laywerrobot/lib/python3.6/site-packages/pandas/util/testing.py

2829 lines
91 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
from __future__ import division
# pylint: disable-msg=W0402
import re
import string
import sys
import tempfile
import warnings
import os
import subprocess
import locale
import traceback
from datetime import datetime
from functools import wraps
from contextlib import contextmanager
from numpy.random import randn, rand
import numpy as np
import pandas as pd
from pandas.core.arrays import ExtensionArray
from pandas.core.dtypes.missing import array_equivalent
from pandas.core.dtypes.common import (
is_datetimelike_v_numeric,
is_datetimelike_v_object,
is_number, is_bool,
needs_i8_conversion,
is_categorical_dtype,
is_interval_dtype,
is_sequence,
is_list_like)
from pandas.io.formats.printing import pprint_thing
from pandas.core.algorithms import take_1d
import pandas.core.common as com
import pandas.compat as compat
from pandas.compat import (
filter, map, zip, range, unichr, lrange, lmap, lzip, u, callable, Counter,
raise_with_traceback, httplib, StringIO, string_types, PY3, PY2)
from pandas import (bdate_range, CategoricalIndex, Categorical, IntervalIndex,
DatetimeIndex, TimedeltaIndex, PeriodIndex, RangeIndex,
Index, MultiIndex,
Series, DataFrame, Panel)
from pandas._libs import testing as _testing
from pandas.io.common import urlopen
N = 30
K = 4
_RAISE_NETWORK_ERROR_DEFAULT = False
# set testing_mode
_testing_mode_warnings = (DeprecationWarning, compat.ResourceWarning)
def set_testing_mode():
# set the testing mode filters
testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None')
if 'deprecate' in testing_mode:
warnings.simplefilter('always', _testing_mode_warnings)
def reset_testing_mode():
# reset the testing mode filters
testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None')
if 'deprecate' in testing_mode:
warnings.simplefilter('ignore', _testing_mode_warnings)
set_testing_mode()
def reset_display_options():
"""
Reset the display options for printing and representing objects.
"""
pd.reset_option('^display.', silent=True)
def round_trip_pickle(obj, path=None):
"""
Pickle an object and then read it again.
Parameters
----------
obj : pandas object
The object to pickle and then re-read.
path : str, default None
The path where the pickled object is written and then read.
Returns
-------
round_trip_pickled_object : pandas object
The original object that was pickled and then re-read.
"""
if path is None:
path = u('__{random_bytes}__.pickle'.format(random_bytes=rands(10)))
with ensure_clean(path) as path:
pd.to_pickle(obj, path)
return pd.read_pickle(path)
def round_trip_pathlib(writer, reader, path=None):
"""
Write an object to file specified by a pathlib.Path and read it back
Parameters
----------
writer : callable bound to pandas object
IO writing function (e.g. DataFrame.to_csv )
reader : callable
IO reading function (e.g. pd.read_csv )
path : str, default None
The path where the object is written and then read.
Returns
-------
round_trip_object : pandas object
The original object that was serialized and then re-read.
"""
import pytest
Path = pytest.importorskip('pathlib').Path
if path is None:
path = '___pathlib___'
with ensure_clean(path) as path:
writer(Path(path))
obj = reader(Path(path))
return obj
def round_trip_localpath(writer, reader, path=None):
"""
Write an object to file specified by a py.path LocalPath and read it back
Parameters
----------
writer : callable bound to pandas object
IO writing function (e.g. DataFrame.to_csv )
reader : callable
IO reading function (e.g. pd.read_csv )
path : str, default None
The path where the object is written and then read.
Returns
-------
round_trip_object : pandas object
The original object that was serialized and then re-read.
"""
import pytest
LocalPath = pytest.importorskip('py.path').local
if path is None:
path = '___localpath___'
with ensure_clean(path) as path:
writer(LocalPath(path))
obj = reader(LocalPath(path))
return obj
@contextmanager
def decompress_file(path, compression):
"""
Open a compressed file and return a file object
Parameters
----------
path : str
The path where the file is read from
compression : {'gzip', 'bz2', 'zip', 'xz', None}
Name of the decompression to use
Returns
-------
f : file object
"""
if compression is None:
f = open(path, 'rb')
elif compression == 'gzip':
import gzip
f = gzip.open(path, 'rb')
elif compression == 'bz2':
import bz2
f = bz2.BZ2File(path, 'rb')
elif compression == 'xz':
lzma = compat.import_lzma()
f = lzma.LZMAFile(path, 'rb')
elif compression == 'zip':
import zipfile
zip_file = zipfile.ZipFile(path)
zip_names = zip_file.namelist()
if len(zip_names) == 1:
f = zip_file.open(zip_names.pop())
else:
raise ValueError('ZIP file {} error. Only one file per ZIP.'
