902 lines
29 KiB
Python
902 lines
29 KiB
Python
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
import numpy as np
|
||
|
import math
|
||
|
import warnings
|
||
|
|
||
|
# trapz is a public function for scipy.integrate,
|
||
|
# even though it's actually a numpy function.
|
||
|
from numpy import trapz
|
||
|
from scipy.special import roots_legendre
|
||
|
from scipy.special import gammaln
|
||
|
from scipy._lib.six import xrange
|
||
|
|
||
|
__all__ = ['fixed_quad', 'quadrature', 'romberg', 'trapz', 'simps', 'romb',
|
||
|
'cumtrapz', 'newton_cotes']
|
||
|
|
||
|
|
||
|
class AccuracyWarning(Warning):
|
||
|
pass
|
||
|
|
||
|
|
||
|
def _cached_roots_legendre(n):
|
||
|
"""
|
||
|
Cache roots_legendre results to speed up calls of the fixed_quad
|
||
|
function.
|
||
|
"""
|
||
|
if n in _cached_roots_legendre.cache:
|
||
|
return _cached_roots_legendre.cache[n]
|
||
|
|
||
|
_cached_roots_legendre.cache[n] = roots_legendre(n)
|
||
|
return _cached_roots_legendre.cache[n]
|
||
|
|
||
|
|
||
|
_cached_roots_legendre.cache = dict()
|
||
|
|
||
|
|
||
|
def fixed_quad(func, a, b, args=(), n=5):
|
||
|
"""
|
||
|
Compute a definite integral using fixed-order Gaussian quadrature.
|
||
|
|
||
|
Integrate `func` from `a` to `b` using Gaussian quadrature of
|
||
|
order `n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
A Python function or method to integrate (must accept vector inputs).
|
||
|
If integrating a vector-valued function, the returned array must have
|
||
|
shape ``(..., len(x))``.
|
||
|
a : float
|
||
|
Lower limit of integration.
|
||
|
b : float
|
||
|
Upper limit of integration.
|
||
|
args : tuple, optional
|
||
|
Extra arguments to pass to function, if any.
|
||
|
n : int, optional
|
||
|
Order of quadrature integration. Default is 5.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
val : float
|
||
|
Gaussian quadrature approximation to the integral
|
||
|
none : None
|
||
|
Statically returned value of None
|
||
|
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
quad : adaptive quadrature using QUADPACK
|
||
|
dblquad : double integrals
|
||
|
tplquad : triple integrals
|
||
|
romberg : adaptive Romberg quadrature
|
||
|
quadrature : adaptive Gaussian quadrature
|
||
|
romb : integrators for sampled data
|
||
|
simps : integrators for sampled data
|
||
|
cumtrapz : cumulative integration for sampled data
|
||
|
ode : ODE integrator
|
||
|
odeint : ODE integrator
|
||
|
|
||
|
"""
|
||
|
x, w = _cached_roots_legendre(n)
|
||
|
x = np.real(x)
|
||
|
if np.isinf(a) or np.isinf(b):
|
||
|
raise ValueError("Gaussian quadrature is only available for "
|
||
|
"finite limits.")
|
||
|
y = (b-a)*(x+1)/2.0 + a
|
||
|
return (b-a)/2.0 * np.sum(w*func(y, *args), axis=-1), None
|
||
|
|
||
|
|
||
|
def vectorize1(func, args=(), vec_func=False):
|
||
|
"""Vectorize the call to a function.
|
||
|
|
||
|
This is an internal utility function used by `romberg` and
|
||
|
`quadrature` to create a vectorized version of a function.
|
||
|
|
||
|
If `vec_func` is True, the function `func` is assumed to take vector
|
||
|
arguments.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
User defined function.
|
||
|
args : tuple, optional
|
||
|
Extra arguments for the function.
|
||
|
vec_func : bool, optional
|
||
|
True if the function func takes vector arguments.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
vfunc : callable
|
||
|
A function that will take a vector argument and return the
|
||
|
result.
|
||
|
|
||
|
"""
|
||
|
if vec_func:
|
||
|
def vfunc(x):
|
||
|
return func(x, *args)
|
||
|
else:
|
||
|
def vfunc(x):
|
||
|
if np.isscalar(x):
|
||
|
return func(x, *args)
|
||
|
x = np.asarray(x)
|
||
|
# call with first point to get output type
|
||
|
y0 = func(x[0], *args)
|
||
|
n = len(x)
|
||
|
dtype = getattr(y0, 'dtype', type(y0))
|
||
|
output = np.empty((n,), dtype=dtype)
|
||
|
output[0] = y0
|
||
|
for i in xrange(1, n):
|
||
|
output[i] = func(x[i], *args)
|
||
|
return output
|
||
|
return vfunc
|
||
|
|
||
|
|
||
|
def quadrature(func, a, b, args=(), tol=1.49e-8, rtol=1.49e-8, maxiter=50,
|
||
|
vec_func=True, miniter=1):
|
||
|
"""
|
||
|
Compute a definite integral using fixed-tolerance Gaussian quadrature.
