(0, 2, size=(6, 10)), dtype=bool)
|
||
|
|
||
|
Zsp = csr_matrix(Z)
|
||
|
Ysp = csr_matrix(Y)
|
||
|
|
||
|
assert_raises(IndexError, A.__getitem__, Zsp)
|
||
|
assert_raises(IndexError, A.__getitem__, Ysp)
|
||
|
assert_raises((IndexError, ValueError), A.__getitem__, (Xsp, 1))
|
||
|
|
||
|
def test_fancy_indexing_regression_3087(self):
|
||
|
mat = self.spmatrix(array([[1, 0, 0], [0,1,0], [1,0,0]]))
|
||
|
desired_cols = np.ravel(mat.sum(0)) > 0
|
||
|
assert_equal(mat[:, desired_cols].A, [[1, 0], [0, 1], [1, 0]])
|
||
|
|
||
|
def test_fancy_indexing_seq_assign(self):
|
||
|
mat = self.spmatrix(array([[1, 0], [0, 1]]))
|
||
|
assert_raises(ValueError, mat.__setitem__, (0, 0), np.array([1,2]))
|
||
|
|
||
|
def test_fancy_indexing_empty(self):
|
||
|
B = asmatrix(arange(50).reshape(5,10))
|
||
|
B[1,:] = 0
|
||
|
B[:,2] = 0
|
||
|
B[3,6] = 0
|
||
|
A = self.spmatrix(B)
|
||
|
|
||
|
K = np.array([False, False, False, False, False])
|
||
|
assert_equal(todense(A[K]), B[K])
|
||
|
K = np.array([], dtype=int)
|
||
|
assert_equal(todense(A[K]), B[K])
|
||
|
assert_equal(todense(A[K,K]), B[K,K])
|
||
|
J = np.array([0, 1, 2, 3, 4], dtype=int)[:,None]
|
||
|
assert_equal(todense(A[K,J]), B[K,J])
|
||
|
assert_equal(todense(A[J,K]), B[J,K])
|
||
|
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def check_remains_sorted(X):
|
||
|
"""Checks that sorted indices property is retained through an operation
|
||
|
"""
|
||
|
if not hasattr(X, 'has_sorted_indices') or not X.has_sorted_indices:
|
||
|
yield
|
||
|
return
|
||
|
yield
|
||
|
indices = X.indices.copy()
|
||
|
X.has_sorted_indices = False
|
||
|
X.sort_indices()
|
||
|
assert_array_equal(indices, X.indices,
|
||
|
'Expected sorted indices, found unsorted')
|
||
|
|
||
|
|
||
|
class _TestFancyIndexingAssign(object):
|
||
|
def test_bad_index_assign(self):
|
||
|
A = self.spmatrix(np.zeros([5, 5]))
|
||
|
assert_raises((IndexError, ValueError, TypeError), A.__setitem__, "foo", 2)
|
||
|
assert_raises((IndexError, ValueError, TypeError), A.__setitem__, (2, "foo"), 5)
|
||
|
|
||
|
def test_fancy_indexing_set(self):
|
||
|
n, m = (5, 10)
|
||
|
|
||
|
def _test_set_slice(i, j):
|
||
|
A = self.spmatrix((n, m))
|
||
|
B = asmatrix(np.zeros((n, m)))
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
B[i, j] = 1
|
||
|
with check_remains_sorted(A):
|
||
|
A[i, j] = 1
|
||
|
assert_array_almost_equal(A.todense(), B)
|
||
|
# [1:2,1:2]
|
||
|
for i, j in [((2, 3, 4), slice(None, 10, 4)),
|
||
|
(np.arange(3), slice(5, -2)),
|
||
|
(slice(2, 5), slice(5, -2))]:
|
||
|
_test_set_slice(i, j)
|
||
|
for i, j in [(np.arange(3), np.arange(3)), ((0, 3, 4), (1, 2, 4))]:
|
||
|
_test_set_slice(i, j)
|
||
|
|
||
|
def test_fancy_assignment_dtypes(self):
|
||
|
def check(dtype):
|
||
|
A = self.spmatrix((5, 5), dtype=dtype)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
A[[0,1],[0,1]] = dtype.type(1)
|
||
|
assert_equal(A.sum(), dtype.type(1)*2)
|
||
|
A[0:2,0:2] = dtype.type(1.0)
|
||
|
assert_equal(A.sum(), dtype.type(1)*4)
|
||
|
A[2,2] = dtype.type(1.0)
|
||
|
assert_equal(A.sum(), dtype.type(1)*4 + dtype.type(1))
|
||
|
|
||
|
for dtype in supported_dtypes:
|
||
|
check(np.dtype(dtype))
|
||
|
|
||
|
def test_sequence_assignment(self):
|
||
|
A = self.spmatrix((4,3))
|
||
|
B = self.spmatrix(eye(3,4))
|
||
|
|
||
|
i0 = [0,1,2]
|
||
|
i1 = (0,1,2)
|
||
|
i2 = array(i0)
|
||
|
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
with check_remains_sorted(A):
|
||
|
A[0,i0] = B[i0,0].T
|
||
|
A[1,i1] = B[i1,1].T
|
||
|
A[2,i2] = B[i2,2].T
|
||
|
assert_array_equal(A.todense(),B.T.todense())
|
||
|
|
||
|
# column slice
|
||
|
A = self.spmatrix((2,3))
|
||
|
with check_remains_sorted(A):
|
||
|
A[1,1:3] = [10,20]
|
||
|
assert_array_equal(A.todense(), [[0,0,0],[0,10,20]])
|
||
|
|
||
|
# row slice
|
||
|
A = self.spmatrix((3,2))
|
||
|
with check_remains_sorted(A):
|
||
|
A[1:3,1] = [[10],[20]]
|
||
|
assert_array_equal(A.todense(), [[0,0],[0,10],[0,20]])
|
||
|
|
||
|
# both slices
|
||
|
A = self.spmatrix((3,3))
|
||
|
B = asmatrix(np.zeros((3,3)))
|
||
|
with check_remains_sorted(A):
|
||
|
for C in [A, B]:
|
||
|
C[[0,1,2], [0,1,2]] = [4,5,6]
|
||
|
assert_array_equal(A.toarray(), B)
|
||
|
|
||
|
# both slices (2)
|
||
|
A = self.spmatrix((4, 3))
|
||
|
with check_remains_sorted(A):
|
||
|
A[(1, 2, 3), (0, 1, 2)] = [1, 2, 3]
|
||
|
assert_almost_equal(A.sum(), 6)
|
||
|
B = asmatrix(np.zeros((4, 3)))
|
||
|
B[(1, 2, 3), (0, 1, 2)] = [1, 2, 3]
|
||
|
assert_array_equal(A.todense(), B)
|
||
|
|
||
|
def test_fancy_assign_empty(self):
|
||
|
B = asmatrix(arange(50).reshape(5,10))
|
||
|
B[1,:] = 0
|
||
|
B[:,2] = 0
|
||
|
B[3,6] = 0
|
||
|
A = self.spmatrix(B)
|
||
|
|
||
|
K = np.array([False, False, False, False, False])
|
||
|
A[K] = 42
|
||
|
assert_equal(todense(A), B)
|
||
|
|
||
|
K = np.array([], dtype=int)
|
||
|
A[K] = 42
|
||
|
assert_equal(todense(A), B)
|
||
|
A[K,K] = 42
|
||
|
assert_equal(todense(A), B)
|
||
|
|
||
|
J = np.array([0, 1, 2, 3, 4], dtype=int)[:,None]
|
||
|
A[K,J] = 42
|
||
|
assert_equal(todense(A), B)
|
||
|
A[J,K] = 42
|
||
|
assert_equal(todense(A), B)
|
||
|
|
||
|
|
||
|
class _TestFancyMultidim(object):
|
||
|
def test_fancy_indexing_ndarray(self):
|
||
|
sets = [
|
||
|
(np.array([[1], [2], [3]]), np.array([3, 4, 2])),
|
||
|
(np.array([[1], [2], [3]]), np.array([[3, 4, 2]])),
|
||
|
(np.array([[1, 2, 3]]), np.array([[3], [4], [2]])),
|
||
|
(np.array([1, 2, 3]), np.array([[3], [4], [2]])),
|
||
|
(np.array([[1, 2, 3], [3, 4, 2]]),
|
||
|
np.array([[5, 6, 3], [2, 3, 1]]))
|
||
|
]
|
||
|
# These inputs generate 3-D outputs
|
||
|
# (np.array([[[1], [2], [3]], [[3], [4], [2]]]),
|
||
|
# np.array([[[5], [6], [3]], [[2], [3], [1]]])),
|
||
|
|
||
|
for I, J in sets:
|
||
|
np.random.seed(1234)
|
||
|
D = np.asmatrix(np.random.rand(5, 7))
|
||
|
S = self.spmatrix(D)
|
||
|
|
||
|
SIJ = S[I,J]
|
||
|
if isspmatrix(SIJ):
|
||
|
SIJ = SIJ.todense()
|
||
|
assert_equal(SIJ, D[I,J])
|
||
|
|
||
|
I_bad = I + 5
|
||
|
J_bad = J + 7
|
||
|
|
||
|
assert_raises(IndexError, S.__getitem__, (I_bad,J))
|
||
|
assert_raises(IndexError, S.__getitem__, (I,J_bad))
|
||
|
|
||
|
# This would generate 3-D arrays -- not supported
|
||
|
assert_raises(IndexError, S.__getitem__, ([I, I], slice(None)))
|
||
|
assert_raises(IndexError, S.__getitem__, (slice(None), [J, J]))
|
||
|
|
||
|
|
||
|
class _TestFancyMultidimAssign(object):
|
||
|
def test_fancy_assign_ndarray(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
D = np.asmatrix(np.random.rand(5, 7))
|
||
|
S = self.spmatrix(D)
|
||
|
X = np.random.rand(2, 3)
|
||
|
|
||
|
I = np.array([[1, 2, 3], [3, 4, 2]])
|
||
|
J = np.array([[5, 6, 3], [2, 3, 1]])
|
||
|
|
||
|
with check_remains_sorted(S):
|
||
|
S[I,J] = X
|
||
|
D[I,J] = X
|
||
|
assert_equal(S.todense(), D)
|
||
|
|
||
|
I_bad = I + 5
|
||
|
J_bad = J + 7
|
||
|
|
||
|
C = [1, 2, 3]
|
||
|
|
||
|
with check_remains_sorted(S):
|
||
|
S[I,J] = C
|
||
|
D[I,J] = C
|
||
|
assert_equal(S.todense(), D)
|
||
|
|
||
|
with check_remains_sorted(S):
|
||
|
S[I,J] = 3
|
||
|
D[I,J] = 3
|
||
|
assert_equal(S.todense(), D)
|
||
|
|
||
|
assert_raises(IndexError, S.__setitem__, (I_bad,J), C)
|
||
|
assert_raises(IndexError, S.__setitem__, (I,J_bad), C)
|
||
|
|
||
|
def test_fancy_indexing_multidim_set(self):
|
||
|
n, m = (5, 10)
|
||
|
|
||
|
def _test_set_slice(i, j):
|
||
|
A = self.spmatrix((n, m))
|
||
|
with check_remains_sorted(A), suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
A[i, j] = 1
|
||
|
B = asmatrix(np.zeros((n, m)))
|
||
|
B[i, j] = 1
|
||
|
assert_array_almost_equal(A.todense(), B)
|
||
|
# [[[1, 2], [1, 2]], [1, 2]]
|
||
|
for i, j in [(np.array([[1, 2], [1, 3]]), [1, 3]),
|
||
|
(np.array([0, 4]), [[0, 3], [1, 2]]),
|
||
|
([[1, 2, 3], [0, 2, 4]], [[0, 4, 3], [4, 1, 2]])]:
|
||
|
_test_set_slice(i, j)
|
||
|
|
||
|
def test_fancy_assign_list(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
D = np.asmatrix(np.random.rand(5, 7))
|
||
|
S = self.spmatrix(D)
