601 lines
21 KiB
Python
601 lines
21 KiB
Python
|
# Author: Jeffrey Armstrong <jeff@approximatrix.com>
|
||
|
# April 4, 2011
|
||
|
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import (assert_equal,
|
||
|
assert_array_almost_equal, assert_array_equal,
|
||
|
assert_allclose, assert_, assert_almost_equal)
|
||
|
from pytest import raises as assert_raises
|
||
|
from scipy._lib._numpy_compat import suppress_warnings
|
||
|
from scipy.signal import (dlsim, dstep, dimpulse, tf2zpk, lti, dlti,
|
||
|
StateSpace, TransferFunction, ZerosPolesGain,
|
||
|
dfreqresp, dbode, BadCoefficients)
|
||
|
|
||
|
|
||
|
class TestDLTI(object):
|
||
|
|
||
|
def test_dlsim(self):
|
||
|
|
||
|
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
|
||
|
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
|
||
|
c = np.asarray([[0.1, 0.3]])
|
||
|
d = np.asarray([[0.0, -0.1, 0.0]])
|
||
|
dt = 0.5
|
||
|
|
||
|
# Create an input matrix with inputs down the columns (3 cols) and its
|
||
|
# respective time input vector
|
||
|
u = np.hstack((np.asmatrix(np.linspace(0, 4.0, num=5)).transpose(),
|
||
|
0.01 * np.ones((5, 1)),
|
||
|
-0.002 * np.ones((5, 1))))
|
||
|
t_in = np.linspace(0, 2.0, num=5)
|
||
|
|
||
|
# Define the known result
|
||
|
yout_truth = np.asmatrix([-0.001,
|
||
|
-0.00073,
|
||
|
0.039446,
|
||
|
0.0915387,
|
||
|
0.13195948]).transpose()
|
||
|
xout_truth = np.asarray([[0, 0],
|
||
|
[0.0012, 0.0005],
|
||
|
[0.40233, 0.00071],
|
||
|
[1.163368, -0.079327],
|
||
|
[2.2402985, -0.3035679]])
|
||
|
|
||
|
tout, yout, xout = dlsim((a, b, c, d, dt), u, t_in)
|
||
|
|
||
|
assert_array_almost_equal(yout_truth, yout)
|
||
|
assert_array_almost_equal(xout_truth, xout)
|
||
|
assert_array_almost_equal(t_in, tout)
|
||
|
|
||
|
# Make sure input with single-dimension doesn't raise error
|
||
|
dlsim((1, 2, 3), 4)
|
||
|
|
||
|
# Interpolated control - inputs should have different time steps
|
||
|
# than the discrete model uses internally
|
||
|
u_sparse = u[[0, 4], :]
|
||
|
t_sparse = np.asarray([0.0, 2.0])
|
||
|
|
||
|
tout, yout, xout = dlsim((a, b, c, d, dt), u_sparse, t_sparse)
|
||
|
|
||
|
assert_array_almost_equal(yout_truth, yout)
|
||
|
assert_array_almost_equal(xout_truth, xout)
|
||
|
assert_equal(len(tout), yout.shape[0])
|
||
|
|
||
|
# Transfer functions (assume dt = 0.5)
|
||
|
num = np.asarray([1.0, -0.1])
|
||
|
den = np.asarray([0.3, 1.0, 0.2])
|
||
|
yout_truth = np.asmatrix([0.0,
|
||
|
0.0,
|
||
|
3.33333333333333,
|
||
|
-4.77777777777778,
|
||
|
23.0370370370370]).transpose()
|
||
|
|
||
|
# Assume use of the first column of the control input built earlier
|
||
|
tout, yout = dlsim((num, den, 0.5), u[:, 0], t_in)
|
||
|
|
||
|
assert_array_almost_equal(yout, yout_truth)
|
||
|
assert_array_almost_equal(t_in, tout)
|
||
|
|
||
|
# Retest the same with a 1-D input vector
|
||
|
uflat = np.asarray(u[:, 0])
|
||
|
uflat = uflat.reshape((5,))
|
||
|
tout, yout = dlsim((num, den, 0.5), uflat, t_in)
|
||
|
|
||
|
assert_array_almost_equal(yout, yout_truth)
|
||
|
assert_array_almost_equal(t_in, tout)
|
||
|