|
||
|
|
||
|
Integrate `func` from `a` to `b` using Gaussian quadrature
|
||
|
with absolute tolerance `tol`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
A Python function or method to integrate.
|
||
|
a : float
|
||
|
Lower limit of integration.
|
||
|
b : float
|
||
|
Upper limit of integration.
|
||
|
args : tuple, optional
|
||
|
Extra arguments to pass to function.
|
||
|
tol, rtol : float, optional
|
||
|
Iteration stops when error between last two iterates is less than
|
||
|
`tol` OR the relative change is less than `rtol`.
|
||
|
maxiter : int, optional
|
||
|
Maximum order of Gaussian quadrature.
|
||
|
vec_func : bool, optional
|
||
|
True or False if func handles arrays as arguments (is
|
||
|
a "vector" function). Default is True.
|
||
|
miniter : int, optional
|
||
|
Minimum order of Gaussian quadrature.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
val : float
|
||
|
Gaussian quadrature approximation (within tolerance) to integral.
|
||
|
err : float
|
||
|
Difference between last two estimates of the integral.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
romberg: adaptive Romberg quadrature
|
||
|
fixed_quad: fixed-order Gaussian quadrature
|
||
|
quad: adaptive quadrature using QUADPACK
|
||
|
dblquad: double integrals
|
||
|
tplquad: triple integrals
|
||
|
romb: integrator for sampled data
|
||
|
simps: integrator for sampled data
|
||
|
cumtrapz: cumulative integration for sampled data
|
||
|
ode: ODE integrator
|
||
|
odeint: ODE integrator
|
||
|
|
||
|
"""
|
||
|
if not isinstance(args, tuple):
|
||
|
args = (args,)
|
||
|
vfunc = vectorize1(func, args, vec_func=vec_func)
|
||
|
val = np.inf
|
||
|
err = np.inf
|
||
|
maxiter = max(miniter+1, maxiter)
|
||
|
for n in xrange(miniter, maxiter+1):
|
||
|
newval = fixed_quad(vfunc, a, b, (), n)[0]
|
||
|
err = abs(newval-val)
|
||
|
val = newval
|
||
|
|
||
|
if err < tol or err < rtol*abs(val):
|
||
|
break
|
||
|
else:
|
||
|
warnings.warn(
|
||
|
"maxiter (%d) exceeded. Latest difference = %e" % (maxiter, err),
|
||
|
AccuracyWarning)
|
||
|
return val, err
|
||
|
|
||
|
|
||
|
def tupleset(t, i, value):
|
||
|
l = list(t)
|
||
|
l[i] = value
|
||
|
return tuple(l)
|
||
|
|
||
|
|
||
|
def cumtrapz(y, x=None, dx=1.0, axis=-1, initial=None):
|
||
|
"""
|
||
|
Cumulatively integrate y(x) using the composite trapezoidal rule.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array_like
|
||
|
Values to integrate.
|
||
|
x : array_like, optional
|
||
|
The coordinate to integrate along. If None (default), use spacing `dx`
|
||
|
between consecutive elements in `y`.
|
||
|
dx : float, optional
|
||
|
Spacing between elements of `y`. Only used if `x` is None.
|
||
|
axis : int, optional
|
||
|
Specifies the axis to cumulate. Default is -1 (last axis).
|
||
|
initial : scalar, optional
|
||
|
If given, insert this value at the beginning of the returned result.
|
||
|
Typically this value should be 0. Default is None, which means no
|
||
|
value at ``x[0]`` is returned and `res` has one element less than `y`
|
||
|
along the axis of integration.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : ndarray
|
||
|
The result of cumulative integration of `y` along `axis`.
|
||
|
If `initial` is None, the shape is such that the axis of integration
|
||
|
has one less value than `y`. If `initial` is given, the shape is equal
|
||
|
to that of `y`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.cumsum, numpy.cumprod
|
||
|
quad: adaptive quadrature using QUADPACK
|
||
|
romberg: adaptive Romberg quadrature
|
||
|
quadrature: adaptive Gaussian quadrature
|
||
|
fixed_quad: fixed-order Gaussian quadrature
|
||
|
dblquad: double integrals
|
||
|
tplquad: triple integrals
|
||
|
romb: integrators for sampled data
|
||
|
ode: ODE integrators
|
||
|
odeint: ODE integrators
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import integrate
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> x = np.linspace(-2, 2, num=20)
|
||
|
>>> y = x
|
||
|
>>> y_int = integrate.cumtrapz(y, x, initial=0)
|
||
|
>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
y = np.asarray(y)
|
||
|
if x is None:
|
||
|
d = dx
|
||
|
else:
|
||
|
x = np.asarray(x)
|
||
|
if x.ndim == 1:
|
||
|
d = np.diff(x)
|
||
|
# reshape to correct shape
|
||
|
shape = [1] * y.ndim
|
||
|
shape[axis] = -1
|
||
|
d = d.reshape(shape)
|
||
|
elif len(x.shape) != len(y.shape):
|
||
|
raise ValueError("If given, shape of x must be 1-d or the "
|
||
|
"same as y.")