|
||
|
X = np.random.rand(2, 3)
|
||
|
|
||
|
I = [[1, 2, 3], [3, 4, 2]]
|
||
|
J = [[5, 6, 3], [2, 3, 1]]
|
||
|
|
||
|
S[I,J] = X
|
||
|
D[I,J] = X
|
||
|
assert_equal(S.todense(), D)
|
||
|
|
||
|
I_bad = [[ii + 5 for ii in i] for i in I]
|
||
|
J_bad = [[jj + 7 for jj in j] for j in J]
|
||
|
C = [1, 2, 3]
|
||
|
|
||
|
S[I,J] = C
|
||
|
D[I,J] = C
|
||
|
assert_equal(S.todense(), D)
|
||
|
|
||
|
S[I,J] = 3
|
||
|
D[I,J] = 3
|
||
|
assert_equal(S.todense(), D)
|
||
|
|
||
|
assert_raises(IndexError, S.__setitem__, (I_bad,J), C)
|
||
|
assert_raises(IndexError, S.__setitem__, (I,J_bad), C)
|
||
|
|
||
|
def test_fancy_assign_slice(self):
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
D = np.asmatrix(np.random.rand(5, 7))
|
||
|
S = self.spmatrix(D)
|
||
|
|
||
|
I = [[1, 2, 3], [3, 4, 2]]
|
||
|
J = [[5, 6, 3], [2, 3, 1]]
|
||
|
|
||
|
I_bad = [[ii + 5 for ii in i] for i in I]
|
||
|
J_bad = [[jj + 7 for jj in j] for j in J]
|
||
|
|
||
|
C = [1, 2, 3, 4, 5, 6, 7]
|
||
|
assert_raises(IndexError, S.__setitem__, (I_bad, slice(None)), C)
|
||
|
assert_raises(IndexError, S.__setitem__, (slice(None), J_bad), C)
|
||
|
|
||
|
|
||
|
class _TestArithmetic(object):
|
||
|
"""
|
||
|
Test real/complex arithmetic
|
||
|
"""
|
||
|
def __arith_init(self):
|
||
|
# these can be represented exactly in FP (so arithmetic should be exact)
|
||
|
self.__A = matrix([[-1.5, 6.5, 0, 2.25, 0, 0],
|
||
|
[3.125, -7.875, 0.625, 0, 0, 0],
|
||
|
[0, 0, -0.125, 1.0, 0, 0],
|
||
|
[0, 0, 8.375, 0, 0, 0]],'float64')
|
||
|
self.__B = matrix([[0.375, 0, 0, 0, -5, 2.5],
|
||
|
[14.25, -3.75, 0, 0, -0.125, 0],
|
||
|
[0, 7.25, 0, 0, 0, 0],
|
||
|
[18.5, -0.0625, 0, 0, 0, 0]],'complex128')
|
||
|
self.__B.imag = matrix([[1.25, 0, 0, 0, 6, -3.875],
|
||
|
[2.25, 4.125, 0, 0, 0, 2.75],
|
||
|
[0, 4.125, 0, 0, 0, 0],
|
||
|
[-0.0625, 0, 0, 0, 0, 0]],'float64')
|
||
|
|
||
|
# fractions are all x/16ths
|
||
|
assert_array_equal((self.__A*16).astype('int32'),16*self.__A)
|
||
|
assert_array_equal((self.__B.real*16).astype('int32'),16*self.__B.real)
|
||
|
assert_array_equal((self.__B.imag*16).astype('int32'),16*self.__B.imag)
|
||
|
|
||
|
self.__Asp = self.spmatrix(self.__A)
|
||
|
self.__Bsp = self.spmatrix(self.__B)
|
||
|
|
||
|
def test_add_sub(self):
|
||
|
self.__arith_init()
|
||
|
|
||
|
# basic tests
|
||
|
assert_array_equal((self.__Asp+self.__Bsp).todense(),self.__A+self.__B)
|
||
|
|
||
|
# check conversions
|
||
|
for x in supported_dtypes:
|
||
|
A = self.__A.astype(x)
|
||
|
Asp = self.spmatrix(A)
|
||
|
for y in supported_dtypes:
|
||
|
if not np.issubdtype(y, np.complexfloating):
|
||
|
B = self.__B.real.astype(y)
|
||
|
else:
|
||
|
B = self.__B.astype(y)
|
||
|
Bsp = self.spmatrix(B)
|
||
|
|
||
|
# addition
|
||
|
D1 = A + B
|
||
|
S1 = Asp + Bsp
|
||
|
|
||
|
assert_equal(S1.dtype,D1.dtype)
|
||
|
assert_array_equal(S1.todense(),D1)
|
||
|
assert_array_equal(Asp + B,D1) # check sparse + dense
|
||
|
assert_array_equal(A + Bsp,D1) # check dense + sparse
|
||
|
|
||
|
# subtraction
|
||
|
if (np.dtype('bool') in [x, y]) and (
|
||
|
NumpyVersion(np.__version__) >= '1.9.0.dev'):
|
||
|
# boolean array subtraction deprecated in 1.9.0
|
||
|
continue
|
||
|
|
||
|
D1 = A - B
|
||
|
S1 = Asp - Bsp
|
||
|
|
||
|
assert_equal(S1.dtype,D1.dtype)
|
||
|
assert_array_equal(S1.todense(),D1)
|
||
|
assert_array_equal(Asp - B,D1) # check sparse - dense
|
||
|
assert_array_equal(A - Bsp,D1) # check dense - sparse
|
||
|
|
||
|
def test_mu(self):
|
||
|
self.__arith_init()
|
||
|
|
||
|
# basic tests
|
||
|
assert_array_equal((self.__Asp*self.__Bsp.T).todense(),self.__A*self.__B.T)
|
||
|
|
||
|
for x in supported_dtypes:
|
||
|
A = self.__A.astype(x)
|
||
|
Asp = self.spmatrix(A)
|
||
|
for y in supported_dtypes:
|
||
|
if np.issubdtype(y, np.complexfloating):
|
||
|
B = self.__B.astype(y)
|
||
|
else:
|
||
|
B = self.__B.real.astype(y)
|
||
|
Bsp = self.spmatrix(B)
|
||
|
|
||
|
D1 = A * B.T
|
||
|
S1 = Asp * Bsp.T
|
||
|
|
||
|
assert_allclose(S1.todense(), D1,
|
||
|
atol=1e-14*abs(D1).max())
|
||
|
assert_equal(S1.dtype,D1.dtype)
|
||
|
|
||
|
|
||
|
class _TestMinMax(object):
|
||
|
def test_minmax(self):
|
||
|
for dtype in [np.float32, np.float64, np.int32, np.int64, np.complex128]:
|
||
|
D = np.arange(20, dtype=dtype).reshape(5,4)
|
||
|
|
||
|
X = self.spmatrix(D)
|
||
|
assert_equal(X.min(), 0)
|
||
|
assert_equal(X.max(), 19)
|
||
|
assert_equal(X.min().dtype, dtype)
|
||
|
assert_equal(X.max().dtype, dtype)
|
||
|
|
||
|
D *= -1
|
||
|
X = self.spmatrix(D)
|
||
|
assert_equal(X.min(), -19)
|
||
|
assert_equal(X.max(), 0)
|
||
|
|
||
|
D += 5
|
||
|
X = self.spmatrix(D)
|
||
|
assert_equal(X.min(), -14)
|
||
|
assert_equal(X.max(), 5)
|
||
|
|
||
|
# try a fully dense matrix
|
||
|
X = self.spmatrix(np.arange(1, 10).reshape(3, 3))
|
||
|
assert_equal(X.min(), 1)
|
||
|
assert_equal(X.min().dtype, X.dtype)
|
||
|
|
||
|
X = -X
|
||
|
assert_equal(X.max(), -1)
|
||
|
|
||
|
# and a fully sparse matrix
|
||
|
Z = self.spmatrix(np.zeros(1))
|
||
|
assert_equal(Z.min(), 0)
|
||
|
assert_equal(Z.max(), 0)
|
||
|
assert_equal(Z.max().dtype, Z.dtype)
|
||
|
|
||
|
# another test
|
||
|
D = np.arange(20, dtype=float).reshape(5,4)
|
||
|
D[0:2, :] = 0
|
||
|
X = self.spmatrix(D)
|
||
|
assert_equal(X.min(), 0)
|
||
|
assert_equal(X.max(), 19)
|
||
|
|
||
|
# zero-size matrices
|
||
|
for D in [np.zeros((0, 0)), np.zeros((0, 10)), np.zeros((10, 0))]:
|
||
|
X = self.spmatrix(D)
|
||
|
assert_raises(ValueError, X.min)
|
||
|
assert_raises(ValueError, X.max)
|
||
|
|
||
|
def test_minmax_axis(self):
|
||
|
D = np.matrix(np.arange(50).reshape(5,10))
|
||
|
# completely empty rows, leaving some completely full:
|
||
|
D[1, :] = 0
|
||
|
# empty at end for reduceat:
|
||
|
D[:, 9] = 0
|
||
|
# partial rows/cols:
|
||
|
D[3, 3] = 0
|
||
|
# entries on either side of 0:
|
||
|
D[2, 2] = -1
|
||
|
X = self.spmatrix(D)
|
||
|
|
||
|
axes = [-2, -1, 0, 1]
|
||
|
for axis in axes:
|
||
|
assert_array_equal(X.max(axis=axis).A, D.max(axis=axis).A)
|
||
|
assert_array_equal(X.min(axis=axis).A, D.min(axis=axis).A)
|
||
|
|
||
|
# full matrix
|
||
|
D = np.matrix(np.arange(1, 51).reshape(10, 5))
|
||
|
X = self.spmatrix(D)
|
||
|
for axis in axes:
|
||
|
assert_array_equal(X.max(axis=axis).A, D.max(axis=axis).A)
|
||
|
assert_array_equal(X.min(axis=axis).A, D.min(axis=axis).A)
|
||
|
|
||
|
# empty matrix
|
||
|
D = np.matrix(np.zeros((10, 5)))
|
||
|
X = self.spmatrix(D)
|
||
|
for axis in axes:
|
||
|
assert_array_equal(X.max(axis=axis).A, D.max(axis=axis).A)
|
||
|
assert_array_equal(X.min(axis=axis).A, D.min(axis=axis).A)
|
||
|
|
||
|
axes_even = [0, -2]
|
||
|
axes_odd = [1, -1]
|
||
|
|
||
|
# zero-size matrices
|
||
|
D = np.zeros((0, 10))
|
||
|
X = self.spmatrix(D)
|
||
|
for axis in axes_even:
|
||
|
assert_raises(ValueError, X.min, axis=axis)
|
||
|
assert_raises(ValueError, X.max, axis=axis)
|
||
|
for axis in axes_odd:
|
||
|
assert_array_equal(np.zeros((0, 1)), X.min(axis=axis).A)
|
||
|
assert_array_equal(np.zeros((0, 1)), X.max(axis=axis).A)
|
||
|
|
||
|
D = np.zeros((10, 0))
|
||
|
X = self.spmatrix(D)
|
||
|
for axis in axes_odd:
|
||
|
assert_raises(ValueError, X.min, axis=axis)
|
||
|
assert_raises(ValueError, X.max, axis=axis)
|
||
|
for axis in axes_even:
|
||
|
assert_array_equal(np.zeros((1, 0)), X.min(axis=axis).A)
|
||
|
assert_array_equal(np.zeros((1, 0)), X.max(axis=axis).A)
|
||
|
|
||
|
def test_minmax_invalid_params(self):
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
for fname in ('min', 'max'):
|
||
|
func = getattr(datsp, fname)
|
||
|
assert_raises(ValueError, func, axis=3)
|
||
|
assert_raises(TypeError, func, axis=(0, 1))
|
||
|
assert_raises(TypeError, func, axis=1.5)
|
||
|
assert_raises(ValueError, func, axis=1, out=1)
|
||
|
|
||
|
def test_numpy_minmax(self):
|
||
|
# See gh-5987
|
||
|
# xref gh-7460 in 'numpy'
|
||
|
from scipy.sparse import data
|
||
|
|
||
|
dat = np.matrix([[0, 1, 2],
|
||
|
[3, -4, 5],
|
||
|
[-6, 7, 9]])
