82 lines
2.8 KiB
Python
82 lines
2.8 KiB
Python
|
""" module to test interpolate_wrapper.py
|
||
|
"""
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
from numpy import arange, allclose, ones, isnan
|
||
|
import numpy as np
|
||
|
from numpy.testing import (assert_, assert_allclose)
|
||
|
from scipy._lib._numpy_compat import suppress_warnings
|
||
|
|
||
|
# functionality to be tested
|
||
|
from scipy.interpolate.interpolate_wrapper import (linear, logarithmic,
|
||
|
block_average_above, nearest)
|
||
|
|
||
|
|
||
|
class Test(object):
|
||
|
|
||
|
def assertAllclose(self, x, y, rtol=1.0e-5):
|
||
|
for i, xi in enumerate(x):
|
||
|
assert_(allclose(xi, y[i], rtol) or (isnan(xi) and isnan(y[i])))
|
||
|
|
||
|
def test_nearest(self):
|
||
|
N = 5
|
||
|
x = arange(N)
|
||
|
y = arange(N)
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(DeprecationWarning, "`nearest` is deprecated")
|
||
|
assert_allclose(y, nearest(x, y, x+.1))
|
||
|
assert_allclose(y, nearest(x, y, x-.1))
|
||
|
|
||
|
def test_linear(self):
|
||
|
N = 3000.
|
||
|
x = arange(N)
|
||
|
y = arange(N)
|
||
|
new_x = arange(N)+0.5
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(DeprecationWarning, "`linear` is deprecated")
|
||
|
new_y = linear(x, y, new_x)
|
||
|
|
||
|
assert_allclose(new_y[:5], [0.5, 1.5, 2.5, 3.5, 4.5])
|
||
|
|
||
|
def test_block_average_above(self):
|
||
|
N = 3000
|
||
|
x = arange(N, dtype=float)
|
||
|
y = arange(N, dtype=float)
|
||
|
|
||
|
new_x = arange(N // 2) * 2
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(DeprecationWarning, "`block_average_above` is deprecated")
|
||
|
new_y = block_average_above(x, y, new_x)
|
||
|
assert_allclose(new_y[:5], [0.0, 0.5, 2.5, 4.5, 6.5])
|
||
|
|
||
|
def test_linear2(self):
|
||
|
N = 3000
|
||
|
x = arange(N, dtype=float)
|
||
|
y = ones((100,N)) * arange(N)
|
||
|
new_x = arange(N) + 0.5
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(DeprecationWarning, "`linear` is deprecated")
|
||
|
new_y = linear(x, y, new_x)
|
||
|
assert_allclose(new_y[:5,:5],
|
||
|
[[0.5, 1.5, 2.5, 3.5, 4.5],
|
||
|
[0.5, 1.5, 2.5, 3.5, 4.5],
|
||
|
[0.5, 1.5, 2.5, 3.5, 4.5],
|
||
|
[0.5, 1.5, 2.5, 3.5, 4.5],
|
||
|
[0.5, 1.5, 2.5, 3.5, 4.5]])
|
||
|
|
||
|
def test_logarithmic(self):
|
||
|
N = 4000.
|
||
|
x = arange(N)
|
||
|
y = arange(N)
|
||
|
new_x = arange(N)+0.5
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(DeprecationWarning, "`logarithmic` is deprecated")
|
||
|
new_y = logarithmic(x, y, new_x)
|
||
|
correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
|
||
|
assert_allclose(new_y[:5], correct_y)
|
||
|
|
||
|
def runTest(self):
|
||
|
test_list = [name for name in dir(self) if name.find('test_') == 0]
|
||
|
for test_name in test_list:
|
||
|
exec("self.%s()" % test_name)
|