101 lines
3.7 KiB
Python
101 lines
3.7 KiB
Python
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_allclose
|
||
|
|
||
|
from scipy import ndimage
|
||
|
from scipy.ndimage import _ctest
|
||
|
from scipy.ndimage import _ctest_oldapi
|
||
|
from scipy.ndimage import _cytest
|
||
|
from scipy._lib._ccallback import LowLevelCallable
|
||
|
|
||
|
FILTER1D_FUNCTIONS = [
|
||
|
lambda filter_size: _ctest.filter1d(filter_size),
|
||
|
lambda filter_size: _ctest_oldapi.filter1d(filter_size),
|
||
|
lambda filter_size: _cytest.filter1d(filter_size, with_signature=False),
|
||
|
lambda filter_size: LowLevelCallable(_cytest.filter1d(filter_size, with_signature=True)),
|
||
|
lambda filter_size: LowLevelCallable.from_cython(_cytest, "_filter1d",
|
||
|
_cytest.filter1d_capsule(filter_size)),
|
||
|
]
|
||
|
|
||
|
FILTER2D_FUNCTIONS = [
|
||
|
lambda weights: _ctest.filter2d(weights),
|
||
|
lambda weights: _ctest_oldapi.filter2d(weights),
|
||
|
lambda weights: _cytest.filter2d(weights, with_signature=False),
|
||
|
lambda weights: LowLevelCallable(_cytest.filter2d(weights, with_signature=True)),
|
||
|
lambda weights: LowLevelCallable.from_cython(_cytest, "_filter2d", _cytest.filter2d_capsule(weights)),
|
||
|
]
|
||
|
|
||
|
TRANSFORM_FUNCTIONS = [
|
||
|
lambda shift: _ctest.transform(shift),
|
||
|
lambda shift: _ctest_oldapi.transform(shift),
|
||
|
lambda shift: _cytest.transform(shift, with_signature=False),
|
||
|
lambda shift: LowLevelCallable(_cytest.transform(shift, with_signature=True)),
|
||
|
lambda shift: LowLevelCallable.from_cython(_cytest, "_transform", _cytest.transform_capsule(shift)),
|
||
|
]
|
||
|
|
||
|
|
||
|
def test_generic_filter():
|
||
|
def filter2d(footprint_elements, weights):
|
||
|
return (weights*footprint_elements).sum()
|
||
|
|
||
|
def check(j):
|
||
|
func = FILTER2D_FUNCTIONS[j]
|
||
|
|
||
|
im = np.ones((20, 20))
|
||
|
im[:10,:10] = 0
|
||
|
footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
|
||
|
footprint_size = np.count_nonzero(footprint)
|
||
|
weights = np.ones(footprint_size)/footprint_size
|
||
|
|
||
|
res = ndimage.generic_filter(im, func(weights),
|
||
|
footprint=footprint)
|
||
|
std = ndimage.generic_filter(im, filter2d, footprint=footprint,
|
||
|
extra_arguments=(weights,))
|
||
|
assert_allclose(res, std, err_msg="#{} failed".format(j))
|
||
|
|
||
|
for j, func in enumerate(FILTER2D_FUNCTIONS):
|
||
|
check(j)
|
||
|
|
||
|
|
||
|
def test_generic_filter1d():
|
||
|
def filter1d(input_line, output_line, filter_size):
|
||
|
for i in range(output_line.size):
|
||
|
output_line[i] = 0
|
||
|
for j in range(filter_size):
|
||
|
output_line[i] += input_line[i+j]
|
||
|
output_line /= filter_size
|
||
|
|
||
|
def check(j):
|
||
|
func = FILTER1D_FUNCTIONS[j]
|
||
|
|
||
|
im = np.tile(np.hstack((np.zeros(10), np.ones(10))), (10, 1))
|
||
|
filter_size = 3
|
||
|
|
||
|
res = ndimage.generic_filter1d(im, func(filter_size),
|
||
|
filter_size)
|
||
|
std = ndimage.generic_filter1d(im, filter1d, filter_size,
|
||
|
extra_arguments=(filter_size,))
|
||
|
assert_allclose(res, std, err_msg="#{} failed".format(j))
|
||
|
|
||
|
for j, func in enumerate(FILTER1D_FUNCTIONS):
|
||
|
check(j)
|
||
|
|
||
|
|
||
|
def test_geometric_transform():
|
||
|
def transform(output_coordinates, shift):
|
||
|
return output_coordinates[0] - shift, output_coordinates[1] - shift
|
||
|
|
||
|
def check(j):
|
||
|
func = TRANSFORM_FUNCTIONS[j]
|
||
|
|
||
|
im = np.arange(12).reshape(4, 3).astype(np.float64)
|
||
|
shift = 0.5
|
||
|
|
||
|
res = ndimage.geometric_transform(im, func(shift))
|
||
|
std = ndimage.geometric_transform(im, transform, extra_arguments=(shift,))
|
||
|
assert_allclose(res, std, err_msg="#{} failed".format(j))
|
||
|
|
||
|
for j, func in enumerate(TRANSFORM_FUNCTIONS):
|
||
|
check(j)
|