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
# We are only testing sparse matrices who have
|
||
|
# implemented 'min' and 'max' because they are
|
||
|
# the ones with the compatibility issues with
|
||
|
# the 'numpy' implementation.
|
||
|
if isinstance(datsp, data._minmax_mixin):
|
||
|
assert_array_equal(np.min(datsp), np.min(dat))
|
||
|
assert_array_equal(np.max(datsp), np.max(dat))
|
||
|
|
||
|
def test_argmax(self):
|
||
|
D1 = np.array([
|
||
|
[-1, 5, 2, 3],
|
||
|
[0, 0, -1, -2],
|
||
|
[-1, -2, -3, -4],
|
||
|
[1, 2, 3, 4],
|
||
|
[1, 2, 0, 0],
|
||
|
])
|
||
|
D2 = D1.transpose()
|
||
|
|
||
|
for D in [D1, D2]:
|
||
|
mat = csr_matrix(D)
|
||
|
|
||
|
assert_equal(mat.argmax(), np.argmax(D))
|
||
|
assert_equal(mat.argmin(), np.argmin(D))
|
||
|
|
||
|
assert_equal(mat.argmax(axis=0),
|
||
|
np.asmatrix(np.argmax(D, axis=0)))
|
||
|
assert_equal(mat.argmin(axis=0),
|
||
|
np.asmatrix(np.argmin(D, axis=0)))
|
||
|
|
||
|
assert_equal(mat.argmax(axis=1),
|
||
|
np.asmatrix(np.argmax(D, axis=1).reshape(-1, 1)))
|
||
|
assert_equal(mat.argmin(axis=1),
|
||
|
np.asmatrix(np.argmin(D, axis=1).reshape(-1, 1)))
|
||
|
|
||
|
D1 = np.empty((0, 5))
|
||
|
D2 = np.empty((5, 0))
|
||
|
|
||
|
for axis in [None, 0]:
|
||
|
mat = self.spmatrix(D1)
|
||
|
assert_raises(ValueError, mat.argmax, axis=axis)
|
||
|
assert_raises(ValueError, mat.argmin, axis=axis)
|
||
|
|
||
|
for axis in [None, 1]:
|
||
|
mat = self.spmatrix(D2)
|
||
|
assert_raises(ValueError, mat.argmax, axis=axis)
|
||
|
assert_raises(ValueError, mat.argmin, axis=axis)
|
||
|
|
||
|
|
||
|
class _TestGetNnzAxis(object):
|
||
|
def test_getnnz_axis(self):
|
||
|
dat = np.matrix([[0, 2],
|
||
|
[3, 5],
|
||
|
[-6, 9]])
|
||
|
bool_dat = dat.astype(bool).A
|
||
|
datsp = self.spmatrix(dat)
|
||
|
|
||
|
accepted_return_dtypes = (np.int32, np.int64)
|
||
|
|
||
|
assert_array_equal(bool_dat.sum(axis=None), datsp.getnnz(axis=None))
|
||
|
assert_array_equal(bool_dat.sum(), datsp.getnnz())
|
||
|
assert_array_equal(bool_dat.sum(axis=0), datsp.getnnz(axis=0))
|
||
|
assert_in(datsp.getnnz(axis=0).dtype, accepted_return_dtypes)
|
||
|
assert_array_equal(bool_dat.sum(axis=1), datsp.getnnz(axis=1))
|
||
|
assert_in(datsp.getnnz(axis=1).dtype, accepted_return_dtypes)
|
||
|
assert_array_equal(bool_dat.sum(axis=-2), datsp.getnnz(axis=-2))
|
||
|
assert_in(datsp.getnnz(axis=-2).dtype, accepted_return_dtypes)
|
||
|
assert_array_equal(bool_dat.sum(axis=-1), datsp.getnnz(axis=-1))
|
||
|
assert_in(datsp.getnnz(axis=-1).dtype, accepted_return_dtypes)
|
||
|
|
||
|
assert_raises(ValueError, datsp.getnnz, axis=2)
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------------------------
|
||
|
# Tailored base class for generic tests
|
||
|
#------------------------------------------------------------------------------
|
||
|
|
||
|
def _possibly_unimplemented(cls, require=True):
|
||
|
"""
|
||
|
Construct a class that either runs tests as usual (require=True),
|
||
|
or each method skips if it encounters a common error.
|
||
|
"""
|
||
|
if require:
|
||
|
return cls
|
||
|
else:
|
||
|
def wrap(fc):
|
||
|
@functools.wraps(fc)
|
||
|
def wrapper(*a, **kw):
|
||
|
try:
|
||
|
return fc(*a, **kw)
|
||
|
except (NotImplementedError, TypeError, ValueError,
|
||
|
IndexError, AttributeError):
|
||
|
raise pytest.skip("feature not implemented")
|
||
|
|
||
|
return wrapper
|
||
|
|
||
|
new_dict = dict(cls.__dict__)
|
||
|
for name, func in cls.__dict__.items():
|
||
|
if name.startswith('test_'):
|
||
|
new_dict[name] = wrap(func)
|
||
|
return type(cls.__name__ + "NotImplemented",
|
||
|
cls.__bases__,
|
||
|
new_dict)
|
||
|
|
||
|
|
||
|
def sparse_test_class(getset=True, slicing=True, slicing_assign=True,
|
||
|
fancy_indexing=True, fancy_assign=True,
|
||
|
fancy_multidim_indexing=True, fancy_multidim_assign=True,
|
||
|
minmax=True, nnz_axis=True):
|
||
|
"""
|
||
|
Construct a base class, optionally converting some of the tests in
|
||
|
the suite to check that the feature is not implemented.
|
||
|
"""
|
||
|
bases = (_TestCommon,
|
||
|
_possibly_unimplemented(_TestGetSet, getset),
|
||
|
_TestSolve,
|
||
|
_TestInplaceArithmetic,
|
||
|
_TestArithmetic,
|
||
|
_possibly_unimplemented(_TestSlicing, slicing),
|
||
|
_possibly_unimplemented(_TestSlicingAssign, slicing_assign),
|
||
|
_possibly_unimplemented(_TestFancyIndexing, fancy_indexing),
|
||
|
_possibly_unimplemented(_TestFancyIndexingAssign,
|
||
|
fancy_assign),
|
||
|
_possibly_unimplemented(_TestFancyMultidim,
|
||
|
fancy_indexing and fancy_multidim_indexing),
|
||
|
_possibly_unimplemented(_TestFancyMultidimAssign,
|
||
|
fancy_multidim_assign and fancy_assign),
|
||
|
_possibly_unimplemented(_TestMinMax, minmax),
|
||
|
_possibly_unimplemented(_TestGetNnzAxis, nnz_axis))
|
||
|
|
||
|
# check that test names do not clash
|
||
|
names = {}
|
||
|
for cls in bases:
|
||
|
for name in cls.__dict__:
|
||
|
if not name.startswith('test_'):
|
||
|
continue
|
||
|
old_cls = names.get(name)
|
||
|
if old_cls is not None:
|
||
|
raise ValueError("Test class %s overloads test %s defined in %s" % (
|
||
|
cls.__name__, name, old_cls.__name__))
|
||
|
names[name] = cls
|
||
|
|
||
|
return type("TestBase", bases, {})
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------------------------
|
||
|
# Matrix class based tests
|
||
|
#------------------------------------------------------------------------------
|
||
|
|
||
|
class TestCSR(sparse_test_class()):
|
||
|
@classmethod
|
||
|
def spmatrix(cls, *args, **kwargs):
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a csr_matrix is expensive")
|
||
|
return csr_matrix(*args, **kwargs)
|
||
|
math_dtypes = [np.bool_, np.int_, np.float_, np.complex_]
|
||
|
|
||
|
def test_constructor1(self):
|
||
|
b = matrix([[0,4,0],
|
||
|
[3,0,0],
|
||
|
[0,2,0]],'d')
|
||
|
bsp = csr_matrix(b)
|
||
|
assert_array_almost_equal(bsp.data,[4,3,2])
|
||
|
assert_array_equal(bsp.indices,[1,0,1])
|
||
|
assert_array_equal(bsp.indptr,[0,1,2,3])
|
||
|
assert_equal(bsp.getnnz(),3)
|
||
|
assert_equal(bsp.getformat(),'csr')
|
||
|
assert_array_equal(bsp.todense(),b)
|
||
|
|
||
|
def test_constructor2(self):
|
||
|
b = zeros((6,6),'d')
|
||
|
b[3,4] = 5
|
||
|
bsp = csr_matrix(b)
|
||
|
assert_array_almost_equal(bsp.data,[5])
|
||
|
assert_array_equal(bsp.indices,[4])
|
||
|
assert_array_equal(bsp.indptr,[0,0,0,0,1,1,1])
|
||
|
assert_array_almost_equal(bsp.todense(),b)
|
||
|
|
||
|
def test_constructor3(self):
|
||
|
b = matrix([[1,0],
|
||
|
[0,2],
|
||
|
[3,0]],'d')
|
||
|
bsp = csr_matrix(b)
|
||
|
assert_array_almost_equal(bsp.data,[1,2,3])
|
||
|
assert_array_equal(bsp.indices,[0,1,0])
|
||
|
assert_array_equal(bsp.indptr,[0,1,2,3])
|
||
|
assert_array_almost_equal(bsp.todense(),b)
|
||
|
|
||
|
### currently disabled
|
||
|
## def test_constructor4(self):
|
||
|
## """try using int64 indices"""
|
||
|
## data = arange( 6 ) + 1
|
||
|
## col = array( [1, 2, 1, 0, 0, 2], dtype='int64' )
|
||
|
## ptr = array( [0, 2, 4, 6], dtype='int64' )
|
||
|
##
|
||
|
## a = csr_matrix( (data, col, ptr), shape = (3,3) )
|
||
|
##
|
||
|
## b = matrix([[0,1,2],
|
||
|
## [4,3,0],
|
||
|
## [5,0,6]],'d')
|
||
|
##
|
||
|
## assert_equal(a.indptr.dtype,numpy.dtype('int64'))
|
||
|
## assert_equal(a.indices.dtype,numpy.dtype('int64'))
|
||
|
## assert_array_equal(a.todense(),b)
|
||
|
|
||
|
def test_constructor4(self):
|
||
|
# using (data, ij) format
|
||
|
row = array([2, 3, 1, 3, 0, 1, 3, 0, 2, 1, 2])
|
||
|
col = array([0, 1, 0, 0, 1, 1, 2, 2, 2, 2, 1])
|
||
|
data = array([6., 10., 3., 9., 1., 4.,
|
||
|
11., 2., 8., 5., 7.])