|
||
|
# zeros-poles-gain representation
|
||
|
zd = np.array([0.5, -0.5])
|
||
|
pd = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
|
||
|
k = 1.0
|
||
|
yout_truth = np.asmatrix([0.0, 1.0, 2.0, 2.25, 2.5]).transpose()
|
||
|
|
||
|
tout, yout = dlsim((zd, pd, k, 0.5), u[:, 0], t_in)
|
||
|
|
||
|
assert_array_almost_equal(yout, yout_truth)
|
||
|
assert_array_almost_equal(t_in, tout)
|
||
|
|
||
|
# Raise an error for continuous-time systems
|
||
|
system = lti([1], [1, 1])
|
||
|
assert_raises(AttributeError, dlsim, system, u)
|
||
|
|
||
|
def test_dstep(self):
|
||
|
|
||
|
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
|
||
|
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
|
||
|
c = np.asarray([[0.1, 0.3]])
|
||
|
d = np.asarray([[0.0, -0.1, 0.0]])
|
||
|
dt = 0.5
|
||
|
|
||
|
# Because b.shape[1] == 3, dstep should result in a tuple of three
|
||
|
# result vectors
|
||
|
yout_step_truth = (np.asarray([0.0, 0.04, 0.052, 0.0404, 0.00956,
|
||
|
-0.036324, -0.093318, -0.15782348,
|
||
|
-0.226628324, -0.2969374948]),
|
||
|
np.asarray([-0.1, -0.075, -0.058, -0.04815,
|
||
|
-0.04453, -0.0461895, -0.0521812,
|
||
|
-0.061588875, -0.073549579,
|
||
|
-0.08727047595]),
|
||
|
np.asarray([0.0, -0.01, -0.013, -0.0101, -0.00239,
|
||
|
0.009081, 0.0233295, 0.03945587,
|
||
|
0.056657081, 0.0742343737]))
|
||
|
|
||
|
tout, yout = dstep((a, b, c, d, dt), n=10)
|
||
|
|
||
|
assert_equal(len(yout), 3)
|
||
|
|
||
|
for i in range(0, len(yout)):
|
||
|
assert_equal(yout[i].shape[0], 10)
|
||
|
assert_array_almost_equal(yout[i].flatten(), yout_step_truth[i])
|
||
|
|
||
|
# Check that the other two inputs (tf, zpk) will work as well
|
||
|
tfin = ([1.0], [1.0, 1.0], 0.5)
|
||
|
yout_tfstep = np.asarray([0.0, 1.0, 0.0])
|
||
|
tout, yout = dstep(tfin, n=3)
|
||
|
assert_equal(len(yout), 1)
|
||
|
assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
|
||
|
|
||
|
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
|
||
|
tout, yout = dstep(zpkin, n=3)
|
||
|
assert_equal(len(yout), 1)
|
||
|
assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
|
||
|
|
||
|
# Raise an error for continuous-time systems
|
||
|
system = lti([1], [1, 1])
|
||
|
assert_raises(AttributeError, dstep, system)
|
||
|
|
||
|
def test_dimpulse(self):
|
||
|
|
||
|
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
|
||
|
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
|
||
|
c = np.asarray([[0.1, 0.3]])
|
||
|
d = np.asarray([[0.0, -0.1, 0.0]])
|
||
|
dt = 0.5
|
||
|
|
||
|
# Because b.shape[1] == 3, dimpulse should result in a tuple of three
|
||
|
# result vectors
|
||
|
yout_imp_truth = (np.asarray([0.0, 0.04, 0.012, -0.0116, -0.03084,
|
||
|
-0.045884, -0.056994, -0.06450548,
|
||
|
-0.068804844, -0.0703091708]),
|
||
|
np.asarray([-0.1, 0.025, 0.017, 0.00985, 0.00362,
|
||
|
-0.0016595, -0.0059917, -0.009407675,
|
||
|
-0.011960704, -0.01372089695]),
|
||
|
np.asarray([0.0, -0.01, -0.003, 0.0029, 0.00771,
|
||
|
0.011471, 0.0142485, 0.01612637,
|
||
|
0.017201211, 0.0175772927]))
|
||
|
|
||
|
tout, yout = dimpulse((a, b, c, d, dt), n=10)