|
||
|
else:
|
||
|
d = np.diff(x, axis=axis)
|
||
|
|
||
|
if d.shape[axis] != y.shape[axis] - 1:
|
||
|
raise ValueError("If given, length of x along axis must be the "
|
||
|
"same as y.")
|
||
|
|
||
|
nd = len(y.shape)
|
||
|
slice1 = tupleset((slice(None),)*nd, axis, slice(1, None))
|
||
|
slice2 = tupleset((slice(None),)*nd, axis, slice(None, -1))
|
||
|
res = np.cumsum(d * (y[slice1] + y[slice2]) / 2.0, axis=axis)
|
||
|
|
||
|
if initial is not None:
|
||
|
if not np.isscalar(initial):
|
||
|
raise ValueError("`initial` parameter should be a scalar.")
|
||
|
|
||
|
shape = list(res.shape)
|
||
|
shape[axis] = 1
|
||
|
res = np.concatenate([np.ones(shape, dtype=res.dtype) * initial, res],
|
||
|
axis=axis)
|
||
|
|
||
|
return res
|
||
|
|
||
|
|
||
|
def _basic_simps(y, start, stop, x, dx, axis):
|
||
|
nd = len(y.shape)
|
||
|
if start is None:
|
||
|
start = 0
|
||
|
step = 2
|
||
|
slice_all = (slice(None),)*nd
|
||
|
slice0 = tupleset(slice_all, axis, slice(start, stop, step))
|
||
|
slice1 = tupleset(slice_all, axis, slice(start+1, stop+1, step))
|
||
|
slice2 = tupleset(slice_all, axis, slice(start+2, stop+2, step))
|
||
|
|
||
|
if x is None: # Even spaced Simpson's rule.
|
||
|
result = np.sum(dx/3.0 * (y[slice0]+4*y[slice1]+y[slice2]),
|
||
|
axis=axis)
|
||
|
else:
|
||
|
# Account for possibly different spacings.
|
||
|
# Simpson's rule changes a bit.
|
||
|
h = np.diff(x, axis=axis)
|
||
|
sl0 = tupleset(slice_all, axis, slice(start, stop, step))
|
||
|
sl1 = tupleset(slice_all, axis, slice(start+1, stop+1, step))
|
||
|
h0 = h[sl0]
|
||
|
h1 = h[sl1]
|
||
|
hsum = h0 + h1
|
||
|
hprod = h0 * h1
|
||
|
h0divh1 = h0 / h1
|
||
|
tmp = hsum/6.0 * (y[slice0]*(2-1.0/h0divh1) +
|
||
|
y[slice1]*hsum*hsum/hprod +
|
||
|
y[slice2]*(2-h0divh1))
|
||
|
result = np.sum(tmp, axis=axis)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def simps(y, x=None, dx=1, axis=-1, even='avg'):
|
||
|
"""
|
||
|
Integrate y(x) using samples along the given axis and the composite
|
||
|
Simpson's rule. If x is None, spacing of dx is assumed.
|
||
|
|
||
|
If there are an even number of samples, N, then there are an odd
|
||
|
number of intervals (N-1), but Simpson's rule requires an even number
|
||
|
of intervals. The parameter 'even' controls how this is handled.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array_like
|
||
|
Array to be integrated.
|
||
|
x : array_like, optional
|
||
|
If given, the points at which `y` is sampled.
|
||
|
dx : int, optional
|
||
|
Spacing of integration points along axis of `y`. Only used when
|
||
|
`x` is None. Default is 1.
|
||
|
axis : int, optional
|
||
|
Axis along which to integrate. Default is the last axis.
|
||
|
even : str {'avg', 'first', 'last'}, optional
|
||
|
'avg' : Average two results:1) use the first N-2 intervals with
|
||
|
a trapezoidal rule on the last interval and 2) use the last
|
||
|
N-2 intervals with a trapezoidal rule on the first interval.
|
||
|
|
||
|
'first' : Use Simpson's rule for the first N-2 intervals with
|
||
|
a trapezoidal rule on the last interval.