.format(path))
else:
msg = 'Unrecognized compression type: {}'.format(compression)
raise ValueError(msg)
yield f
f.close()
def assert_almost_equal(left, right, check_exact=False,
check_dtype='equiv', check_less_precise=False,
**kwargs):
"""
Check that the left and right objects are approximately equal.
Parameters
----------
left : object
right : object
check_exact : bool, default False
Whether to compare number exactly.
check_dtype: bool, default True
check dtype if both a and b are the same type
check_less_precise : bool or int, default False
Specify comparison precision. Only used when check_exact is False.
5 digits (False) or 3 digits (True) after decimal points are compared.
If int, then specify the digits to compare
"""
if isinstance(left, pd.Index):
return assert_index_equal(left, right, check_exact=check_exact,
exact=check_dtype,
check_less_precise=check_less_precise,
**kwargs)
elif isinstance(left, pd.Series):
return assert_series_equal(left, right, check_exact=check_exact,
check_dtype=check_dtype,
check_less_precise=check_less_precise,
**kwargs)
elif isinstance(left, pd.DataFrame):
return assert_frame_equal(left, right, check_exact=check_exact,
check_dtype=check_dtype,
check_less_precise=check_less_precise,
**kwargs)
else:
# other sequences
if check_dtype:
if is_number(left) and is_number(right):
# do not compare numeric classes, like np.float64 and float
pass
elif is_bool(left) and is_bool(right):
# do not compare bool classes, like np.bool_ and bool
pass
else:
if (isinstance(left, np.ndarray) or
isinstance(right, np.ndarray)):
obj = 'numpy array'
else:
obj = 'Input'
assert_class_equal(left, right, obj=obj)
return _testing.assert_almost_equal(
left, right,
check_dtype=check_dtype,
check_less_precise=check_less_precise,
**kwargs)
def _check_isinstance(left, right, cls):
"""
Helper method for our assert_* methods that ensures that
the two objects being compared have the right type before
proceeding with the comparison.
Parameters
----------
left : The first object being compared.
right : The second object being compared.
cls : The class type to check against.
Raises
------
AssertionError : Either `left` or `right` is not an instance of `cls`.
"""
err_msg = "{name} Expected type {exp_type}, found {act_type} instead"
cls_name = cls.__name__
if not isinstance(left, cls):
raise AssertionError(err_msg.format(name=cls_name, exp_type=cls,
act_type=type(left)))
if not isinstance(right, cls):
raise AssertionError(err_msg.format(name=cls_name, exp_type=cls,
act_type=type(right)))
def assert_dict_equal(left, right, compare_keys=True):
_check_isinstance(left, right, dict)
return _testing.assert_dict_equal(left, right, compare_keys=compare_keys)
def randbool(size=(), p=0.5):
return rand(*size) <= p
RANDS_CHARS = np.array(list(string.ascii_letters + string.digits),
dtype=(np.str_, 1))
RANDU_CHARS = np.array(list(u("").join(map(unichr, lrange(1488, 1488 + 26))) +
string.digits), dtype=(np.unicode_, 1))
def rands_array(nchars, size, dtype='O'):
"""Generate an array of byte strings."""
retval = (np.random.choice(RANDS_CHARS, size=nchars * np.prod(size))
.view((np.str_, nchars)).reshape(size))
if dtype is None:
return retval
else:
return retval.astype(dtype)
def randu_array(nchars, size, dtype='O'):
"""Generate an array of unicode strings."""
retval = (np.random.choice(RANDU_CHARS, size=nchars * np.prod(size))
.view((np.unicode_, nchars)).reshape(size))
if dtype is None:
return retval
else:
return retval.astype(dtype)
def rands(nchars):
"""
Generate one random byte string.
See `rands_array` if you want to create an array of random strings.
"""
return ''.join(np.random.choice(RANDS_CHARS, nchars))
def randu(nchars):
"""
Generate one random unicode string.
See `randu_array` if you want to create an array of random unicode strings.
"""
return ''.join(np.random.choice(RANDU_CHARS, nchars))
def close(fignum=None):
from matplotlib.pyplot import get_fignums, close as _close
if fignum is None:
for fignum in get_fignums():
_close(fignum)
else:
_close(fignum)
# -----------------------------------------------------------------------------
# locale utilities
def check_output(*popenargs, **kwargs):
# shamelessly taken from Python 2.7 source
r"""Run command with arguments and return its output as a byte string.