|
||
|
|
||
|
assert_equal(len(yout), 3)
|
||
|
|
||
|
for i in range(0, len(yout)):
|
||
|
assert_equal(yout[i].shape[0], 10)
|
||
|
assert_array_almost_equal(yout[i].flatten(), yout_imp_truth[i])
|
||
|
|
||
|
# Check that the other two inputs (tf, zpk) will work as well
|
||
|
tfin = ([1.0], [1.0, 1.0], 0.5)
|
||
|
yout_tfimpulse = np.asarray([0.0, 1.0, -1.0])
|
||
|
tout, yout = dimpulse(tfin, n=3)
|
||
|
assert_equal(len(yout), 1)
|
||
|
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
|
||
|
|
||
|
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
|
||
|
tout, yout = dimpulse(zpkin, n=3)
|
||
|
assert_equal(len(yout), 1)
|
||
|
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
|
||
|
|
||
|
# Raise an error for continuous-time systems
|
||
|
system = lti([1], [1, 1])
|
||
|
assert_raises(AttributeError, dimpulse, system)
|
||
|
|
||
|
def test_dlsim_trivial(self):
|
||
|
a = np.array([[0.0]])
|
||
|
b = np.array([[0.0]])
|
||
|
c = np.array([[0.0]])
|
||
|
d = np.array([[0.0]])
|
||
|
n = 5
|
||
|
u = np.zeros(n).reshape(-1, 1)
|
||
|
tout, yout, xout = dlsim((a, b, c, d, 1), u)
|
||
|
assert_array_equal(tout, np.arange(float(n)))
|
||
|
assert_array_equal(yout, np.zeros((n, 1)))
|
||
|
assert_array_equal(xout, np.zeros((n, 1)))
|
||
|
|
||
|
def test_dlsim_simple1d(self):
|
||
|
a = np.array([[0.5]])
|
||
|
b = np.array([[0.0]])
|
||
|
c = np.array([[1.0]])
|
||
|
d = np.array([[0.0]])
|
||
|
n = 5
|
||
|
u = np.zeros(n).reshape(-1, 1)
|
||
|
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
|
||
|
assert_array_equal(tout, np.arange(float(n)))
|
||
|
expected = (0.5 ** np.arange(float(n))).reshape(-1, 1)
|
||
|
assert_array_equal(yout, expected)
|
||
|
assert_array_equal(xout, expected)
|
||
|
|
||
|
def test_dlsim_simple2d(self):
|
||
|
lambda1 = 0.5
|
||
|
lambda2 = 0.25
|
||
|
a = np.array([[lambda1, 0.0],
|
||
|
[0.0, lambda2]])
|
||
|
b = np.array([[0.0],
|
||
|
[0.0]])
|
||
|
c = np.array([[1.0, 0.0],
|
||
|
[0.0, 1.0]])
|
||
|
d = np.array([[0.0],
|
||
|
[0.0]])
|
||
|
n = 5
|
||
|
u = np.zeros(n).reshape(-1, 1)
|
||
|
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
|
||
|
assert_array_equal(tout, np.arange(float(n)))
|
||
|
# The analytical solution:
|
||
|
expected = (np.array([lambda1, lambda2]) **
|
||
|
np.arange(float(n)).reshape(-1, 1))
|
||
|
assert_array_equal(yout, expected)
|
||
|
assert_array_equal(xout, expected)
|
||
|
|
||
|
def test_more_step_and_impulse(self):
|
||
|
lambda1 = 0.5
|
||
|
lambda2 = 0.75
|
||
|
a = np.array([[lambda1, 0.0],
|
||
|
[0.0, lambda2]])
|
||
|
b = np.array([[1.0, 0.0],
|
||
|
[0.0, 1.0]])
|
||
|
c = np.array([[1.0, 1.0]])
|
||
|
d = np.array([[0.0, 0.0]])
|
||
|
|
||
|
n = 10
|
||
|
|
||
|
# Check a step response.
|
||
|
ts, ys = dstep((a, b, c, d, 1), n=n)
|
||
|
|
||
|
# Create the exact step response.
|
||
|
stp0 = (1.0 / (1 - lambda1)) * (1.0 - lambda1 ** np.arange(n))
|
||
|
stp1 = (1.0 / (1 - lambda2)) * (1.0 - lambda2 ** np.arange(n))
|
||
|
|
||
|
assert_allclose(ys[0][:, 0], stp0)
|
||
|
assert_allclose(ys[1][:, 0], stp1)