|
||
|
|
||
|
'last' : Use Simpson's rule for the last N-2 intervals with a
|
||
|
trapezoidal rule on the first interval.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
quad: adaptive quadrature using QUADPACK
|
||
|
romberg: adaptive Romberg quadrature
|
||
|
quadrature: adaptive Gaussian quadrature
|
||
|
fixed_quad: fixed-order Gaussian quadrature
|
||
|
dblquad: double integrals
|
||
|
tplquad: triple integrals
|
||
|
romb: integrators for sampled data
|
||
|
cumtrapz: cumulative integration for sampled data
|
||
|
ode: ODE integrators
|
||
|
odeint: ODE integrators
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For an odd number of samples that are equally spaced the result is
|
||
|
exact if the function is a polynomial of order 3 or less. If
|
||
|
the samples are not equally spaced, then the result is exact only
|
||
|
if the function is a polynomial of order 2 or less.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import integrate
|
||
|
>>> x = np.arange(0, 10)
|
||
|
>>> y = np.arange(0, 10)
|
||
|
|
||
|
>>> integrate.simps(y, x)
|
||
|
40.5
|
||
|
|
||
|
>>> y = np.power(x, 3)
|
||
|
>>> integrate.simps(y, x)
|
||
|
1642.5
|
||
|
>>> integrate.quad(lambda x: x**3, 0, 9)[0]
|
||
|
1640.25
|
||
|
|
||
|
>>> integrate.simps(y, x, even='first')
|
||
|
1644.5
|
||
|
|
||
|
"""
|
||
|
y = np.asarray(y)
|
||
|
nd = len(y.shape)
|
||
|
N = y.shape[axis]
|
||
|
last_dx = dx
|
||
|
first_dx = dx
|
||
|
returnshape = 0
|
||
|
if x is not None:
|
||
|
x = np.asarray(x)
|
||
|
if len(x.shape) == 1:
|
||
|
shapex = [1] * nd
|
||
|
shapex[axis] = x.shape[0]
|
||
|
saveshape = x.shape
|
||
|
returnshape = 1
|
||
|
x = x.reshape(tuple(shapex))
|
||
|
elif len(x.shape) != len(y.shape):
|
||
|
raise ValueError("If given, shape of x must be 1-d or the "
|
||
|
"same as y.")
|
||
|
if x.shape[axis] != N:
|
||
|
raise ValueError("If given, length of x along axis must be the "
|
||
|
"same as y.")
|
||
|
if N % 2 == 0:
|
||
|
val = 0.0
|
||
|
result = 0.0
|
||
|
slice1 = (slice(None),)*nd
|
||
|
slice2 = (slice(None),)*nd
|
||
|
if even not in ['avg', 'last', 'first']:
|
||
|
raise ValueError("Parameter 'even' must be "
|
||
|
"'avg', 'last', or 'first'.")
|
||
|
# Compute using Simpson's rule on first intervals
|
||
|
if even in ['avg', 'first']:
|
||
|
slice1 = tupleset(slice1, axis, -1)
|
||
|
slice2 = tupleset(slice2, axis, -2)
|
||
|
if x is not None:
|
||
|
last_dx = x[slice1] - x[slice2]
|
||
|
val += 0.5*last_dx*(y[slice1]+y[slice2])
|
||
|
result = _basic_simps(y, 0, N-3, x, dx, axis)
|
||
|
# Compute using Simpson's rule on last set of intervals
|
||
|
if even in ['avg', 'last']:
|
||
|
slice1 = tupleset(slice1, axis, 0)
|
||
|
slice2 = tupleset(slice2, axis, 1)
|
||
|
if x is not None:
|
||
|
first_dx = x[tuple(slice2)] - x[tuple(slice1)]
|
||
|
val += 0.5*first_dx*(y[slice2]+y[slice1])
|
||
|
result += _basic_simps(y, 1, N-2, x, dx, axis)
|
||
|
if even == 'avg':
|
||
|
val /= 2.0
|
||
|
result /= 2.0
|
||
|
result = result + val
|
||
|
else:
|
||
|
result = _basic_simps(y, 0, N-2, x, dx, axis)
|
||
|
if returnshape:
|
||
|
x = x.reshape(saveshape)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def romb(y, dx=1.0, axis=-1, show=False):
|
||
|
"""
|
||
|
Romberg integration using samples of a function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array_like
|
||
|
A vector of ``2**k + 1`` equally-spaced samples of a function.
|
||
|
dx : float, optional
|
||
|
The sample spacing. Default is 1.
|
||
|
axis : int, optional
|
||
|
The axis along which to integrate. Default is -1 (last axis).