If the exit code was non-zero it raises a CalledProcessError. The
CalledProcessError object will have the return code in the returncode
attribute and output in the output attribute.
The arguments are the same as for the Popen constructor. Example:
>>> check_output(["ls", "-l", "/dev/null"])
'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n'
The stdout argument is not allowed as it is used internally.
To capture standard error in the result, use stderr=STDOUT.
>>> check_output(["/bin/sh", "-c",
... "ls -l non_existent_file ; exit 0"],
... stderr=STDOUT)
'ls: non_existent_file: No such file or directory\n'
"""
if 'stdout' in kwargs:
raise ValueError('stdout argument not allowed, it will be overridden.')
process = subprocess.Popen(stdout=subprocess.PIPE, stderr=subprocess.PIPE,
*popenargs, **kwargs)
output, unused_err = process.communicate()
retcode = process.poll()
if retcode:
cmd = kwargs.get("args")
if cmd is None:
cmd = popenargs[0]
raise subprocess.CalledProcessError(retcode, cmd, output=output)
return output
def _default_locale_getter():
try:
raw_locales = check_output(['locale -a'], shell=True)
except subprocess.CalledProcessError as e:
raise type(e)("{exception}, the 'locale -a' command cannot be found "
"on your system".format(exception=e))
return raw_locales
def get_locales(prefix=None, normalize=True,
locale_getter=_default_locale_getter):
"""Get all the locales that are available on the system.
Parameters
----------
prefix : str
If not ``None`` then return only those locales with the prefix
provided. For example to get all English language locales (those that
start with ``"en"``), pass ``prefix="en"``.
normalize : bool
Call ``locale.normalize`` on the resulting list of available locales.
If ``True``, only locales that can be set without throwing an
``Exception`` are returned.
locale_getter : callable
The function to use to retrieve the current locales. This should return
a string with each locale separated by a newline character.
Returns
-------
locales : list of strings
A list of locale strings that can be set with ``locale.setlocale()``.
For example::
locale.setlocale(locale.LC_ALL, locale_string)
On error will return None (no locale available, e.g. Windows)
"""
try:
raw_locales = locale_getter()
except Exception:
return None
try:
# raw_locales is "\n" separated list of locales
# it may contain non-decodable parts, so split
# extract what we can and then rejoin.
raw_locales = raw_locales.split(b'\n')
out_locales = []
for x in raw_locales:
if PY3:
out_locales.append(str(
x, encoding=pd.options.display.encoding))
else:
out_locales.append(str(x))
except TypeError:
pass
if prefix is None:
return _valid_locales(out_locales, normalize)
found = re.compile('{prefix}.*'.format(prefix=prefix)) \
.findall('\n'.join(out_locales))
return _valid_locales(found, normalize)
@contextmanager
def set_locale(new_locale, lc_var=locale.LC_ALL):
"""Context manager for temporarily setting a locale.
Parameters
----------
new_locale : str or tuple
A string of the form <language_country>.<encoding>. For example to set
the current locale to US English with a UTF8 encoding, you would pass
"en_US.UTF-8".
Notes
-----
This is useful when you want to run a particular block of code under a
particular locale, without globally setting the locale. This probably isn't
thread-safe.
"""
current_locale = locale.getlocale()
try:
locale.setlocale(lc_var, new_locale)
try:
normalized_locale = locale.getlocale()
except ValueError:
yield new_locale
else:
if com._all_not_none(*normalized_locale):
yield '.'.join(normalized_locale)
else:
yield new_locale
finally:
locale.setlocale(lc_var, current_locale)
def _can_set_locale(lc):
"""Check to see if we can set a locale without throwing an exception.
Parameters
----------
lc : str
The locale to attempt to set.
Returns
-------
isvalid : bool
Whether the passed locale can be set
"""
try:
with set_locale(lc):
pass
except locale.Error: # horrible name for a Exception subclass
return False
else:
return True
def _valid_locales(locales, normalize):
"""Return a list of normalized locales that do not throw an ``Exception``
when set.
Parameters
----------
locales : str
A string where each locale is separated by a newline.
normalize : bool
Whether to call ``locale.normalize`` on each locale.
Returns
-------
valid_locales : list
A list of valid locales.
"""
if normalize:
normalizer = lambda x: locale.normalize(x.strip())
else:
normalizer = lambda x: x.strip()
return list(filter(_can_set_locale, map(normalizer, locales)))
# -----------------------------------------------------------------------------
# Stdout / stderr decorators
@contextmanager
def set_defaultencoding(encoding):
"""
Set default encoding (as given by sys.getdefaultencoding()) to the given
encoding; restore on exit.