|
||
|
|
||
|
# Check an impulse response with an initial condition.
|
||
|
x0 = np.array([1.0, 1.0])
|
||
|
ti, yi = dimpulse((a, b, c, d, 1), n=n, x0=x0)
|
||
|
|
||
|
# Create the exact impulse response.
|
||
|
imp = (np.array([lambda1, lambda2]) **
|
||
|
np.arange(-1, n + 1).reshape(-1, 1))
|
||
|
imp[0, :] = 0.0
|
||
|
# Analytical solution to impulse response
|
||
|
y0 = imp[:n, 0] + np.dot(imp[1:n + 1, :], x0)
|
||
|
y1 = imp[:n, 1] + np.dot(imp[1:n + 1, :], x0)
|
||
|
|
||
|
assert_allclose(yi[0][:, 0], y0)
|
||
|
assert_allclose(yi[1][:, 0], y1)
|
||
|
|
||
|
# Check that dt=0.1, n=3 gives 3 time values.
|
||
|
system = ([1.0], [1.0, -0.5], 0.1)
|
||
|
t, (y,) = dstep(system, n=3)
|
||
|
assert_allclose(t, [0, 0.1, 0.2])
|
||
|
assert_array_equal(y.T, [[0, 1.0, 1.5]])
|
||
|
t, (y,) = dimpulse(system, n=3)
|
||
|
assert_allclose(t, [0, 0.1, 0.2])
|
||
|
assert_array_equal(y.T, [[0, 1, 0.5]])
|
||
|
|
||
|
|
||
|
class TestDlti(object):
|
||
|
def test_dlti_instantiation(self):
|
||
|
# Test that lti can be instantiated.
|
||
|
|
||
|
dt = 0.05
|
||
|
# TransferFunction
|
||
|
s = dlti([1], [-1], dt=dt)
|
||
|
assert_(isinstance(s, TransferFunction))
|
||
|
assert_(isinstance(s, dlti))
|
||
|
assert_(not isinstance(s, lti))
|
||
|
assert_equal(s.dt, dt)
|
||
|
|
||
|
# ZerosPolesGain
|
||
|
s = dlti(np.array([]), np.array([-1]), 1, dt=dt)
|
||
|
assert_(isinstance(s, ZerosPolesGain))
|
||
|
assert_(isinstance(s, dlti))
|
||
|
assert_(not isinstance(s, lti))
|
||
|
assert_equal(s.dt, dt)
|
||
|
|
||
|
# StateSpace
|
||
|
s = dlti([1], [-1], 1, 3, dt=dt)
|
||
|
assert_(isinstance(s, StateSpace))
|
||
|
assert_(isinstance(s, dlti))
|
||
|
assert_(not isinstance(s, lti))
|
||
|
assert_equal(s.dt, dt)
|
||
|
|
||
|
# Number of inputs
|
||
|
assert_raises(ValueError, dlti, 1)
|
||
|
assert_raises(ValueError, dlti, 1, 1, 1, 1, 1)
|
||
|
|
||
|
|
||
|
class TestStateSpaceDisc(object):
|
||
|
def test_initialization(self):
|
||
|
# Check that all initializations work
|
||
|
dt = 0.05
|
||
|
s = StateSpace(1, 1, 1, 1, dt=dt)
|
||
|
s = StateSpace([1], [2], [3], [4], dt=dt)
|
||
|
s = StateSpace(np.array([[1, 2], [3, 4]]), np.array([[1], [2]]),
|
||
|
np.array([[1, 0]]), np.array([[0]]), dt=dt)
|
||
|
s = StateSpace(1, 1, 1, 1, dt=True)
|
||
|
|
||
|
def test_conversion(self):
|
||
|
# Check the conversion functions
|
||
|
s = StateSpace(1, 2, 3, 4, dt=0.05)
|
||
|
assert_(isinstance(s.to_ss(), StateSpace))
|
||
|
assert_(isinstance(s.to_tf(), TransferFunction))
|
||
|
assert_(isinstance(s.to_zpk(), ZerosPolesGain))
|
||
|
|
||
|
# Make sure copies work
|
||
|
assert_(StateSpace(s) is not s)
|
||
|
assert_(s.to_ss() is not s)
|
||
|
|
||
|
def test_properties(self):