|
||
|
show : bool, optional
|
||
|
When `y` is a single 1-D array, then if this argument is True
|
||
|
print the table showing Richardson extrapolation from the
|
||
|
samples. Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
romb : ndarray
|
||
|
The integrated result for `axis`.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
quad : adaptive quadrature using QUADPACK
|
||
|
romberg : adaptive Romberg quadrature
|
||
|
quadrature : adaptive Gaussian quadrature
|
||
|
fixed_quad : fixed-order Gaussian quadrature
|
||
|
dblquad : double integrals
|
||
|
tplquad : triple integrals
|
||
|
simps : integrators for sampled data
|
||
|
cumtrapz : cumulative integration for sampled data
|
||
|
ode : ODE integrators
|
||
|
odeint : ODE integrators
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import integrate
|
||
|
>>> x = np.arange(10, 14.25, 0.25)
|
||
|
>>> y = np.arange(3, 12)
|
||
|
|
||
|
>>> integrate.romb(y)
|
||
|
56.0
|
||
|
|
||
|
>>> y = np.sin(np.power(x, 2.5))
|
||
|
>>> integrate.romb(y)
|
||
|
-0.742561336672229
|
||
|
|
||
|
>>> integrate.romb(y, show=True)
|
||
|
Richardson Extrapolation Table for Romberg Integration
|
||
|
====================================================================
|
||
|
-0.81576
|
||
|
4.63862 6.45674
|
||
|
-1.10581 -3.02062 -3.65245
|
||
|
-2.57379 -3.06311 -3.06595 -3.05664
|
||
|
-1.34093 -0.92997 -0.78776 -0.75160 -0.74256
|
||
|
====================================================================
|
||
|
-0.742561336672229
|
||
|
"""
|
||
|
y = np.asarray(y)
|
||
|
nd = len(y.shape)
|
||
|
Nsamps = y.shape[axis]
|
||
|
Ninterv = Nsamps-1
|
||
|
n = 1
|
||
|
k = 0
|
||
|
while n < Ninterv:
|
||
|
n <<= 1
|
||
|
k += 1
|
||
|
if n != Ninterv:
|
||
|
raise ValueError("Number of samples must be one plus a "
|
||
|
"non-negative power of 2.")
|
||
|
|
||
|
R = {}
|
||
|
slice_all = (slice(None),) * nd
|
||
|
slice0 = tupleset(slice_all, axis, 0)
|
||
|
slicem1 = tupleset(slice_all, axis, -1)
|
||
|
h = Ninterv * np.asarray(dx, dtype=float)
|
||
|
R[(0, 0)] = (y[slice0] + y[slicem1])/2.0*h
|
||
|
slice_R = slice_all
|
||
|
start = stop = step = Ninterv
|
||
|
for i in xrange(1, k+1):
|
||
|
start >>= 1
|
||
|
slice_R = tupleset(slice_R, axis, slice(start, stop, step))
|
||
|
step >>= 1
|
||
|
R[(i, 0)] = 0.5*(R[(i-1, 0)] + h*y[slice_R].sum(axis=axis))
|
||
|
for j in xrange(1, i+1):
|
||
|
prev = R[(i, j-1)]
|
||
|
R[(i, j)] = prev + (prev-R[(i-1, j-1)]) / ((1 << (2*j))-1)
|
||
|
h /= 2.0
|
||
|
|
||
|
if show:
|
||
|
if not np.isscalar(R[(0, 0)]):
|
||
|
print("*** Printing table only supported for integrals" +
|
||
|
" of a single data set.")
|
||
|
else:
|
||
|
try:
|
||
|
precis = show[0]
|
||
|
except (TypeError, IndexError):
|
||
|
precis = 5
|
||
|
try:
|
||
|
width = show[1]
|
||
|
except (TypeError, IndexError):
|
||
|
width = 8
|
||
|
formstr = "%%%d.%df" % (width, precis)
|
||
|
|
||
|
title = "Richardson Extrapolation Table for Romberg Integration"
|
||
|
print("", title.center(68), "=" * 68, sep="\n", end="\n")
|
||
|
for i in xrange(k+1):
|
||
|
for j in xrange(i+1):
|
||
|
print(formstr % R[(i, j)], end=" ")
|
||
|
print()
|
||
|
print("=" * 68)
|
||
|
print()
|
||
|
|
||
|
return R[(k, k)]
|
||
|
|
||
|
# Romberg quadratures for numeric integration.
|
||
|
#
|
||
|
# Written by Scott M. Ransom <ransom@cfa.harvard.edu>
|
||
|
# last revision: 14 Nov 98
|
||
|
#
|
||
|
# Cosmetic changes by Konrad Hinsen <hinsen@cnrs-orleans.fr>
|
||
|
# last revision: 1999-7-21
|
||
|
#
|
||
|
# Adapted to scipy by Travis Oliphant <oliphant.travis@ieee.org>
|
||
|
# last revision: Dec 2001
|
||
|
|
||
|
|
||
|
def _difftrap(function, interval, numtraps):
|
||
|
"""
|
||
|
Perform part of the trapezoidal rule to integrate a function.
|
||
|
Assume that we had called difftrap with all lower powers-of-2
|
||
|
starting with 1. Calling difftrap only returns the summation
|
||
|
of the new ordinates. It does _not_ multiply by the width
|
||
|
of the trapezoids. This must be performed by the caller.