Parameters
----------
encoding : str
"""
if not PY2:
raise ValueError("set_defaultencoding context is only available "
"in Python 2.")
orig = sys.getdefaultencoding()
reload(sys) # noqa:F821
sys.setdefaultencoding(encoding)
try:
yield
finally:
sys.setdefaultencoding(orig)
def capture_stdout(f):
"""
Decorator to capture stdout in a buffer so that it can be checked
(or suppressed) during testing.
Parameters
----------
f : callable
The test that is capturing stdout.
Returns
-------
f : callable
The decorated test ``f``, which captures stdout.
Examples
--------
>>> from pandas.util.testing import capture_stdout
>>>
>>> import sys
>>>
>>> @capture_stdout
... def test_print_pass():
... print("foo")
... out = sys.stdout.getvalue()
... assert out == "foo\n"
>>>
>>> @capture_stdout
... def test_print_fail():
... print("foo")
... out = sys.stdout.getvalue()
... assert out == "bar\n"
...
AssertionError: assert 'foo\n' == 'bar\n'
"""
@wraps(f)
def wrapper(*args, **kwargs):
try:
sys.stdout = StringIO()
f(*args, **kwargs)
finally:
sys.stdout = sys.__stdout__
return wrapper
def capture_stderr(f):
"""
Decorator to capture stderr in a buffer so that it can be checked
(or suppressed) during testing.
Parameters
----------
f : callable
The test that is capturing stderr.
Returns
-------
f : callable
The decorated test ``f``, which captures stderr.
Examples
--------
>>> from pandas.util.testing import capture_stderr
>>>
>>> import sys
>>>
>>> @capture_stderr
... def test_stderr_pass():
... sys.stderr.write("foo")
... out = sys.stderr.getvalue()
... assert out == "foo\n"
>>>
>>> @capture_stderr
... def test_stderr_fail():
... sys.stderr.write("foo")
... out = sys.stderr.getvalue()
... assert out == "bar\n"
...
AssertionError: assert 'foo\n' == 'bar\n'
"""
@wraps(f)
def wrapper(*args, **kwargs):
try:
sys.stderr = StringIO()
f(*args, **kwargs)
finally:
sys.stderr = sys.__stderr__
return wrapper
# -----------------------------------------------------------------------------
# Console debugging tools
def debug(f, *args, **kwargs):
from pdb import Pdb as OldPdb
try:
from IPython.core.debugger import Pdb
kw = dict(color_scheme='Linux')
except ImportError:
Pdb = OldPdb
kw = {}
pdb = Pdb(**kw)
return pdb.runcall(f, *args, **kwargs)
def pudebug(f, *args, **kwargs):
import pudb
return pudb.runcall(f, *args, **kwargs)
def set_trace():
from IPython.core.debugger import Pdb
try:
Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back)
except Exception:
from pdb import Pdb as OldPdb
OldPdb().set_trace(sys._getframe().f_back)
# -----------------------------------------------------------------------------
# contextmanager to ensure the file cleanup
@contextmanager
def ensure_clean(filename=None, return_filelike=False):
"""Gets a temporary path and agrees to remove on close.
Parameters
----------
filename : str (optional)
if None, creates a temporary file which is then removed when out of
scope. if passed, creates temporary file with filename as ending.
return_filelike : bool (default False)
if True, returns a file-like which is *always* cleaned. Necessary for
savefig and other functions which want to append extensions.
"""
filename = filename or ''
fd = None
if return_filelike:
f = tempfile.TemporaryFile(suffix=filename)
try:
yield f
finally:
f.close()
else:
# don't generate tempfile if using a path with directory specified
if len(os.path.dirname(filename)):
raise ValueError("Can't pass a qualified name to ensure_clean()")
try:
fd, filename = tempfile.mkstemp(suffix=filename)
except UnicodeEncodeError:
import pytest
pytest.skip('no unicode file names on this system')
try:
yield filename
finally:
try:
os.close(fd)
except Exception as e:
print("Couldn't close file descriptor: {fdesc} (file: {fname})"
.format(fdesc=fd, fname=filename))
try:
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
print("Exception on removing file: {error}".format(error=e))
# -----------------------------------------------------------------------------
# Comparators
def equalContents(arr1, arr2):
"""Checks if the set of unique elements of arr1 and arr2 are equivalent.
"""
return frozenset(arr1) == frozenset(arr2)
def assert_index_equal(left, right, exact='equiv', check_names=True,
check_less_precise=False, check_exact=True,
check_categorical=True, obj='Index'):
"""Check that left and right Index are equal.
