laywerrobot/lib/python3.6/site-packages/scipy/linalg/_sketches.py

122 lines
3.8 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
""" Sketching-based Matrix Computations """
# Author: Jordi Montes <jomsdev@gmail.com>
# August 28, 2017
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy._lib._util import check_random_state
__all__ = ['clarkson_woodruff_transform']
def cwt_matrix(n_rows, n_columns, seed=None):
r""""
Generate a matrix S for the Clarkson-Woodruff sketch.
Given the desired size of matrix, the method returns a matrix S of size
(n_rows, n_columns) where each column has all the entries set to 0 less one
position which has been randomly set to +1 or -1 with equal probability.
Parameters
----------
n_rows: int
Number of rows of S
n_columns: int
Number of columns of S
seed : None or int or `numpy.random.RandomState` instance, optional
This parameter defines the ``RandomState`` object to use for drawing
random variates.
If None (or ``np.random``), the global ``np.random`` state is used.
If integer, it is used to seed the local ``RandomState`` instance.
Default is None.
Returns
-------
S : (n_rows, n_columns) array_like
Notes
-----
Given a matrix A, with probability at least 9/10,
.. math:: ||SA|| == (1 \pm \epsilon)||A||
Where epsilon is related to the size of S
"""
S = np.zeros((n_rows, n_columns))
nz_positions = np.random.randint(0, n_rows, n_columns)
rng = check_random_state(seed)
values = rng.choice([1, -1], n_columns)
for i in range(n_columns):
S[nz_positions[i]][i] = values[i]
return S
def clarkson_woodruff_transform(input_matrix, sketch_size, seed=None):
r""""
Find low-rank matrix approximation via the Clarkson-Woodruff Transform.
Given an input_matrix ``A`` of size ``(n, d)``, compute a matrix ``A'`` of
size (sketch_size, d) which holds:
.. math:: ||Ax|| = (1 \pm \epsilon)||A'x||
with high probability.
The error is related to the number of rows of the sketch and it is bounded
.. math:: poly(r(\epsilon^{-1}))
Parameters
----------
input_matrix: array_like
Input matrix, of shape ``(n, d)``.
sketch_size: int
Number of rows for the sketch.
seed : None or int or `numpy.random.RandomState` instance, optional
This parameter defines the ``RandomState`` object to use for drawing
random variates.
If None (or ``np.random``), the global ``np.random`` state is used.
If integer, it is used to seed the local ``RandomState`` instance.
Default is None.
Returns
-------
A' : array_like
Sketch of the input matrix ``A``, of size ``(sketch_size, d)``.
Notes
-----
This is an implementation of the Clarkson-Woodruff Transform (CountSketch).
``A'`` can be computed in principle in ``O(nnz(A))`` (with ``nnz`` meaning
the number of nonzero entries), however we don't take advantage of sparse
matrices in this implementation.
Examples
--------
Given a big dense matrix ``A``:
>>> from scipy import linalg
>>> n_rows, n_columns, sketch_n_rows = (2000, 100, 100)
>>> threshold = 0.1
>>> tmp = np.random.normal(0, 0.1, n_rows*n_columns)
>>> A = np.reshape(tmp, (n_rows, n_columns))
>>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows)
>>> sketch.shape
(100, 100)
>>> normA = linalg.norm(A)
>>> norm_sketch = linalg.norm(sketch)
Now with high probability, the condition ``abs(normA-normSketch) <
threshold`` holds.
References
----------
.. [1] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and
regression in input sparsity time. In STOC, 2013.
"""
S = cwt_matrix(sketch_size, input_matrix.shape[0], seed)
return np.dot(S, input_matrix)