|
||
|
# Test setters/getters for cross class properties.
|
||
|
# This implicitly tests to_tf() and to_zpk()
|
||
|
|
||
|
# Getters
|
||
|
s = StateSpace(1, 1, 1, 1, dt=0.05)
|
||
|
assert_equal(s.poles, [1])
|
||
|
assert_equal(s.zeros, [0])
|
||
|
|
||
|
|
||
|
class TestTransferFunction(object):
|
||
|
def test_initialization(self):
|
||
|
# Check that all initializations work
|
||
|
dt = 0.05
|
||
|
s = TransferFunction(1, 1, dt=dt)
|
||
|
s = TransferFunction([1], [2], dt=dt)
|
||
|
s = TransferFunction(np.array([1]), np.array([2]), dt=dt)
|
||
|
s = TransferFunction(1, 1, dt=True)
|
||
|
|
||
|
def test_conversion(self):
|
||
|
# Check the conversion functions
|
||
|
s = TransferFunction([1, 0], [1, -1], dt=0.05)
|
||
|
assert_(isinstance(s.to_ss(), StateSpace))
|
||
|
assert_(isinstance(s.to_tf(), TransferFunction))
|
||
|
assert_(isinstance(s.to_zpk(), ZerosPolesGain))
|
||
|
|
||
|
# Make sure copies work
|
||
|
assert_(TransferFunction(s) is not s)
|
||
|
assert_(s.to_tf() is not s)
|
||
|
|
||
|
def test_properties(self):
|
||
|
# Test setters/getters for cross class properties.
|
||
|
# This implicitly tests to_ss() and to_zpk()
|
||
|
|
||
|
# Getters
|
||
|
s = TransferFunction([1, 0], [1, -1], dt=0.05)
|
||
|
assert_equal(s.poles, [1])
|
||
|
assert_equal(s.zeros, [0])
|
||
|
|
||
|
|
||
|
class TestZerosPolesGain(object):
|
||
|
def test_initialization(self):
|
||
|
# Check that all initializations work
|
||
|
dt = 0.05
|
||
|
s = ZerosPolesGain(1, 1, 1, dt=dt)
|
||
|
s = ZerosPolesGain([1], [2], 1, dt=dt)
|
||
|
s = ZerosPolesGain(np.array([1]), np.array([2]), 1, dt=dt)
|
||
|
s = ZerosPolesGain(1, 1, 1, dt=True)
|
||
|
|
||
|
def test_conversion(self):
|
||
|
# Check the conversion functions
|
||
|
s = ZerosPolesGain(1, 2, 3, dt=0.05)
|
||
|
assert_(isinstance(s.to_ss(), StateSpace))
|
||
|
assert_(isinstance(s.to_tf(), TransferFunction))
|
||
|
assert_(isinstance(s.to_zpk(), ZerosPolesGain))
|
||
|
|
||
|
# Make sure copies work
|
||
|
assert_(ZerosPolesGain(s) is not s)
|
||
|
assert_(s.to_zpk() is not s)
|
||
|
|
||
|
|
||
|
class Test_dfreqresp(object):
|
||
|
|
||
|
def test_manual(self):
|
||
|
# Test dfreqresp() real part calculation (manual sanity check).
|
||
|
# 1st order low-pass filter: H(z) = 1 / (z - 0.2),
|
||
|
system = TransferFunction(1, [1, -0.2], dt=0.1)
|
||
|
w = [0.1, 1, 10]
|
||
|
w, H = dfreqresp(system, w=w)
|
||
|
|
||
|
# test real
|
||
|
expected_re = [1.2383, 0.4130, -0.7553]
|
||
|
assert_almost_equal(H.real, expected_re, decimal=4)
|
||
|
|
||
|
# test imag
|
||
|
expected_im = [-0.1555, -1.0214, 0.3955]
|
||
|
assert_almost_equal(H.imag, expected_im, decimal=4)
|
||
|
|
||
|
def test_auto(self):