Parameters
----------
left : Index
right : Index
exact : bool / string {'equiv'}, default False
Whether to check the Index class, dtype and inferred_type
are identical. If 'equiv', then RangeIndex can be substituted for
Int64Index as well.
check_names : bool, default True
Whether to check the names attribute.
check_less_precise : bool or int, default False
Specify comparison precision. Only used when check_exact is False.
5 digits (False) or 3 digits (True) after decimal points are compared.
If int, then specify the digits to compare
check_exact : bool, default True
Whether to compare number exactly.
check_categorical : bool, default True
Whether to compare internal Categorical exactly.
obj : str, default 'Index'
Specify object name being compared, internally used to show appropriate
assertion message
"""
def _check_types(l, r, obj='Index'):
if exact:
assert_class_equal(l, r, exact=exact, obj=obj)
# Skip exact dtype checking when `check_categorical` is False
if check_categorical:
assert_attr_equal('dtype', l, r, obj=obj)
# allow string-like to have different inferred_types
if l.inferred_type in ('string', 'unicode'):
assert r.inferred_type in ('string', 'unicode')
else:
assert_attr_equal('inferred_type', l, r, obj=obj)
def _get_ilevel_values(index, level):
# accept level number only
unique = index.levels[level]
labels = index.labels[level]
filled = take_1d(unique.values, labels, fill_value=unique._na_value)
values = unique._shallow_copy(filled, name=index.names[level])
return values
# instance validation
_check_isinstance(left, right, Index)
# class / dtype comparison
_check_types(left, right, obj=obj)
# level comparison
if left.nlevels != right.nlevels:
msg1 = '{obj} levels are different'.format(obj=obj)
msg2 = '{nlevels}, {left}'.format(nlevels=left.nlevels, left=left)
msg3 = '{nlevels}, {right}'.format(nlevels=right.nlevels, right=right)
raise_assert_detail(obj, msg1, msg2, msg3)
# length comparison
if len(left) != len(right):
msg1 = '{obj} length are different'.format(obj=obj)
msg2 = '{length}, {left}'.format(length=len(left), left=left)
msg3 = '{length}, {right}'.format(length=len(right), right=right)
raise_assert_detail(obj, msg1, msg2, msg3)
# MultiIndex special comparison for little-friendly error messages
if left.nlevels > 1:
for level in range(left.nlevels):
# cannot use get_level_values here because it can change dtype
llevel = _get_ilevel_values(left, level)
rlevel = _get_ilevel_values(right, level)
lobj = 'MultiIndex level [{level}]'.format(level=level)
assert_index_equal(llevel, rlevel,
exact=exact, check_names=check_names,
check_less_precise=check_less_precise,
check_exact=check_exact, obj=lobj)
# get_level_values may change dtype
_check_types(left.levels[level], right.levels[level], obj=obj)
# skip exact index checking when `check_categorical` is False
if check_exact and check_categorical:
if not left.equals(right):
diff = np.sum((left.values != right.values)
.astype(int)) * 100.0 / len(left)
msg = '{obj} values are different ({pct} %)'.format(
obj=obj, pct=np.round(diff, 5))
raise_assert_detail(obj, msg, left, right)
else:
_testing.assert_almost_equal(left.values, right.values,
check_less_precise=check_less_precise,
check_dtype=exact,
obj=obj, lobj=left, robj=right)
# metadata comparison
if check_names:
assert_attr_equal('names', left, right, obj=obj)
if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex):
assert_attr_equal('freq', left, right, obj=obj)
if (isinstance(left, pd.IntervalIndex) or
isinstance(right, pd.IntervalIndex)):
assert_attr_equal('closed', left, right, obj=obj)
if check_categorical:
if is_categorical_dtype(left) or is_categorical_dtype(right):
assert_categorical_equal(left.values, right.values,
obj='{obj} category'.format(obj=obj))
def assert_class_equal(left, right, exact=True, obj='Input'):
"""checks classes are equal."""
def repr_class(x):
if isinstance(x, Index):
# return Index as it is to include values in the error message
return x
try:
return x.__class__.__name__
except AttributeError:
return repr(type(x))
if exact == 'equiv':
if type(left) != type(right):
# allow equivalence of Int64Index/RangeIndex
types = set([type(left).__name__, type(right).__name__])
if len(types - set(['Int64Index', 'RangeIndex'])):
msg = '{obj} classes are not equivalent'.format(obj=obj)
raise_assert_detail(obj, msg, repr_class(left),
repr_class(right))
elif exact:
if type(left) != type(right):
msg = '{obj} classes are different'.format(obj=obj)
raise_assert_detail(obj, msg, repr_class(left),
repr_class(right))
def assert_attr_equal(attr, left, right, obj='Attributes'):
"""checks attributes are equal. Both objects must have attribute.