|
||
|
|
||
|
ij = vstack((row,col))
|
||
|
csr = csr_matrix((data,ij),(4,3))
|
||
|
assert_array_equal(arange(12).reshape(4,3),csr.todense())
|
||
|
|
||
|
def test_constructor5(self):
|
||
|
# infer dimensions from arrays
|
||
|
indptr = array([0,1,3,3])
|
||
|
indices = array([0,5,1,2])
|
||
|
data = array([1,2,3,4])
|
||
|
csr = csr_matrix((data, indices, indptr))
|
||
|
assert_array_equal(csr.shape,(3,6))
|
||
|
|
||
|
def test_constructor6(self):
|
||
|
# infer dimensions and dtype from lists
|
||
|
indptr = [0, 1, 3, 3]
|
||
|
indices = [0, 5, 1, 2]
|
||
|
data = [1, 2, 3, 4]
|
||
|
csr = csr_matrix((data, indices, indptr))
|
||
|
assert_array_equal(csr.shape, (3,6))
|
||
|
assert_(np.issubdtype(csr.dtype, np.signedinteger))
|
||
|
|
||
|
def test_sort_indices(self):
|
||
|
data = arange(5)
|
||
|
indices = array([7, 2, 1, 5, 4])
|
||
|
indptr = array([0, 3, 5])
|
||
|
asp = csr_matrix((data, indices, indptr), shape=(2,10))
|
||
|
bsp = asp.copy()
|
||
|
asp.sort_indices()
|
||
|
assert_array_equal(asp.indices,[1, 2, 7, 4, 5])
|
||
|
assert_array_equal(asp.todense(),bsp.todense())
|
||
|
|
||
|
def test_eliminate_zeros(self):
|
||
|
data = array([1, 0, 0, 0, 2, 0, 3, 0])
|
||
|
indices = array([1, 2, 3, 4, 5, 6, 7, 8])
|
||
|
indptr = array([0, 3, 8])
|
||
|
asp = csr_matrix((data, indices, indptr), shape=(2,10))
|
||
|
bsp = asp.copy()
|
||
|
asp.eliminate_zeros()
|
||
|
assert_array_equal(asp.nnz, 3)
|
||
|
assert_array_equal(asp.data,[1, 2, 3])
|
||
|
assert_array_equal(asp.todense(),bsp.todense())
|
||
|
|
||
|
def test_ufuncs(self):
|
||
|
X = csr_matrix(np.arange(20).reshape(4, 5) / 20.)
|
||
|
for f in ["sin", "tan", "arcsin", "arctan", "sinh", "tanh",
|
||
|
"arcsinh", "arctanh", "rint", "sign", "expm1", "log1p",
|
||
|
"deg2rad", "rad2deg", "floor", "ceil", "trunc", "sqrt"]:
|
||
|
assert_equal(hasattr(csr_matrix, f), True)
|
||
|
X2 = getattr(X, f)()
|
||
|
assert_equal(X.shape, X2.shape)
|
||
|
assert_array_equal(X.indices, X2.indices)
|
||
|
assert_array_equal(X.indptr, X2.indptr)
|
||
|
assert_array_equal(X2.toarray(), getattr(np, f)(X.toarray()))
|
||
|
|
||
|
def test_unsorted_arithmetic(self):
|
||
|
data = arange(5)
|
||
|
indices = array([7, 2, 1, 5, 4])
|
||
|
indptr = array([0, 3, 5])
|
||
|
asp = csr_matrix((data, indices, indptr), shape=(2,10))
|
||
|
data = arange(6)
|
||
|
indices = array([8, 1, 5, 7, 2, 4])
|
||
|
indptr = array([0, 2, 6])
|
||
|
bsp = csr_matrix((data, indices, indptr), shape=(2,10))
|
||
|
assert_equal((asp + bsp).todense(), asp.todense() + bsp.todense())
|
||
|
|
||
|
def test_fancy_indexing_broadcast(self):
|
||
|
# broadcasting indexing mode is supported
|
||
|
I = np.array([[1], [2], [3]])
|
||
|
J = np.array([3, 4, 2])
|
||
|
|
||
|
np.random.seed(1234)
|
||
|
D = np.asmatrix(np.random.rand(5, 7))
|
||
|
S = self.spmatrix(D)
|
||
|
|
||
|
SIJ = S[I,J]
|
||
|
if isspmatrix(SIJ):
|
||
|
SIJ = SIJ.todense()
|
||
|
assert_equal(SIJ, D[I,J])
|
||
|
|
||
|
def test_has_sorted_indices(self):
|
||
|
"Ensure has_sorted_indices memoizes sorted state for sort_indices"
|
||
|
sorted_inds = np.array([0, 1])
|
||
|
unsorted_inds = np.array([1, 0])
|
||
|
data = np.array([1, 1])
|
||
|
indptr = np.array([0, 2])
|
||
|
M = csr_matrix((data, sorted_inds, indptr)).copy()
|
||
|
assert_equal(True, M.has_sorted_indices)
|
||
|
|
||
|
M = csr_matrix((data, unsorted_inds, indptr)).copy()
|
||
|
assert_equal(False, M.has_sorted_indices)
|
||
|
|
||
|
# set by sorting
|
||
|
M.sort_indices()
|
||
|
assert_equal(True, M.has_sorted_indices)
|
||
|
assert_array_equal(M.indices, sorted_inds)
|
||
|
|
||
|
M = csr_matrix((data, unsorted_inds, indptr)).copy()
|
||
|
# set manually (although underlyingly unsorted)
|
||
|
M.has_sorted_indices = True
|
||
|
assert_equal(True, M.has_sorted_indices)
|
||
|
assert_array_equal(M.indices, unsorted_inds)
|
||
|
|
||
|
# ensure sort bypassed when has_sorted_indices == True
|
||
|
M.sort_indices()
|
||
|
assert_array_equal(M.indices, unsorted_inds)
|
||
|
|
||
|
def test_has_canonical_format(self):
|
||
|
"Ensure has_canonical_format memoizes state for sum_duplicates"
|
||
|
|
||
|
M = csr_matrix((np.array([2]), np.array([0]), np.array([0, 1])))
|
||
|
assert_equal(True, M.has_canonical_format)
|
||
|
|
||
|
indices = np.array([0, 0]) # contains duplicate
|
||
|
data = np.array([1, 1])
|
||
|
indptr = np.array([0, 2])
|
||
|
|
||
|
M = csr_matrix((data, indices, indptr)).copy()
|
||
|
assert_equal(False, M.has_canonical_format)
|
||
|
|
||
|
# set by deduplicating
|
||
|
M.sum_duplicates()
|
||
|
assert_equal(True, M.has_canonical_format)
|
||
|
assert_equal(1, len(M.indices))
|
||
|
|
||
|
M = csr_matrix((data, indices, indptr)).copy()
|
||
|
# set manually (although underlyingly duplicated)
|
||
|
M.has_canonical_format = True
|
||
|
assert_equal(True, M.has_canonical_format)
|
||
|
assert_equal(2, len(M.indices)) # unaffected content
|
||
|
|
||
|
# ensure deduplication bypassed when has_canonical_format == True
|
||
|
M.sum_duplicates()
|
||
|
assert_equal(2, len(M.indices)) # unaffected content
|
||
|
|
||
|
def test_scalar_idx_dtype(self):
|
||
|
# Check that index dtype takes into account all parameters
|
||
|
# passed to sparsetools, including the scalar ones
|
||
|
indptr = np.zeros(2, dtype=np.int32)
|
||
|
indices = np.zeros(0, dtype=np.int32)
|
||
|
vals = np.zeros(0)
|
||
|
a = csr_matrix((vals, indices, indptr), shape=(1, 2**31-1))
|
||
|
b = csr_matrix((vals, indices, indptr), shape=(1, 2**31))
|
||
|
ij = np.zeros((2, 0), dtype=np.int32)
|
||
|
c = csr_matrix((vals, ij), shape=(1, 2**31-1))
|
||
|
d = csr_matrix((vals, ij), shape=(1, 2**31))
|
||
|
e = csr_matrix((1, 2**31-1))
|
||
|
f = csr_matrix((1, 2**31))
|
||
|
assert_equal(a.indptr.dtype, np.int32)
|
||
|
assert_equal(b.indptr.dtype, np.int64)
|
||
|
assert_equal(c.indptr.dtype, np.int32)
|
||
|
assert_equal(d.indptr.dtype, np.int64)
|
||
|
assert_equal(e.indptr.dtype, np.int32)
|
||
|
assert_equal(f.indptr.dtype, np.int64)
|
||
|
|
||
|
# These shouldn't fail
|
||
|
for x in [a, b, c, d, e, f]:
|
||
|
x + x
|
||
|
|
||
|
|
||
|
TestCSR.init_class()
|
||
|
|
||
|
|
||
|
class TestCSC(sparse_test_class()):
|
||
|
@classmethod
|
||
|
def spmatrix(cls, *args, **kwargs):
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a csc_matrix is expensive")
|
||
|
return csc_matrix(*args, **kwargs)
|
||
|
math_dtypes = [np.bool_, np.int_, np.float_, np.complex_]
|
||
|
|
||
|
def test_constructor1(self):
|
||
|
b = matrix([[1,0,0,0],[0,0,1,0],[0,2,0,3]],'d')
|
||
|
bsp = csc_matrix(b)
|
||
|
assert_array_almost_equal(bsp.data,[1,2,1,3])
|
||
|
assert_array_equal(bsp.indices,[0,2,1,2])
|
||
|
assert_array_equal(bsp.indptr,[0,1,2,3,4])
|
||
|
assert_equal(bsp.getnnz(),4)
|
||
|
assert_equal(bsp.shape,b.shape)
|
||
|
assert_equal(bsp.getformat(),'csc')
|
||
|
|
||
|
def test_constructor2(self):
|
||
|
b = zeros((6,6),'d')
|
||
|
b[2,4] = 5
|
||
|
bsp = csc_matrix(b)
|
||
|
assert_array_almost_equal(bsp.data,[5])
|
||
|
assert_array_equal(bsp.indices,[2])
|
||
|
assert_array_equal(bsp.indptr,[0,0,0,0,0,1,1])
|
||
|
|
||
|
def test_constructor3(self):
|
||
|
b = matrix([[1,0],[0,0],[0,2]],'d')
|
||
|
bsp = csc_matrix(b)
|
||
|
assert_array_almost_equal(bsp.data,[1,2])
|
||
|
assert_array_equal(bsp.indices,[0,2])
|
||
|
assert_array_equal(bsp.indptr,[0,1,2])
|
||
|
|
||
|
def test_constructor4(self):
|
||
|
# using (data, ij) format
|
||
|
row = array([2, 3, 1, 3, 0, 1, 3, 0, 2, 1, 2])
|
||
|
col = array([0, 1, 0, 0, 1, 1, 2, 2, 2, 2, 1])
|
||
|
data = array([6., 10., 3., 9., 1., 4.,
|
||
|
11., 2., 8., 5., 7.])