|
||
|
'function' is the function to evaluate (must accept vector arguments).
|
||
|
'interval' is a sequence with lower and upper limits
|
||
|
of integration.
|
||
|
'numtraps' is the number of trapezoids to use (must be a
|
||
|
power-of-2).
|
||
|
"""
|
||
|
if numtraps <= 0:
|
||
|
raise ValueError("numtraps must be > 0 in difftrap().")
|
||
|
elif numtraps == 1:
|
||
|
return 0.5*(function(interval[0])+function(interval[1]))
|
||
|
else:
|
||
|
numtosum = numtraps/2
|
||
|
h = float(interval[1]-interval[0])/numtosum
|
||
|
lox = interval[0] + 0.5 * h
|
||
|
points = lox + h * np.arange(numtosum)
|
||
|
s = np.sum(function(points), axis=0)
|
||
|
return s
|
||
|
|
||
|
|
||
|
def _romberg_diff(b, c, k):
|
||
|
"""
|
||
|
Compute the differences for the Romberg quadrature corrections.
|
||
|
See Forman Acton's "Real Computing Made Real," p 143.
|
||
|
"""
|
||
|
tmp = 4.0**k
|
||
|
return (tmp * c - b)/(tmp - 1.0)
|
||
|
|
||
|
|
||
|
def _printresmat(function, interval, resmat):
|
||
|
# Print the Romberg result matrix.
|
||
|
i = j = 0
|
||
|
print('Romberg integration of', repr(function), end=' ')
|
||
|
print('from', interval)
|
||
|
print('')
|
||
|
print('%6s %9s %9s' % ('Steps', 'StepSize', 'Results'))
|
||
|
for i in xrange(len(resmat)):
|
||
|
print('%6d %9f' % (2**i, (interval[1]-interval[0])/(2.**i)), end=' ')
|
||
|
for j in xrange(i+1):
|
||
|
print('%9f' % (resmat[i][j]), end=' ')
|
||
|
print('')
|
||
|
print('')
|
||
|
print('The final result is', resmat[i][j], end=' ')
|
||
|
print('after', 2**(len(resmat)-1)+1, 'function evaluations.')
|
||
|
|
||
|
|
||
|
def romberg(function, a, b, args=(), tol=1.48e-8, rtol=1.48e-8, show=False,
|
||
|
divmax=10, vec_func=False):
|
||
|
"""
|
||
|
Romberg integration of a callable function or method.
|
||
|
|
||
|
Returns the integral of `function` (a function of one variable)
|
||
|
over the interval (`a`, `b`).
|
||
|
|
||
|
If `show` is 1, the triangular array of the intermediate results
|
||
|
will be printed. If `vec_func` is True (default is False), then
|
||
|
`function` is assumed to support vector arguments.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
function : callable
|
||
|
Function to be integrated.
|
||
|
a : float
|
||
|
Lower limit of integration.
|
||
|
b : float
|
||
|
Upper limit of integration.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : float
|
||
|
Result of the integration.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
args : tuple, optional
|
||
|
Extra arguments to pass to function. Each element of `args` will
|
||
|
be passed as a single argument to `func`. Default is to pass no
|
||
|
extra arguments.
|
||
|
tol, rtol : float, optional
|
||
|
The desired absolute and relative tolerances. Defaults are 1.48e-8.
|
||
|
show : bool, optional
|
||
|
Whether to print the results. Default is False.
|
||
|
divmax : int, optional
|
||
|
Maximum order of extrapolation. Default is 10.
|
||
|
vec_func : bool, optional
|
||
|
Whether `func` handles arrays as arguments (i.e whether it is a
|
||
|
"vector" function). Default is False.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fixed_quad : Fixed-order Gaussian quadrature.
|
||
|
quad : Adaptive quadrature using QUADPACK.
|
||
|
dblquad : Double integrals.
|
||
|
tplquad : Triple integrals.
|
||
|
romb : Integrators for sampled data.
|
||
|
simps : Integrators for sampled data.
|
||
|
cumtrapz : Cumulative integration for sampled data.
|
||
|
ode : ODE integrator.
|
||
|
odeint : ODE integrator.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] 'Romberg's method' http://en.wikipedia.org/wiki/Romberg%27s_method
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Integrate a gaussian from 0 to 1 and compare to the error function.
|
||
|
|
||
|
>>> from scipy import integrate
|
||
|
>>> from scipy.special import erf
|
||
|
>>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)
|
||
|
>>> result = integrate.romberg(gaussian, 0, 1, show=True)
|
||
|
Romberg integration of <function vfunc at ...> from [0, 1]
|
||
|
|
||
|
::
|
||
|
|
||
|
Steps StepSize Results
|
||
|
1 1.000000 0.385872
|
||
|
2 0.500000 0.412631 0.421551
|
||
|
4 0.250000 0.419184 0.421368 0.421356
|
||
|
8 0.125000 0.420810 0.421352 0.421350 0.421350
|
||
|
16 0.062500 0.421215 0.421350 0.421350 0.421350 0.421350
|
||
|
32 0.031250 0.421317 0.421350 0.421350 0.421350 0.421350 0.421350
|
||
|
|
||
|
The final result is 0.421350396475 after 33 function evaluations.