Parameters
----------
attr : str
Attribute name being compared.
left : object
right : object
obj : str, default 'Attributes'
Specify object name being compared, internally used to show appropriate
assertion message
"""
left_attr = getattr(left, attr)
right_attr = getattr(right, attr)
if left_attr is right_attr:
return True
elif (is_number(left_attr) and np.isnan(left_attr) and
is_number(right_attr) and np.isnan(right_attr)):
# np.nan
return True
try:
result = left_attr == right_attr
except TypeError:
# datetimetz on rhs may raise TypeError
result = False
if not isinstance(result, bool):
result = result.all()
if result:
return True
else:
msg = 'Attribute "{attr}" are different'.format(attr=attr)
raise_assert_detail(obj, msg, left_attr, right_attr)
def assert_is_valid_plot_return_object(objs):
import matplotlib.pyplot as plt
if isinstance(objs, (pd.Series, np.ndarray)):
for el in objs.ravel():
msg = ('one of \'objs\' is not a matplotlib Axes instance, type '
'encountered {name!r}').format(name=el.__class__.__name__)
assert isinstance(el, (plt.Axes, dict)), msg
else:
assert isinstance(objs, (plt.Artist, tuple, dict)), \
('objs is neither an ndarray of Artist instances nor a '
'single Artist instance, tuple, or dict, "objs" is a {name!r}'
).format(name=objs.__class__.__name__)
def isiterable(obj):
return hasattr(obj, '__iter__')
def is_sorted(seq):
if isinstance(seq, (Index, Series)):
seq = seq.values
# sorting does not change precisions
return assert_numpy_array_equal(seq, np.sort(np.array(seq)))
def assert_categorical_equal(left, right, check_dtype=True,
check_category_order=True, obj='Categorical'):
"""Test that Categoricals are equivalent.
Parameters
----------
left : Categorical
right : Categorical
check_dtype : bool, default True
Check that integer dtype of the codes are the same
check_category_order : bool, default True
Whether the order of the categories should be compared, which
implies identical integer codes. If False, only the resulting
values are compared. The ordered attribute is
checked regardless.
obj : str, default 'Categorical'
Specify object name being compared, internally used to show appropriate
assertion message
"""
_check_isinstance(left, right, Categorical)
if check_category_order:
assert_index_equal(left.categories, right.categories,
obj='{obj}.categories'.format(obj=obj))
assert_numpy_array_equal(left.codes, right.codes,
check_dtype=check_dtype,
obj='{obj}.codes'.format(obj=obj))
else:
assert_index_equal(left.categories.sort_values(),
right.categories.sort_values(),
obj='{obj}.categories'.format(obj=obj))
assert_index_equal(left.categories.take(left.codes),
right.categories.take(right.codes),
obj='{obj}.values'.format(obj=obj))
assert_attr_equal('ordered', left, right, obj=obj)
def raise_assert_detail(obj, message, left, right, diff=None):
if isinstance(left, np.ndarray):
left = pprint_thing(left)
elif is_categorical_dtype(left):
left = repr(left)
if PY2 and isinstance(left, string_types):
# left needs to be printable in native text type in python2
left = left.encode('utf-8')
if isinstance(right, np.ndarray):
right = pprint_thing(right)
elif is_categorical_dtype(right):
right = repr(right)
if PY2 and isinstance(right, string_types):
# right needs to be printable in native text type in python2
right = right.encode('utf-8')
msg = """{obj} are different
{message}
[left]: {left}
[right]: {right}""".format(obj=obj, message=message, left=left, right=right)
if diff is not None:
msg += "\n[diff]: {diff}".format(diff=diff)
raise AssertionError(msg)
def assert_numpy_array_equal(left, right, strict_nan=False,
check_dtype=True, err_msg=None,
check_same=None, obj='numpy array'):
""" Checks that 'np.ndarray' is equivalent
Parameters
----------
left : np.ndarray or iterable
right : np.ndarray or iterable
strict_nan : bool, default False
If True, consider NaN and None to be different.