|
||
|
|
||
|
ij = vstack((row,col))
|
||
|
csc = csc_matrix((data,ij),(4,3))
|
||
|
assert_array_equal(arange(12).reshape(4,3),csc.todense())
|
||
|
|
||
|
def test_constructor5(self):
|
||
|
# infer dimensions from arrays
|
||
|
indptr = array([0,1,3,3])
|
||
|
indices = array([0,5,1,2])
|
||
|
data = array([1,2,3,4])
|
||
|
csc = csc_matrix((data, indices, indptr))
|
||
|
assert_array_equal(csc.shape,(6,3))
|
||
|
|
||
|
def test_constructor6(self):
|
||
|
# infer dimensions and dtype from lists
|
||
|
indptr = [0, 1, 3, 3]
|
||
|
indices = [0, 5, 1, 2]
|
||
|
data = [1, 2, 3, 4]
|
||
|
csc = csc_matrix((data, indices, indptr))
|
||
|
assert_array_equal(csc.shape,(6,3))
|
||
|
assert_(np.issubdtype(csc.dtype, np.signedinteger))
|
||
|
|
||
|
def test_eliminate_zeros(self):
|
||
|
data = array([1, 0, 0, 0, 2, 0, 3, 0])
|
||
|
indices = array([1, 2, 3, 4, 5, 6, 7, 8])
|
||
|
indptr = array([0, 3, 8])
|
||
|
asp = csc_matrix((data, indices, indptr), shape=(10,2))
|
||
|
bsp = asp.copy()
|
||
|
asp.eliminate_zeros()
|
||
|
assert_array_equal(asp.nnz, 3)
|
||
|
assert_array_equal(asp.data,[1, 2, 3])
|
||
|
assert_array_equal(asp.todense(),bsp.todense())
|
||
|
|
||
|
def test_sort_indices(self):
|
||
|
data = arange(5)
|
||
|
row = array([7, 2, 1, 5, 4])
|
||
|
ptr = [0, 3, 5]
|
||
|
asp = csc_matrix((data, row, ptr), shape=(10,2))
|
||
|
bsp = asp.copy()
|
||
|
asp.sort_indices()
|
||
|
assert_array_equal(asp.indices,[1, 2, 7, 4, 5])
|
||
|
assert_array_equal(asp.todense(),bsp.todense())
|
||
|
|
||
|
def test_ufuncs(self):
|
||
|
X = csc_matrix(np.arange(21).reshape(7, 3) / 21.)
|
||
|
for f in ["sin", "tan", "arcsin", "arctan", "sinh", "tanh",
|
||
|
"arcsinh", "arctanh", "rint", "sign", "expm1", "log1p",
|
||
|
"deg2rad", "rad2deg", "floor", "ceil", "trunc", "sqrt"]:
|
||
|
assert_equal(hasattr(csr_matrix, f), True)
|
||
|
X2 = getattr(X, f)()
|
||
|
assert_equal(X.shape, X2.shape)
|
||
|
assert_array_equal(X.indices, X2.indices)
|
||
|
assert_array_equal(X.indptr, X2.indptr)
|
||
|
assert_array_equal(X2.toarray(), getattr(np, f)(X.toarray()))
|
||
|
|
||
|
def test_unsorted_arithmetic(self):
|
||
|
data = arange(5)
|
||
|
indices = array([7, 2, 1, 5, 4])
|
||
|
indptr = array([0, 3, 5])
|
||
|
asp = csc_matrix((data, indices, indptr), shape=(10,2))
|
||
|
data = arange(6)
|
||
|
indices = array([8, 1, 5, 7, 2, 4])
|
||
|
indptr = array([0, 2, 6])
|
||
|
bsp = csc_matrix((data, indices, indptr), shape=(10,2))
|
||
|
assert_equal((asp + bsp).todense(), asp.todense() + bsp.todense())
|
||
|
|
||
|
def test_fancy_indexing_broadcast(self):
|
||
|
# broadcasting indexing mode is supported
|
||
|
I = np.array([[1], [2], [3]])
|
||
|
J = np.array([3, 4, 2])
|
||
|
|
||
|
np.random.seed(1234)
|
||
|
D = np.asmatrix(np.random.rand(5, 7))
|
||
|
S = self.spmatrix(D)
|
||
|
|
||
|
SIJ = S[I,J]
|
||
|
if isspmatrix(SIJ):
|
||
|
SIJ = SIJ.todense()
|
||
|
assert_equal(SIJ, D[I,J])
|
||
|
|
||
|
def test_scalar_idx_dtype(self):
|
||
|
# Check that index dtype takes into account all parameters
|
||
|
# passed to sparsetools, including the scalar ones
|
||
|
indptr = np.zeros(2, dtype=np.int32)
|
||
|
indices = np.zeros(0, dtype=np.int32)
|
||
|
vals = np.zeros(0)
|
||
|
a = csc_matrix((vals, indices, indptr), shape=(2**31-1, 1))
|
||
|
b = csc_matrix((vals, indices, indptr), shape=(2**31, 1))
|
||
|
ij = np.zeros((2, 0), dtype=np.int32)
|
||
|
c = csc_matrix((vals, ij), shape=(2**31-1, 1))
|
||
|
d = csc_matrix((vals, ij), shape=(2**31, 1))
|
||
|
e = csr_matrix((1, 2**31-1))
|
||
|
f = csr_matrix((1, 2**31))
|
||
|
assert_equal(a.indptr.dtype, np.int32)
|
||
|
assert_equal(b.indptr.dtype, np.int64)
|
||
|
assert_equal(c.indptr.dtype, np.int32)
|
||
|
assert_equal(d.indptr.dtype, np.int64)
|
||
|
assert_equal(e.indptr.dtype, np.int32)
|
||
|
assert_equal(f.indptr.dtype, np.int64)
|
||
|
|
||
|
# These shouldn't fail
|
||
|
for x in [a, b, c, d, e, f]:
|
||
|
x + x
|
||
|
|
||
|
|
||
|
TestCSC.init_class()
|
||
|
|
||
|
|
||
|
class TestDOK(sparse_test_class(minmax=False, nnz_axis=False)):
|
||
|
spmatrix = dok_matrix
|
||
|
math_dtypes = [np.int_, np.float_, np.complex_]
|
||
|
|
||
|
def test_mult(self):
|
||
|
A = dok_matrix((10,10))
|
||
|
A[0,3] = 10
|
||
|
A[5,6] = 20
|
||
|
D = A*A.T
|
||
|
E = A*A.H
|
||
|
assert_array_equal(D.A, E.A)
|
||
|
|
||
|
def test_add_nonzero(self):
|
||
|
A = self.spmatrix((3,2))
|
||
|
A[0,1] = -10
|
||
|
A[2,0] = 20
|
||
|
A = A + 10
|
||
|
B = matrix([[10, 0], [10, 10], [30, 10]])
|
||
|
assert_array_equal(A.todense(), B)
|
||
|
|
||
|
A = A + 1j
|
||
|
B = B + 1j
|
||
|
assert_array_equal(A.todense(), B)
|
||
|
|
||
|
def test_dok_divide_scalar(self):
|
||
|
A = self.spmatrix((3,2))
|
||
|
A[0,1] = -10
|
||
|
A[2,0] = 20
|
||
|
|
||
|
assert_array_equal((A/1j).todense(), A.todense()/1j)
|
||
|
assert_array_equal((A/9).todense(), A.todense()/9)
|
||
|
|
||
|
def test_convert(self):
|
||
|
# Test provided by Andrew Straw. Fails in SciPy <= r1477.
|
||
|
(m, n) = (6, 7)
|
||
|
a = dok_matrix((m, n))
|
||
|
|
||
|
# set a few elements, but none in the last column
|
||
|
a[2,1] = 1
|
||
|
a[0,2] = 2
|
||
|
a[3,1] = 3
|
||
|
a[1,5] = 4
|
||
|
a[4,3] = 5
|
||
|
a[4,2] = 6
|
||
|
|
||
|
# assert that the last column is all zeros
|
||
|
assert_array_equal(a.toarray()[:,n-1], zeros(m,))
|
||
|
|
||
|
# make sure it still works for CSC format
|
||
|
csc = a.tocsc()
|
||
|
assert_array_equal(csc.toarray()[:,n-1], zeros(m,))
|
||
|
|
||
|
# now test CSR
|
||
|
(m, n) = (n, m)
|
||
|
b = a.transpose()
|
||
|
assert_equal(b.shape, (m, n))
|
||
|
# assert that the last row is all zeros
|
||
|
assert_array_equal(b.toarray()[m-1,:], zeros(n,))
|
||
|
|
||
|
# make sure it still works for CSR format
|
||
|
csr = b.tocsr()
|
||
|
assert_array_equal(csr.toarray()[m-1,:], zeros(n,))
|
||
|
|
||
|
def test_ctor(self):
|
||
|
# Empty ctor
|
||
|
assert_raises(TypeError, dok_matrix)
|
||
|
|
||
|
# Dense ctor
|
||
|
b = matrix([[1,0,0,0],[0,0,1,0],[0,2,0,3]],'d')
|
||
|
A = dok_matrix(b)
|
||
|
assert_equal(b.dtype, A.dtype)
|
||
|
assert_equal(A.todense(), b)
|
||
|
|
||
|
# Sparse ctor
|
||
|
c = csr_matrix(b)
|
||
|
assert_equal(A.todense(), c.todense())
|
||
|
|
||
|
data = [[0, 1, 2], [3, 0, 0]]
|
||
|
d = dok_matrix(data, dtype=np.float32)
|
||
|
assert_equal(d.dtype, np.float32)
|
||
|
da = d.toarray()
|
||
|
assert_equal(da.dtype, np.float32)
|
||
|
assert_array_equal(da, data)
|
||
|
|
||
|
def test_ticket1160(self):
|
||
|
# Regression test for ticket #1160.
|
||
|
a = dok_matrix((3,3))
|
||
|
a[0,0] = 0
|
||
|
# This assert would fail, because the above assignment would
|
||
|
# incorrectly call __set_item__ even though the value was 0.
|
||
|
assert_((0,0) not in a.keys(), "Unexpected entry (0,0) in keys")
|
||
|
|
||
|
# Slice assignments were also affected.
|
||
|
b = dok_matrix((3,3))
|
||
|
b[:,0] = 0
|
||
|
assert_(len(b.keys()) == 0, "Unexpected entries in keys")
|
||
|
|
||
|
|
||
|
TestDOK.init_class()
|
||
|
|
||
|
|
||
|
class TestLIL(sparse_test_class(minmax=False)):
|
||
|
spmatrix = lil_matrix
|
||
|
math_dtypes = [np.int_, np.float_, np.complex_]
|
||
|
|
||
|
def test_dot(self):
|
||
|
A = matrix(zeros((10,10)))
|
||
|
A[0,3] = 10
|
||
|
A[5,6] = 20
|
||
|
|
||
|
B = lil_matrix((10,10))
|
||
|
B[0,3] = 10
|
||
|
B[5,6] = 20
|
||
|
assert_array_equal(A * A.T, (B * B.T).todense())
|
||
|
assert_array_equal(A * A.H, (B * B.H).todense())
|
||
|
|
||
|
def test_scalar_mul(self):
|
||
|
x = lil_matrix((3,3))
|
||
|
x[0,0] = 2
|
||
|
|
||
|
x = x*2
|
||
|
assert_equal(x[0,0],4)
|
||
|
|
||
|
x = x*0
|
||
|
assert_equal(x[0,0],0)
|
||
|
|
||
|
def test_inplace_ops(self):
|
||
|
A = lil_matrix([[0,2,3],[4,0,6]])
|
||
|
B = lil_matrix([[0,1,0],[0,2,3]])
|
||
|
|
||
|
data = {'add': (B,A + B),
|
||
|
'sub': (B,A - B),
|
||
|
'mul': (3,A * 3)}
|
||
|
|
||
|
for op,(other,expected) in data.items():
|
||
|
result = A.copy()
|
||
|
getattr(result, '__i%s__' % op)(other)
|
||
|
|
||
|
assert_array_equal(result.todense(), expected.todense())