|
||
|
|
||
|
>>> print("%g %g" % (2*result, erf(1)))
|
||
|
0.842701 0.842701
|
||
|
|
||
|
"""
|
||
|
if np.isinf(a) or np.isinf(b):
|
||
|
raise ValueError("Romberg integration only available "
|
||
|
"for finite limits.")
|
||
|
vfunc = vectorize1(function, args, vec_func=vec_func)
|
||
|
n = 1
|
||
|
interval = [a, b]
|
||
|
intrange = b - a
|
||
|
ordsum = _difftrap(vfunc, interval, n)
|
||
|
result = intrange * ordsum
|
||
|
resmat = [[result]]
|
||
|
err = np.inf
|
||
|
last_row = resmat[0]
|
||
|
for i in xrange(1, divmax+1):
|
||
|
n *= 2
|
||
|
ordsum += _difftrap(vfunc, interval, n)
|
||
|
row = [intrange * ordsum / n]
|
||
|
for k in xrange(i):
|
||
|
row.append(_romberg_diff(last_row[k], row[k], k+1))
|
||
|
result = row[i]
|
||
|
lastresult = last_row[i-1]
|
||
|
if show:
|
||
|
resmat.append(row)
|
||
|
err = abs(result - lastresult)
|
||
|
if err < tol or err < rtol * abs(result):
|
||
|
break
|
||
|
last_row = row
|
||
|
else:
|
||
|
warnings.warn(
|
||
|
"divmax (%d) exceeded. Latest difference = %e" % (divmax, err),
|
||
|
AccuracyWarning)
|
||
|
|
||
|
if show:
|
||
|
_printresmat(vfunc, interval, resmat)
|
||
|
return result
|
||
|
|
||
|
|
||
|
# Coefficients for Netwon-Cotes quadrature
|
||
|
#
|
||
|
# These are the points being used
|
||
|
# to construct the local interpolating polynomial
|
||
|
# a are the weights for Newton-Cotes integration
|
||
|
# B is the error coefficient.
|
||
|
# error in these coefficients grows as N gets larger.
|
||
|
# or as samples are closer and closer together
|
||
|
|
||
|
# You can use maxima to find these rational coefficients
|
||
|
# for equally spaced data using the commands
|
||
|
# a(i,N) := integrate(product(r-j,j,0,i-1) * product(r-j,j,i+1,N),r,0,N) / ((N-i)! * i!) * (-1)^(N-i);
|
||
|
# Be(N) := N^(N+2)/(N+2)! * (N/(N+3) - sum((i/N)^(N+2)*a(i,N),i,0,N));
|
||
|
# Bo(N) := N^(N+1)/(N+1)! * (N/(N+2) - sum((i/N)^(N+1)*a(i,N),i,0,N));
|
||
|
# B(N) := (if (mod(N,2)=0) then Be(N) else Bo(N));
|
||
|
#
|
||
|
# pre-computed for equally-spaced weights
|
||
|
#
|
||
|
# num_a, den_a, int_a, num_B, den_B = _builtincoeffs[N]
|
||
|
#
|
||
|
# a = num_a*array(int_a)/den_a
|
||
|
# B = num_B*1.0 / den_B
|
||
|
#
|
||
|
# integrate(f(x),x,x_0,x_N) = dx*sum(a*f(x_i)) + B*(dx)^(2k+3) f^(2k+2)(x*)
|
||
|
# where k = N // 2
|
||
|
#
|
||
|
_builtincoeffs = {
|
||
|
1: (1,2,[1,1],-1,12),
|
||
|
2: (1,3,[1,4,1],-1,90),
|
||
|
3: (3,8,[1,3,3,1],-3,80),
|
||
|
4: (2,45,[7,32,12,32,7],-8,945),
|
||
|
5: (5,288,[19,75,50,50,75,19],-275,12096),
|
||
|
6: (1,140,[41,216,27,272,27,216,41],-9,1400),
|
||
|
7: (7,17280,[751,3577,1323,2989,2989,1323,3577,751],-8183,518400),
|
||
|
8: (4,14175,[989,5888,-928,10496,-4540,10496,-928,5888,989],
|
||
|
-2368,467775),
|
||
|
9: (9,89600,[2857,15741,1080,19344,5778,5778,19344,1080,
|
||
|
15741,2857], -4671, 394240),
|
||
|
10: (5,299376,[16067,106300,-48525,272400,-260550,427368,
|
||
|
-260550,272400,-48525,106300,16067],
|
||
|
-673175, 163459296),
|
||
|
11: (11,87091200,[2171465,13486539,-3237113, 25226685,-9595542,
|
||
|
15493566,15493566,-9595542,25226685,-3237113,
|
||
|
13486539,2171465], -2224234463, 237758976000),
|
||
|
12: (1, 5255250, [1364651,9903168,-7587864,35725120,-51491295,
|
||
|