check_dtype: bool, default True
check dtype if both a and b are np.ndarray
err_msg : str, default None
If provided, used as assertion message
check_same : None|'copy'|'same', default None
Ensure left and right refer/do not refer to the same memory area
obj : str, default 'numpy array'
Specify object name being compared, internally used to show appropriate
assertion message
"""
# instance validation
# Show a detailed error message when classes are different
assert_class_equal(left, right, obj=obj)
# both classes must be an np.ndarray
_check_isinstance(left, right, np.ndarray)
def _get_base(obj):
return obj.base if getattr(obj, 'base', None) is not None else obj
left_base = _get_base(left)
right_base = _get_base(right)
if check_same == 'same':
if left_base is not right_base:
msg = "{left!r} is not {right!r}".format(
left=left_base, right=right_base)
raise AssertionError(msg)
elif check_same == 'copy':
if left_base is right_base:
msg = "{left!r} is {right!r}".format(
left=left_base, right=right_base)
raise AssertionError(msg)
def _raise(left, right, err_msg):
if err_msg is None:
if left.shape != right.shape:
raise_assert_detail(obj, '{obj} shapes are different'
.format(obj=obj), left.shape, right.shape)
diff = 0
for l, r in zip(left, right):
# count up differences
if not array_equivalent(l, r, strict_nan=strict_nan):
diff += 1
diff = diff * 100.0 / left.size
msg = '{obj} values are different ({pct} %)'.format(
obj=obj, pct=np.round(diff, 5))
raise_assert_detail(obj, msg, left, right)
raise AssertionError(err_msg)
# compare shape and values
if not array_equivalent(left, right, strict_nan=strict_nan):
_raise(left, right, err_msg)
if check_dtype:
if isinstance(left, np.ndarray) and isinstance(right, np.ndarray):
assert_attr_equal('dtype', left, right, obj=obj)
return True
def assert_extension_array_equal(left, right):
"""Check that left and right ExtensionArrays are equal.
Parameters
----------
left, right : ExtensionArray
The two arrays to compare
Notes
-----
Missing values are checked separately from valid values.
A mask of missing values is computed for each and checked to match.
The remaining all-valid values are cast to object dtype and checked.
"""
assert isinstance(left, ExtensionArray)
assert left.dtype == right.dtype
left_na = left.isna()
right_na = right.isna()
assert_numpy_array_equal(left_na, right_na)
left_valid = left[~left_na].astype(object)
right_valid = right[~right_na].astype(object)
assert_numpy_array_equal(left_valid, right_valid)
# This could be refactored to use the NDFrame.equals method
def assert_series_equal(left, right, check_dtype=True,
check_index_type='equiv',
check_series_type=True,
check_less_precise=False,
check_names=True,
check_exact=False,
check_datetimelike_compat=False,
check_categorical=True,
obj='Series'):
"""Check that left and right Series are equal.
Parameters
----------
left : Series
right : Series
check_dtype : bool, default True
Whether to check the Series dtype is identical.
check_index_type : bool / string {'equiv'}, default 'equiv'
Whether to check the Index class, dtype and inferred_type
are identical.
check_series_type : bool, default True
Whether to check the Series class is identical.
check_less_precise : bool or int, default False
Specify comparison precision. Only used when check_exact is False.
5 digits (False) or 3 digits (True) after decimal points are compared.
If int, then specify the digits to compare
check_exact : bool, default False
Whether to compare number exactly.
check_names : bool, default True
Whether to check the Series and Index names attribute.
check_datetimelike_compat : bool, default False
Compare datetime-like which is comparable ignoring dtype.
check_categorical : bool, default True
Whether to compare internal Categorical exactly.