|
||
|
# Test dfreqresp() real part calculation.
|
||
|
# 1st order low-pass filter: H(z) = 1 / (z - 0.2),
|
||
|
system = TransferFunction(1, [1, -0.2], dt=0.1)
|
||
|
w = [0.1, 1, 10, 100]
|
||
|
w, H = dfreqresp(system, w=w)
|
||
|
jw = np.exp(w * 1j)
|
||
|
y = np.polyval(system.num, jw) / np.polyval(system.den, jw)
|
||
|
|
||
|
# test real
|
||
|
expected_re = y.real
|
||
|
assert_almost_equal(H.real, expected_re)
|
||
|
|
||
|
# test imag
|
||
|
expected_im = y.imag
|
||
|
assert_almost_equal(H.imag, expected_im)
|
||
|
|
||
|
def test_freq_range(self):
|
||
|
# Test that freqresp() finds a reasonable frequency range.
|
||
|
# 1st order low-pass filter: H(z) = 1 / (z - 0.2),
|
||
|
# Expected range is from 0.01 to 10.
|
||
|
system = TransferFunction(1, [1, -0.2], dt=0.1)
|
||
|
n = 10
|
||
|
expected_w = np.linspace(0, np.pi, 10, endpoint=False)
|
||
|
w, H = dfreqresp(system, n=n)
|
||
|
assert_almost_equal(w, expected_w)
|
||
|
|
||
|
def test_pole_one(self):
|
||
|
# Test that freqresp() doesn't fail on a system with a pole at 0.
|
||
|
# integrator, pole at zero: H(s) = 1 / s
|
||
|
system = TransferFunction([1], [1, -1], dt=0.1)
|
||
|
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(RuntimeWarning, message="divide by zero")
|
||
|
sup.filter(RuntimeWarning, message="invalid value encountered")
|
||
|
w, H = dfreqresp(system, n=2)
|
||
|
assert_equal(w[0], 0.) # a fail would give not-a-number
|
||
|
|
||
|
def test_error(self):
|
||
|
# Raise an error for continuous-time systems
|
||
|
system = lti([1], [1, 1])
|
||
|
assert_raises(AttributeError, dfreqresp, system)
|
||
|
|
||
|
def test_from_state_space(self):
|
||
|
# H(z) = 2 / z^3 - 0.5 * z^2
|
||
|
|
||
|
system_TF = dlti([2], [1, -0.5, 0, 0])
|
||
|
|
||
|
A = np.array([[0.5, 0, 0],
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0]])
|
||
|
B = np.array([[1, 0, 0]]).T
|
||
|
C = np.array([[0, 0, 2]])
|
||
|
D = 0
|
||
|
|
||
|
system_SS = dlti(A, B, C, D)
|
||
|
w = 10.0**np.arange(-3,0,.5)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(BadCoefficients)
|
||
|
w1, H1 = dfreqresp(system_TF, w=w)
|
||
|
w2, H2 = dfreqresp(system_SS, w=w)
|
||
|
|
||
|
assert_almost_equal(H1, H2)
|
||
|
|
||
|
def test_from_zpk(self):
|
||
|
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
|
||
|
system_ZPK = dlti([],[0.2],0.3)
|
||
|
system_TF = dlti(0.3, [1, -0.2])
|
||
|
w = [0.1, 1, 10, 100]
|
||
|
w1, H1 = dfreqresp(system_ZPK, w=w)
|
||
|
w2, H2 = dfreqresp(system_TF, w=w)
|
||
|
assert_almost_equal(H1, H2)
|
||
|
|
||
|
|
||
|
class Test_bode(object):
|
||
|
|
||
|
def test_manual(self):
|
||
|
# Test bode() magnitude calculation (manual sanity check).
|
||
|
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
|
||
|
dt = 0.1
|
||
|
system = TransferFunction(0.3, [1, -0.2], dt=dt)
|
||
|
w = [0.1, 0.5, 1, np.pi]
|
||
|
w2, mag, phase = dbode(system, w=w)
|
||
|
|
||
|
# Test mag
|
||
|
expected_mag = [-8.5329, -8.8396, -9.6162, -12.0412]
|
||
|
assert_almost_equal(mag, expected_mag, decimal=4)
|
||
|
|
||
|
# Test phase
|
||
|
expected_phase = [-7.1575, -35.2814, -67.9809, -180.0000]
|
||
|
assert_almost_equal(phase, expected_phase, decimal=4)
|
||
|
|
||
|
# Test frequency
|
||
|
assert_equal(np.array(w) / dt, w2)
|
||
|
|
||
|
def test_auto(self):