|
||
|
|
||
|
# Ticket 1604.
|
||
|
A = lil_matrix((1,3), dtype=np.dtype('float64'))
|
||
|
B = array([0.1,0.1,0.1])
|
||
|
A[0,:] += B
|
||
|
assert_array_equal(A[0,:].toarray().squeeze(), B)
|
||
|
|
||
|
def test_lil_iteration(self):
|
||
|
row_data = [[1,2,3],[4,5,6]]
|
||
|
B = lil_matrix(array(row_data))
|
||
|
for r,row in enumerate(B):
|
||
|
assert_array_equal(row.todense(),array(row_data[r],ndmin=2))
|
||
|
|
||
|
def test_lil_from_csr(self):
|
||
|
# Tests whether a lil_matrix can be constructed from a
|
||
|
# csr_matrix.
|
||
|
B = lil_matrix((10,10))
|
||
|
B[0,3] = 10
|
||
|
B[5,6] = 20
|
||
|
B[8,3] = 30
|
||
|
B[3,8] = 40
|
||
|
B[8,9] = 50
|
||
|
C = B.tocsr()
|
||
|
D = lil_matrix(C)
|
||
|
assert_array_equal(C.A, D.A)
|
||
|
|
||
|
def test_fancy_indexing_lil(self):
|
||
|
M = asmatrix(arange(25).reshape(5,5))
|
||
|
A = lil_matrix(M)
|
||
|
|
||
|
assert_equal(A[array([1,2,3]),2:3].todense(), M[array([1,2,3]),2:3])
|
||
|
|
||
|
def test_point_wise_multiply(self):
|
||
|
l = lil_matrix((4,3))
|
||
|
l[0,0] = 1
|
||
|
l[1,1] = 2
|
||
|
l[2,2] = 3
|
||
|
l[3,1] = 4
|
||
|
|
||
|
m = lil_matrix((4,3))
|
||
|
m[0,0] = 1
|
||
|
m[0,1] = 2
|
||
|
m[2,2] = 3
|
||
|
m[3,1] = 4
|
||
|
m[3,2] = 4
|
||
|
|
||
|
assert_array_equal(l.multiply(m).todense(),
|
||
|
m.multiply(l).todense())
|
||
|
|
||
|
assert_array_equal(l.multiply(m).todense(),
|
||
|
[[1,0,0],
|
||
|
[0,0,0],
|
||
|
[0,0,9],
|
||
|
[0,16,0]])
|
||
|
|
||
|
def test_lil_multiply_removal(self):
|
||
|
# Ticket #1427.
|
||
|
a = lil_matrix(np.ones((3,3)))
|
||
|
a *= 2.
|
||
|
a[0, :] = 0
|
||
|
|
||
|
|
||
|
TestLIL.init_class()
|
||
|
|
||
|
|
||
|
class TestCOO(sparse_test_class(getset=False,
|
||
|
slicing=False, slicing_assign=False,
|
||
|
fancy_indexing=False, fancy_assign=False)):
|
||
|
spmatrix = coo_matrix
|
||
|
math_dtypes = [np.int_, np.float_, np.complex_]
|
||
|
|
||
|
def test_constructor1(self):
|
||
|
# unsorted triplet format
|
||
|
row = array([2, 3, 1, 3, 0, 1, 3, 0, 2, 1, 2])
|
||
|
col = array([0, 1, 0, 0, 1, 1, 2, 2, 2, 2, 1])
|
||
|
data = array([6., 10., 3., 9., 1., 4.,
|
||
|
11., 2., 8., 5., 7.])
|
||
|
|
||
|
coo = coo_matrix((data,(row,col)),(4,3))
|
||
|
|
||
|
assert_array_equal(arange(12).reshape(4,3),coo.todense())
|
||
|
|
||
|
def test_constructor2(self):
|
||
|
# unsorted triplet format with duplicates (which are summed)
|
||
|
row = array([0,1,2,2,2,2,0,0,2,2])
|
||
|
col = array([0,2,0,2,1,1,1,0,0,2])
|
||
|
data = array([2,9,-4,5,7,0,-1,2,1,-5])
|
||
|
coo = coo_matrix((data,(row,col)),(3,3))
|
||
|
|
||
|
mat = matrix([[4,-1,0],[0,0,9],[-3,7,0]])
|
||
|
|
||
|
assert_array_equal(mat,coo.todense())
|
||
|
|
||
|
def test_constructor3(self):
|
||
|
# empty matrix
|
||
|
coo = coo_matrix((4,3))
|
||
|
|
||
|
assert_array_equal(coo.shape,(4,3))
|
||
|
assert_array_equal(coo.row,[])
|
||
|
assert_array_equal(coo.col,[])
|
||
|
assert_array_equal(coo.data,[])
|
||
|
assert_array_equal(coo.todense(),zeros((4,3)))
|
||
|
|
||
|
def test_constructor4(self):
|
||
|
# from dense matrix
|
||
|
mat = array([[0,1,0,0],
|
||
|
[7,0,3,0],
|
||
|
[0,4,0,0]])
|
||
|
coo = coo_matrix(mat)
|
||
|
assert_array_equal(coo.todense(),mat)
|
||
|
|
||
|
# upgrade rank 1 arrays to row matrix
|
||
|
mat = array([0,1,0,0])
|
||
|
coo = coo_matrix(mat)
|
||
|
assert_array_equal(coo.todense(),mat.reshape(1,-1))
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason='COO does not have a __getitem__')
|
||
|
def test_iterator(self):
|
||
|
pass
|
||
|
|
||
|
def test_todia_all_zeros(self):
|
||
|
zeros = [[0, 0]]
|
||
|
dia = coo_matrix(zeros).todia()
|
||
|
assert_array_equal(dia.A, zeros)
|
||
|
|
||
|
def test_sum_duplicates(self):
|
||
|
coo = coo_matrix((4,3))
|
||
|
coo.sum_duplicates()
|
||
|
coo = coo_matrix(([1,2], ([1,0], [1,0])))
|
||
|
coo.sum_duplicates()
|
||
|
assert_array_equal(coo.A, [[2,0],[0,1]])
|
||
|
coo = coo_matrix(([1,2], ([1,1], [1,1])))
|
||
|
coo.sum_duplicates()
|
||
|
assert_array_equal(coo.A, [[0,0],[0,3]])
|
||
|
assert_array_equal(coo.row, [1])
|
||
|
assert_array_equal(coo.col, [1])
|
||
|
assert_array_equal(coo.data, [3])
|
||
|
|
||
|
def test_todok_duplicates(self):
|
||
|
coo = coo_matrix(([1,1,1,1], ([0,2,2,0], [0,1,1,0])))
|
||
|
dok = coo.todok()
|
||
|
assert_array_equal(dok.A, coo.A)
|
||
|
|
||
|
def test_eliminate_zeros(self):
|
||
|
data = array([1, 0, 0, 0, 2, 0, 3, 0])
|
||
|
row = array([0, 0, 0, 1, 1, 1, 1, 1])
|
||
|
col = array([1, 2, 3, 4, 5, 6, 7, 8])
|
||
|
asp = coo_matrix((data, (row, col)), shape=(2,10))
|
||
|
bsp = asp.copy()
|
||
|
asp.eliminate_zeros()
|
||
|
assert_((asp.data != 0).all())
|
||
|
assert_array_equal(asp.A, bsp.A)
|
||
|
|
||
|
def test_reshape_copy(self):
|
||
|
arr = [[0, 10, 0, 0], [0, 0, 0, 0], [0, 20, 30, 40]]
|
||
|
new_shape = (2, 6)
|
||
|
x = coo_matrix(arr)
|
||
|
|
||
|
y = x.reshape(new_shape)
|
||
|
assert_(y.data is x.data)
|
||
|
|
||
|
y = x.reshape(new_shape, copy=False)
|
||
|
assert_(y.data is x.data)
|
||
|
|
||
|
y = x.reshape(new_shape, copy=True)
|
||
|
assert_(not np.may_share_memory(y.data, x.data))
|
||
|
|
||
|
|
||
|
TestCOO.init_class()
|
||
|
|
||
|
|
||
|
class TestDIA(sparse_test_class(getset=False, slicing=False, slicing_assign=False,
|
||
|
fancy_indexing=False, fancy_assign=False,
|
||
|
minmax=False, nnz_axis=False)):
|
||
|
spmatrix = dia_matrix
|
||
|
math_dtypes = [np.int_, np.float_, np.complex_]
|
||
|
|
||
|
def test_constructor1(self):
|
||
|
D = matrix([[1, 0, 3, 0],
|
||
|
[1, 2, 0, 4],
|
||
|
[0, 2, 3, 0],
|
||
|
[0, 0, 3, 4]])
|
||
|
data = np.array([[1,2,3,4]]).repeat(3,axis=0)
|
||
|
offsets = np.array([0,-1,2])
|
||
|
assert_equal(dia_matrix((data,offsets), shape=(4,4)).todense(), D)
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason='DIA does not have a __getitem__')
|
||
|
def test_iterator(self):
|
||
|
pass
|
||
|
|
||
|
@with_64bit_maxval_limit(3)
|
||
|
def test_setdiag_dtype(self):
|
||
|
m = dia_matrix(np.eye(3))
|
||
|
assert_equal(m.offsets.dtype, np.int32)
|
||
|
m.setdiag((3,), k=2)
|
||
|
assert_equal(m.offsets.dtype, np.int32)
|
||
|
|
||
|
m = dia_matrix(np.eye(4))
|
||
|
assert_equal(m.offsets.dtype, np.int64)
|
||
|
m.setdiag((3,), k=3)
|
||
|
assert_equal(m.offsets.dtype, np.int64)
|
||
|
|
||
|
@pytest.mark.skip(reason='DIA stores extra zeros')
|
||
|
def test_getnnz_axis(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
TestDIA.init_class()
|
||
|
|
||
|
|
||
|
class TestBSR(sparse_test_class(getset=False,
|
||
|
slicing=False, slicing_assign=False,
|
||
|
fancy_indexing=False, fancy_assign=False,
|
||
|
nnz_axis=False)):
|
||
|
spmatrix = bsr_matrix
|
||
|
math_dtypes = [np.int_, np.float_, np.complex_]
|
||
|
|
||
|
def test_constructor1(self):
|
||
|
# check native BSR format constructor
|
||
|
indptr = array([0,2,2,4])
|
||
|
indices = array([0,2,2,3])
|
||
|
data = zeros((4,2,3))
|
||
|
|
||
|
data[0] = array([[0, 1, 2],
|
||
|
[3, 0, 5]])
|
||
|
data[1] = array([[0, 2, 4],
|
||
|
[6, 0, 10]])
|
||
|
data[2] = array([[0, 4, 8],
|
||
|
[12, 0, 20]])
|
||
|
data[3] = array([[0, 5, 10],
|
||
|
[15, 0, 25]])
|
||
|
|
||
|
A = kron([[1,0,2,0],[0,0,0,0],[0,0,4,5]], [[0,1,2],[3,0,5]])
|
||
|