87516288,-87797136,87516288,-51491295,35725120,
|
||
|
-7587864,9903168,1364651], -3012, 875875),
|
||
|
13: (13, 402361344000,[8181904909, 56280729661, -31268252574,
|
||
|
156074417954,-151659573325,206683437987,
|
||
|
-43111992612,-43111992612,206683437987,
|
||
|
-151659573325,156074417954,-31268252574,
|
||
|
56280729661,8181904909], -2639651053,
|
||
|
344881152000),
|
||
|
14: (7, 2501928000, [90241897,710986864,-770720657,3501442784,
|
||
|
-6625093363,12630121616,-16802270373,19534438464,
|
||
|
-16802270373,12630121616,-6625093363,3501442784,
|
||
|
-770720657,710986864,90241897], -3740727473,
|
||
|
1275983280000)
|
||
|
}
|
||
|
|
||
|
|
||
|
def newton_cotes(rn, equal=0):
|
||
|
"""
|
||
|
Return weights and error coefficient for Newton-Cotes integration.
|
||
|
|
||
|
Suppose we have (N+1) samples of f at the positions
|
||
|
x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the
|
||
|
integral between x_0 and x_N is:
|
||
|
|
||
|
:math:`\\int_{x_0}^{x_N} f(x)dx = \\Delta x \\sum_{i=0}^{N} a_i f(x_i)
|
||
|
+ B_N (\\Delta x)^{N+2} f^{N+1} (\\xi)`
|
||
|
|
||
|
where :math:`\\xi \\in [x_0,x_N]`
|
||
|
and :math:`\\Delta x = \\frac{x_N-x_0}{N}` is the average samples spacing.
|
||
|
|
||
|
If the samples are equally-spaced and N is even, then the error
|
||
|
term is :math:`B_N (\\Delta x)^{N+3} f^{N+2}(\\xi)`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
rn : int
|
||
|
The integer order for equally-spaced data or the relative positions of
|
||
|
the samples with the first sample at 0 and the last at N, where N+1 is
|
||
|
the length of `rn`. N is the order of the Newton-Cotes integration.
|
||
|
equal : int, optional
|
||
|
Set to 1 to enforce equally spaced data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
an : ndarray
|
||
|
1-D array of weights to apply to the function at the provided sample
|
||
|
positions.
|
||
|
B : float
|
||
|
Error coefficient.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Normally, the Newton-Cotes rules are used on smaller integration
|
||
|
regions and a composite rule is used to return the total integral.
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
N = len(rn)-1
|
||
|
if equal:
|
||
|
rn = np.arange(N+1)
|
||
|
elif np.all(np.diff(rn) == 1):
|
||
|
equal = 1
|
||
|
except:
|
||
|
N = rn
|
||
|
rn = np.arange(N+1)
|
||
|
equal = 1
|
||
|
|
||
|
if equal and N in _builtincoeffs:
|
||
|
na, da, vi, nb, db = _builtincoeffs[N]
|
||
|
an = na * np.array(vi, dtype=float) / da
|
||
|
return an, float(nb)/db
|
||
|
|
||
|
if (rn[0] != 0) or (rn[-1] != N):
|
||
|
raise ValueError("The sample positions must start at 0"
|
||
|
" and end at N")
|
||
|
yi = rn / float(N)
|
||
|
ti = 2 * yi - 1
|
||
|
nvec = np.arange(N+1)
|
||
|
C = ti ** nvec[:, np.newaxis]
|
||
|
Cinv = np.linalg.inv(C)
|
||
|
# improve precision of result
|
||
|
for i in range(2):
|
||
|
Cinv = 2*Cinv - Cinv.dot(C).dot(Cinv)
|
||
|
vec = 2.0 / (nvec[::2]+1)
|
||
|
ai = Cinv[:, ::2].dot(vec) * (N / 2.)
|
||
|
|
||
|
if (N % 2 == 0) and equal:
|
||
|
BN = N/(N+3.)
|
||
|
power = N+2
|
||
|
else:
|
||
|
BN = N/(N+2.)
|
||
|
power = N+1
|
||
|
|
||
|
BN = BN - np.dot(yi**power, ai)
|
||
|
p1 = power+1
|
||
|
fac = power*math.log(N) - gammaln(p1)
|
||
|
fac = math.exp(fac)
|
||
|
return ai, BN*fac
|