|
||
|
# Test bode() magnitude calculation.
|
||
|
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
|
||
|
system = TransferFunction(0.3, [1, -0.2], dt=0.1)
|
||
|
w = np.array([0.1, 0.5, 1, np.pi])
|
||
|
w2, mag, phase = dbode(system, w=w)
|
||
|
jw = np.exp(w * 1j)
|
||
|
y = np.polyval(system.num, jw) / np.polyval(system.den, jw)
|
||
|
|
||
|
# Test mag
|
||
|
expected_mag = 20.0 * np.log10(abs(y))
|
||
|
assert_almost_equal(mag, expected_mag)
|
||
|
|
||
|
# Test phase
|
||
|
expected_phase = np.rad2deg(np.angle(y))
|
||
|
assert_almost_equal(phase, expected_phase)
|
||
|
|
||
|
def test_range(self):
|
||
|
# Test that bode() finds a reasonable frequency range.
|
||
|
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
|
||
|
dt = 0.1
|
||
|
system = TransferFunction(0.3, [1, -0.2], dt=0.1)
|
||
|
n = 10
|
||
|
# Expected range is from 0.01 to 10.
|
||
|
expected_w = np.linspace(0, np.pi, n, endpoint=False) / dt
|
||
|
w, mag, phase = dbode(system, n=n)
|
||
|
assert_almost_equal(w, expected_w)
|
||
|
|
||
|
def test_pole_one(self):
|
||
|
# Test that freqresp() doesn't fail on a system with a pole at 0.
|
||
|
# integrator, pole at zero: H(s) = 1 / s
|
||
|
system = TransferFunction([1], [1, -1], dt=0.1)
|
||
|
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(RuntimeWarning, message="divide by zero")
|
||
|
sup.filter(RuntimeWarning, message="invalid value encountered")
|
||
|
w, mag, phase = dbode(system, n=2)
|
||
|
assert_equal(w[0], 0.) # a fail would give not-a-number
|
||
|
|
||
|
def test_imaginary(self):
|
||
|
# bode() should not fail on a system with pure imaginary poles.
|
||
|
# The test passes if bode doesn't raise an exception.
|
||
|
system = TransferFunction([1], [1, 0, 100], dt=0.1)
|
||
|
dbode(system, n=2)
|
||
|
|
||
|
def test_error(self):
|
||
|
# Raise an error for continuous-time systems
|
||
|
system = lti([1], [1, 1])
|
||
|
assert_raises(AttributeError, dbode, system)
|
||
|
|
||
|
|
||
|
class TestTransferFunctionZConversion(object):
|
||
|
"""Test private conversions between 'z' and 'z**-1' polynomials."""
|
||
|
|
||
|
def test_full(self):
|
||
|
# Numerator and denominator same order
|
||
|
num = [2, 3, 4]
|
||
|
den = [5, 6, 7]
|
||
|
num2, den2 = TransferFunction._z_to_zinv(num, den)
|
||
|
assert_equal(num, num2)
|
||
|
assert_equal(den, den2)
|
||
|
|
||
|
num2, den2 = TransferFunction._zinv_to_z(num, den)
|
||
|
assert_equal(num, num2)
|
||
|
assert_equal(den, den2)
|
||
|
|
||
|
def test_numerator(self):
|
||
|
# Numerator lower order than denominator
|
||
|
num = [2, 3]
|
||
|
den = [5, 6, 7]
|
||
|
num2, den2 = TransferFunction._z_to_zinv(num, den)
|
||
|
assert_equal([0, 2, 3], num2)
|
||
|
assert_equal(den, den2)
|
||
|
|
||
|
num2, den2 = TransferFunction._zinv_to_z(num, den)
|
||
|
assert_equal([2, 3, 0], num2)
|
||
|
assert_equal(den, den2)
|
||
|
|
||
|
def test_denominator(self):
|
||
|
# Numerator higher order than denominator
|
||
|
num = [2, 3, 4]
|
||
|
den = [5, 6]
|
||
|
num2, den2 = TransferFunction._z_to_zinv(num, den)
|
||
|
assert_equal(num, num2)
|
||
|
assert_equal([0, 5, 6], den2)
|
||
|
|
||
|
num2, den2 = TransferFunction._zinv_to_z(num, den)
|
||
|
assert_equal(num, num2)
|
||
|
assert_equal([5, 6, 0], den2)
|
||
|
|