Asp = bsr_matrix((data,indices,indptr),shape=(6,12))
|
||
|
assert_equal(Asp.todense(),A)
|
||
|
|
||
|
# infer shape from arrays
|
||
|
Asp = bsr_matrix((data,indices,indptr))
|
||
|
assert_equal(Asp.todense(),A)
|
||
|
|
||
|
def test_constructor2(self):
|
||
|
# construct from dense
|
||
|
|
||
|
# test zero mats
|
||
|
for shape in [(1,1), (5,1), (1,10), (10,4), (3,7), (2,1)]:
|
||
|
A = zeros(shape)
|
||
|
assert_equal(bsr_matrix(A).todense(),A)
|
||
|
A = zeros((4,6))
|
||
|
assert_equal(bsr_matrix(A,blocksize=(2,2)).todense(),A)
|
||
|
assert_equal(bsr_matrix(A,blocksize=(2,3)).todense(),A)
|
||
|
|
||
|
A = kron([[1,0,2,0],[0,0,0,0],[0,0,4,5]], [[0,1,2],[3,0,5]])
|
||
|
assert_equal(bsr_matrix(A).todense(),A)
|
||
|
assert_equal(bsr_matrix(A,shape=(6,12)).todense(),A)
|
||
|
assert_equal(bsr_matrix(A,blocksize=(1,1)).todense(),A)
|
||
|
assert_equal(bsr_matrix(A,blocksize=(2,3)).todense(),A)
|
||
|
assert_equal(bsr_matrix(A,blocksize=(2,6)).todense(),A)
|
||
|
assert_equal(bsr_matrix(A,blocksize=(2,12)).todense(),A)
|
||
|
assert_equal(bsr_matrix(A,blocksize=(3,12)).todense(),A)
|
||
|
assert_equal(bsr_matrix(A,blocksize=(6,12)).todense(),A)
|
||
|
|
||
|
A = kron([[1,0,2,0],[0,1,0,0],[0,0,0,0]], [[0,1,2],[3,0,5]])
|
||
|
assert_equal(bsr_matrix(A,blocksize=(2,3)).todense(),A)
|
||
|
|
||
|
def test_constructor3(self):
|
||
|
# construct from coo-like (data,(row,col)) format
|
||
|
arg = ([1,2,3], ([0,1,1], [0,0,1]))
|
||
|
A = array([[1,0],[2,3]])
|
||
|
assert_equal(bsr_matrix(arg, blocksize=(2,2)).todense(), A)
|
||
|
|
||
|
def test_constructor4(self):
|
||
|
# regression test for gh-6292: bsr_matrix((data, indices, indptr)) was
|
||
|
# trying to compare an int to a None
|
||
|
n = 8
|
||
|
data = np.ones((n, n, 1), dtype=np.int8)
|
||
|
indptr = np.array([0, n], dtype=np.int32)
|
||
|
indices = np.arange(n, dtype=np.int32)
|
||
|
bsr_matrix((data, indices, indptr), blocksize=(n, 1), copy=False)
|
||
|
|
||
|
def test_eliminate_zeros(self):
|
||
|
data = kron([1, 0, 0, 0, 2, 0, 3, 0], [[1,1],[1,1]]).T
|
||
|
data = data.reshape(-1,2,2)
|
||
|
indices = array([1, 2, 3, 4, 5, 6, 7, 8])
|
||
|
indptr = array([0, 3, 8])
|
||
|
asp = bsr_matrix((data, indices, indptr), shape=(4,20))
|
||
|
bsp = asp.copy()
|
||
|
asp.eliminate_zeros()
|
||
|
assert_array_equal(asp.nnz, 3*4)
|
||
|
assert_array_equal(asp.todense(),bsp.todense())
|
||
|
|
||
|
def test_bsr_matvec(self):
|
||
|
A = bsr_matrix(arange(2*3*4*5).reshape(2*4,3*5), blocksize=(4,5))
|
||
|
x = arange(A.shape[1]).reshape(-1,1)
|
||
|
assert_equal(A*x, A.todense()*x)
|
||
|
|
||
|
def test_bsr_matvecs(self):
|
||
|
A = bsr_matrix(arange(2*3*4*5).reshape(2*4,3*5), blocksize=(4,5))
|
||
|
x = arange(A.shape[1]*6).reshape(-1,6)
|
||
|
assert_equal(A*x, A.todense()*x)
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason='BSR does not have a __getitem__')
|
||
|
def test_iterator(self):
|
||
|
pass
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason='BSR does not have a __setitem__')
|
||
|
def test_setdiag(self):
|
||
|
pass
|
||
|
|
||
|
def test_resize_blocked(self):
|
||
|
# test resize() with non-(1,1) blocksize
|
||
|
D = np.array([[1, 0, 3, 4],
|
||
|
[2, 0, 0, 0],
|
||
|
[3, 0, 0, 0]])
|
||
|
S = self.spmatrix(D, blocksize=(1, 2))
|
||
|
assert_(S.resize((3, 2)) is None)
|
||
|
assert_array_equal(S.A, [[1, 0],
|
||
|
[2, 0],
|
||
|
[3, 0]])
|
||
|
S.resize((2, 2))
|
||
|
assert_array_equal(S.A, [[1, 0],
|
||
|
[2, 0]])
|
||
|
S.resize((3, 2))
|
||
|
assert_array_equal(S.A, [[1, 0],
|
||
|
[2, 0],
|
||
|
[0, 0]])
|
||
|
S.resize((3, 4))
|
||
|
assert_array_equal(S.A, [[1, 0, 0, 0],
|
||
|
[2, 0, 0, 0],
|
||
|
[0, 0, 0, 0]])
|
||
|
assert_raises(ValueError, S.resize, (2, 3))
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason='BSR does not have a __setitem__')
|
||
|
def test_setdiag_comprehensive(self):
|
||
|
pass
|
||
|
|
||
|
def test_scalar_idx_dtype(self):
|
||
|
# Check that index dtype takes into account all parameters
|
||
|
# passed to sparsetools, including the scalar ones
|
||
|
indptr = np.zeros(2, dtype=np.int32)
|
||
|
indices = np.zeros(0, dtype=np.int32)
|
||
|
vals = np.zeros((0, 1, 1))
|
||
|
a = bsr_matrix((vals, indices, indptr), shape=(1, 2**31-1))
|
||
|
b = bsr_matrix((vals, indices, indptr), shape=(1, 2**31))
|
||
|
c = bsr_matrix((1, 2**31-1))
|
||
|
d = bsr_matrix((1, 2**31))
|
||
|
assert_equal(a.indptr.dtype, np.int32)
|
||
|
assert_equal(b.indptr.dtype, np.int64)
|
||
|
assert_equal(c.indptr.dtype, np.int32)
|
||
|
assert_equal(d.indptr.dtype, np.int64)
|
||
|
|
||
|
try:
|
||
|
vals2 = np.zeros((0, 1, 2**31-1))
|
||
|
vals3 = np.zeros((0, 1, 2**31))
|
||
|
e = bsr_matrix((vals2, indices, indptr), shape=(1, 2**31-1))
|
||
|
f = bsr_matrix((vals3, indices, indptr), shape=(1, 2**31))
|
||
|
assert_equal(e.indptr.dtype, np.int32)
|
||
|
assert_equal(f.indptr.dtype, np.int64)
|
||
|
except (MemoryError, ValueError):
|
||
|
# May fail on 32-bit Python
|
||
|
e = 0
|
||
|
f = 0
|
||
|
|
||
|
# These shouldn't fail
|
||
|
for x in [a, b, c, d, e, f]:
|
||
|
x + x
|
||
|
|
||
|
|
||
|
TestBSR.init_class()
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------------------------
|
||
|
# Tests for non-canonical representations (with duplicates, unsorted indices)
|
||
|
#------------------------------------------------------------------------------
|
||
|
|
||
|
def _same_sum_duplicate(data, *inds, **kwargs):
|
||
|
"""Duplicates entries to produce the same matrix"""
|
||
|
indptr = kwargs.pop('indptr', None)
|
||
|
if np.issubdtype(data.dtype, np.bool_) or \
|
||
|
np.issubdtype(data.dtype, np.unsignedinteger):
|
||
|
if indptr is None:
|
||
|
return (data,) + inds
|
||
|
else:
|
||
|
return (data,) + inds + (indptr,)
|
||
|
|
||
|
zeros_pos = (data == 0).nonzero()
|
||
|
|
||
|
# duplicate data
|
||
|
data = data.repeat(2, axis=0)
|
||
|
data[::2] -= 1
|
||
|
data[1::2] = 1
|
||
|
|
||
|
# don't spoil all explicit zeros
|
||
|
if zeros_pos[0].size > 0:
|
||
|
pos = tuple(p[0] for p in zeros_pos)
|
||
|
pos1 = (2*pos[0],) + pos[1:]
|
||
|
pos2 = (2*pos[0]+1,) + pos[1:]
|
||
|
data[pos1] = 0
|
||
|
data[pos2] = 0
|
||
|
|
||
|
inds = tuple(indices.repeat(2) for indices in inds)
|
||
|
|
||
|
if indptr is None:
|
||
|
return (data,) + inds
|
||
|
else:
|
||
|
return (data,) + inds + (indptr * 2,)
|
||
|
|
||
|
|
||
|
class _NonCanonicalMixin(object):
|
||
|
def spmatrix(self, D, sorted_indices=False, **kwargs):
|
||
|
"""Replace D with a non-canonical equivalent: containing
|
||
|
duplicate elements and explicit zeros"""
|
||
|
construct = super(_NonCanonicalMixin, self).spmatrix
|
||
|
M = construct(D, **kwargs)
|
||
|
|
||
|
zero_pos = (M.A == 0).nonzero()
|
||
|
has_zeros = (zero_pos[0].size > 0)
|
||
|
if has_zeros:
|
||
|
k = zero_pos[0].size//2
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
M = self._insert_explicit_zero(M, zero_pos[0][k], zero_pos[1][k])
|
||
|
|
||
|
arg1 = self._arg1_for_noncanonical(M, sorted_indices)
|
||
|
if 'shape' not in kwargs:
|
||
|
kwargs['shape'] = M.shape
|
||
|
NC = construct(arg1, **kwargs)
|
||
|
|
||
|
# check that result is valid
|
||
|
if NC.dtype in [np.float32, np.complex64]:
|
||
|
# For single-precision floats, the differences between M and NC
|
||
|
# that are introduced by the extra operations involved in the
|
||
|
# construction of NC necessitate a more lenient tolerance level
|
||
|
# than the default.
|
||
|
rtol = 1e-05
|
||
|
else:
|
||
|
rtol = 1e-07
|
||
|
assert_allclose(NC.A, M.A, rtol=rtol)
|
||
|
|
||
|
# check that at least one explicit zero
|
||
|
if has_zeros:
|
||
|
assert_((NC.data == 0).any())
|
||
|
# TODO check that NC has duplicates (which are not explicit zeros)
|
||
|
|
||
|
return NC
|
||
|
|
||
|
@pytest.mark.skip(reason='bool(matrix) counts explicit zeros')
|
||
|
def test_bool(self):
|
||
|
pass
|
||
|
|
||
|
@pytest.mark.skip(reason='getnnz-axis counts explicit zeros')
|
||
|
def test_getnnz_axis(self):
|
||
|
pass
|
||
|
|
||
|
@pytest.mark.skip(reason='nnz counts explicit zeros')
|
||
|
def test_empty(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class _NonCanonicalCompressedMixin(_NonCanonicalMixin):
|
||
|
def _arg1_for_noncanonical(self, M, sorted_indices=False):
|
||
|
"""Return non-canonical constructor arg1 equivalent to M"""
|
||
|
data, indices, indptr = _same_sum_duplicate(M.data, M.indices,
|
||
|
indptr=M.indptr)
|
||
|
if not sorted_indices:
|
||
|
for start, stop in izip(indptr, indptr[1:]):
|
||
|
indices[start:stop] = indices[start:stop][::-1].copy()
|
||
|
data[start:stop] = data[start:stop][::-1].copy()
|
||
|
return data, indices, indptr
|
||
|
|
||
|
def _insert_explicit_zero(self, M, i, j):
|
||
|
M[i,j] = 0
|
||
|
return M
|
||
|
|
||
|
|
||
|
class _NonCanonicalCSMixin(_NonCanonicalCompressedMixin):
|
||
|
def test_getelement(self):
|
||
|
def check(dtype, sorted_indices):
|
||
|
D = array([[1,0,0],
|
||
|
[4,3,0],
|
||
|
[0,2,0],
|
||
|
[0,0,0]], dtype=dtype)
|
||
|
A = self.spmatrix(D, sorted_indices=sorted_indices)
|
||
|
|
||
|
M,N = D.shape
|
||
|
|
||
|
for i in range(-M, M):
|
||
|
for j in range(-N, N):
|
||
|
assert_equal(A[i,j], D[i,j])
|
||
|
|
||
|
for ij in [(0,3),(-1,3),(4,0),(4,3),(4,-1), (1, 2, 3)]:
|
||
|
assert_raises((IndexError, TypeError), A.__getitem__, ij)
|
||
|
|
||
|
for dtype in supported_dtypes:
|
||
|
for sorted_indices in [False, True]:
|
||
|
check(np.dtype(dtype), sorted_indices)
|
||
|
|
||
|
def test_setitem_sparse(self):
|
||
|
D = np.eye(3)
|
||
|
A = self.spmatrix(D)
|
||
|
B = self.spmatrix([[1,2,3]])
|
||
|
|
||
|
D[1,:] = B.toarray()
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
A[1,:] = B
|
||
|
assert_array_equal(A.toarray(), D)
|
||
|
|
||
|
D[:,2] = B.toarray().ravel()
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(SparseEfficiencyWarning,
|
||
|
"Changing the sparsity structure of a cs[cr]_matrix is expensive")
|
||
|
A[:,2] = B.T
|
||
|
assert_array_equal(A.toarray(), D)
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason='inverse broken with non-canonical matrix')
|
||
|
def test_inv(self):
|
||
|
pass
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason='solve broken with non-canonical matrix')
|
||
|
def test_solve(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestCSRNonCanonical(_NonCanonicalCSMixin, TestCSR):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestCSCNonCanonical(_NonCanonicalCSMixin, TestCSC):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestBSRNonCanonical(_NonCanonicalCompressedMixin, TestBSR):
|
||
|
def _insert_explicit_zero(self, M, i, j):
|
||
|
x = M.tocsr()
|
||
|
x[i,j] = 0
|
||
|
return x.tobsr(blocksize=M.blocksize)
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason='diagonal broken with non-canonical BSR')
|
||
|
def test_diagonal(self):
|
||
|
pass
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason='expm broken with non-canonical BSR')
|
||
|
def test_expm(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestCOONonCanonical(_NonCanonicalMixin, TestCOO):
|
||
|
def _arg1_for_noncanonical(self, M, sorted_indices=None):
|
||
|
"""Return non-canonical constructor arg1 equivalent to M"""
|
||
|
data, row, col = _same_sum_duplicate(M.data, M.row, M.col)
|
||
|
return data, (row, col)
|
||
|
|
||
|
def _insert_explicit_zero(self, M, i, j):
|
||
|
M.data = np.r_[M.data.dtype.type(0), M.data]
|
||
|
M.row = np.r_[M.row.dtype.type(i), M.row]
|
||
|
M.col = np.r_[M.col.dtype.type(j), M.col]
|
||
|
return M
|
||
|
|
||
|
def test_setdiag_noncanonical(self):
|
||
|
m = self.spmatrix(np.eye(3))
|
||
|
m.sum_duplicates()
|
||
|
m.setdiag([3, 2], k=1)
|
||
|
m.sum_duplicates()
|
||
|
assert_(np.all(np.diff(m.col) >= 0))
|
||
|
|
||
|
|
||
|
def cases_64bit():
|
||
|
TEST_CLASSES = [TestBSR, TestCOO, TestCSC, TestCSR, TestDIA,
|
||
|
# lil/dok->other conversion operations have get_index_dtype
|
||
|
TestDOK, TestLIL
|
||
|
]
|
||
|
|
||
|
# The following features are missing, so skip the tests:
|
||
|
SKIP_TESTS = {
|
||
|
'test_expm': 'expm for 64-bit indices not available',
|
||
|
'test_inv': 'linsolve for 64-bit indices not available',
|
||
|
'test_solve': 'linsolve for 64-bit indices not available',
|
||
|
'test_scalar_idx_dtype': 'test implemented in base class',
|
||
|
}
|
||
|
|
||
|
for cls in TEST_CLASSES:
|
||
|
for method_name in sorted(dir(cls)):
|
||
|
method = getattr(cls, method_name)
|
||
|
if (method_name.startswith('test_') and
|
||
|
not getattr(method, 'slow', False)):
|
||
|
marks = []
|
||
|
|
||
|
msg = SKIP_TESTS.get(method_name)
|
||
|
if bool(msg):
|
||
|
marks += [pytest.mark.skip(reason=msg)]
|
||
|
for mname in ['skipif', 'skip', 'xfail', 'xslow']:
|
||
|
if hasattr(method, mname):
|
||
|
marks += [getattr(method, mname)]
|
||
|
yield pytest.param(cls, method_name, marks=marks)
|
||
|
|
||
|
|
||
|
class Test64Bit(object):
|
||
|
MAT_CLASSES = [bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dia_matrix]
|
||
|
|
||
|
def _create_some_matrix(self, mat_cls, m, n):
|
||
|
return mat_cls(np.random.rand(m, n))
|
||
|
|
||
|
def _compare_index_dtype(self, m, dtype):
|
||
|
dtype = np.dtype(dtype)
|
||
|
if isinstance(m, csc_matrix) or isinstance(m, csr_matrix) \
|
||
|
or isinstance(m, bsr_matrix):
|
||
|
return (m.indices.dtype == dtype) and (m.indptr.dtype == dtype)
|
||
|
elif isinstance(m, coo_matrix):
|
||
|
return (m.row.dtype == dtype) and (m.col.dtype == dtype)
|
||
|
elif isinstance(m, dia_matrix):
|
||
|
return (m.offsets.dtype == dtype)
|
||
|
else:
|
||
|
raise ValueError("matrix %r has no integer indices" % (m,))
|
||
|
|
||
|
def test_decorator_maxval_limit(self):
|
||
|
# Test that the with_64bit_maxval_limit decorator works
|
||
|
|
||
|
@with_64bit_maxval_limit(maxval_limit=10)
|
||
|
def check(mat_cls):
|
||
|
m = mat_cls(np.random.rand(10, 1))
|
||
|
assert_(self._compare_index_dtype(m, np.int32))
|
||
|
m = mat_cls(np.random.rand(11, 1))
|
||
|
assert_(self._compare_index_dtype(m, np.int64))
|
||
|
|
||
|
for mat_cls in self.MAT_CLASSES:
|
||
|
check(mat_cls)
|
||
|
|
||
|
def test_decorator_maxval_random(self):
|
||
|
# Test that the with_64bit_maxval_limit decorator works (2)
|
||
|
|
||
|
@with_64bit_maxval_limit(random=True)
|
||
|
def check(mat_cls):
|
||
|
seen_32 = False
|
||
|
seen_64 = False
|
||
|
for k in range(100):
|
||
|
m = self._create_some_matrix(mat_cls, 9, 9)
|
||
|
seen_32 = seen_32 or self._compare_index_dtype(m, np.int32)
|
||
|
seen_64 = seen_64 or self._compare_index_dtype(m, np.int64)
|
||
|
if seen_32 and seen_64:
|
||
|
break
|
||
|
else:
|
||
|
raise AssertionError("both 32 and 64 bit indices not seen")
|
||
|
|
||
|
for mat_cls in self.MAT_CLASSES:
|
||
|
check(mat_cls)
|
||
|
|
||
|
def _check_resiliency(self, cls, method_name, **kw):
|
||
|
# Resiliency test, to check that sparse matrices deal reasonably
|
||
|
# with varying index data types.
|
||
|
|
||
|
@with_64bit_maxval_limit(**kw)
|
||
|
def check(cls, method_name):
|
||
|
instance = cls()
|
||
|
if hasattr(instance, 'setup_method'):
|
||
|
instance.setup_method()
|
||
|
try:
|
||
|
getattr(instance, method_name)()
|
||
|
finally:
|
||
|
if hasattr(instance, 'teardown_method'):
|
||
|
instance.teardown_method()
|
||
|
|
||
|
check(cls, method_name)
|
||
|
|
||
|
@pytest.mark.parametrize('cls,method_name', cases_64bit())
|
||
|
def test_resiliency_limit_10(self, cls, method_name):
|
||
|
self._check_resiliency(cls, method_name, maxval_limit=10)
|
||
|
|
||
|
@pytest.mark.parametrize('cls,method_name', cases_64bit())
|
||
|
def test_resiliency_random(self, cls, method_name):
|
||
|
# bsr_matrix.eliminate_zeros relies on csr_matrix constructor
|
||
|
# not making copies of index arrays --- this is not
|
||
|
# necessarily true when we pick the index data type randomly
|
||
|
self._check_resiliency(cls, method_name, random=True)
|
||
|
|
||
|
@pytest.mark.parametrize('cls,method_name', cases_64bit())
|
||
|
def test_resiliency_all_32(self, cls, method_name):
|
||
|
self._check_resiliency(cls, method_name, fixed_dtype=np.int32)
|
||
|
|
||
|
@pytest.mark.parametrize('cls,method_name', cases_64bit())
|
||
|
def test_resiliency_all_64(self, cls, method_name):
|
||
|
self._check_resiliency(cls, method_name, fixed_dtype=np.int64)
|
||
|
|
||
|
@pytest.mark.parametrize('cls,method_name', cases_64bit())
|
||
|
def test_no_64(self, cls, method_name):
|
||
|
self._check_resiliency(cls, method_name, assert_32bit=True)
|
||
|
|
||
|
def test_downcast_intp(self):
|
||
|
# Check that bincount and ufunc.reduceat intp downcasts are
|
||
|
# dealt with. The point here is to trigger points in the code
|
||
|
# that can fail on 32-bit systems when using 64-bit indices,
|
||
|
# due to use of functions that only work with intp-size
|
||
|
# indices.
|
||
|
|
||
|
@with_64bit_maxval_limit(fixed_dtype=np.int64,
|
||
|
downcast_maxval=1)
|
||
|
def check_limited():
|
||
|
# These involve indices larger than `downcast_maxval`
|
||
|
a = csc_matrix([[1, 2], [3, 4], [5, 6]])
|
||
|
assert_raises(AssertionError, a.getnnz, axis=1)
|
||
|
assert_raises(AssertionError, a.sum, axis=0)
|
||
|
|
||
|
a = csr_matrix([[1, 2, 3], [3, 4, 6]])
|
||
|
assert_raises(AssertionError, a.getnnz, axis=0)
|
||
|
|
||
|
a = coo_matrix([[1, 2, 3], [3, 4, 5]])
|
||
|
assert_raises(AssertionError, a.getnnz, axis=0)
|
||
|
|
||
|
@with_64bit_maxval_limit(fixed_dtype=np.int64)
|
||
|
def check_unlimited():
|
||
|
# These involve indices larger than `downcast_maxval`
|
||
|
a = csc_matrix([[1, 2], [3, 4], [5, 6]])
|
||
|
a.getnnz(axis=1)
|
||
|
a.sum(axis=0)
|
||
|
|
||
|
a = csr_matrix([[1, 2, 3], [3, 4, 6]])
|
||
|
a.getnnz(axis=0)
|
||
|
|
||
|
a = coo_matrix([[1, 2, 3], [3, 4, 5]])
|
||
|
a.getnnz(axis=0)
|
||
|
|
||
|
check_limited()
|
||
|
check_unlimited()
|
||
|
|