obj : str, default 'Series'
Specify object name being compared, internally used to show appropriate
assertion message
"""
# instance validation
_check_isinstance(left, right, Series)
if check_series_type:
# ToDo: There are some tests using rhs is sparse
# lhs is dense. Should use assert_class_equal in future
assert isinstance(left, type(right))
# assert_class_equal(left, right, obj=obj)
# length comparison
if len(left) != len(right):
msg1 = '{len}, {left}'.format(len=len(left), left=left.index)
msg2 = '{len}, {right}'.format(len=len(right), right=right.index)
raise_assert_detail(obj, 'Series length are different', msg1, msg2)
# index comparison
assert_index_equal(left.index, right.index, exact=check_index_type,
check_names=check_names,
check_less_precise=check_less_precise,
check_exact=check_exact,
check_categorical=check_categorical,
obj='{obj}.index'.format(obj=obj))
if check_dtype:
# We want to skip exact dtype checking when `check_categorical`
# is False. We'll still raise if only one is a `Categorical`,
# regardless of `check_categorical`
if (is_categorical_dtype(left) and is_categorical_dtype(right) and
not check_categorical):
pass
else:
assert_attr_equal('dtype', left, right)
if check_exact:
assert_numpy_array_equal(left.get_values(), right.get_values(),
check_dtype=check_dtype,
obj='{obj}'.format(obj=obj),)
elif check_datetimelike_compat:
# we want to check only if we have compat dtypes
# e.g. integer and M|m are NOT compat, but we can simply check
# the values in that case
if (is_datetimelike_v_numeric(left, right) or
is_datetimelike_v_object(left, right) or
needs_i8_conversion(left) or
needs_i8_conversion(right)):
# datetimelike may have different objects (e.g. datetime.datetime
# vs Timestamp) but will compare equal
if not Index(left.values).equals(Index(right.values)):
msg = ('[datetimelike_compat=True] {left} is not equal to '
'{right}.').format(left=left.values, right=right.values)
raise AssertionError(msg)
else:
assert_numpy_array_equal(left.get_values(), right.get_values(),
check_dtype=check_dtype)
elif is_interval_dtype(left) or is_interval_dtype(right):
# TODO: big hack here
left = pd.IntervalIndex(left)
right = pd.IntervalIndex(right)
assert_index_equal(left, right, obj='{obj}.index'.format(obj=obj))
else:
_testing.assert_almost_equal(left.get_values(), right.get_values(),
check_less_precise=check_less_precise,
check_dtype=check_dtype,
obj='{obj}'.format(obj=obj))
# metadata comparison
if check_names:
assert_attr_equal('name', left, right, obj=obj)
if check_categorical:
if is_categorical_dtype(left) or is_categorical_dtype(right):
assert_categorical_equal(left.values, right.values,
obj='{obj} category'.format(obj=obj))
# This could be refactored to use the NDFrame.equals method
def assert_frame_equal(left, right, check_dtype=True,
check_index_type='equiv',
check_column_type='equiv',
check_frame_type=True,
check_less_precise=False,
check_names=True,
by_blocks=False,
check_exact=False,
check_datetimelike_compat=False,
check_categorical=True,
check_like=False,
obj='DataFrame'):
"""Check that left and right DataFrame are equal.
Parameters
----------
left : DataFrame
right : DataFrame
check_dtype : bool, default True
Whether to check the DataFrame dtype is identical.
check_index_type : bool / string {'equiv'}, default False
Whether to check the Index class, dtype and inferred_type
are identical.
check_column_type : bool / string {'equiv'}, default False
Whether to check the columns class, dtype and inferred_type
are identical.
check_frame_type : bool, default False
Whether to check the DataFrame class is identical.
check_less_precise : bool or int, default False
Specify comparison precision. Only used when check_exact is False.
5 digits (False) or 3 digits (True) after decimal points are compared.
If int, then specify the digits to compare
check_names : bool, default True
Whether to check the Index names attribute.
by_blocks : bool, default False
Specify how to compare internal data. If False, compare by columns.
If True, compare by blocks.
check_exact : bool, default False
Whether to compare number exactly.
check_datetimelike_compat : bool, default False
Compare datetime-like which is comparable ignoring dtype.
check_categorical : bool, default True
Whether to compare internal Categorical exactly.
check_like : bool, default False
If true, ignore the order of rows & columns
obj : str, default 'DataFrame'
Specify object name being compared, internally used to show appropriate
assertion message
"""
# instance validation
_check_isinstance(left, right, DataFrame)
if check_frame_type:
# ToDo: There are some tests using rhs is SparseDataFrame
# lhs is DataFrame. Should use assert_class_equal in future
assert isinstance(left, type(right))
# assert_class_equal(left, right, obj=obj)
# shape comparison
if left.shape != right.shape:
raise_assert_detail(obj,
'DataFrame shape mismatch',
'{shape!r}'.format(shape=left.shape),
'{shape!r}'.format(shape=right.shape))
if check_like:
left, right = left.reindex_like(right), right
# index comparison
assert_index_equal(left.index, right.index, exact=check_index_type,
check_names=check_names,
check_less_precise=check_less_precise,
check_exact=check_exact,
check_categorical=check_categorical,
obj='{obj}.index'.format(obj=obj))
# column comparison
assert_index_equal(left.columns, right.columns, exact=check_column_type,
check_names=check_names,
check_less_precise=check_less_precise,
check_exact=check_exact,
check_categorical=check_categorical,
obj='{obj}.columns'.format(obj=obj))
# compare by blocks
if by_blocks:
rblocks = right._to_dict_of_blocks()
lblocks = left._to_dict_of_blocks()
for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))):
assert dtype in lblocks
assert dtype in rblocks
assert_frame_equal(lblocks[dtype], rblocks[dtype],
check_dtype=check_dtype, obj='DataFrame.blocks')
# compare by columns
else:
for i, col in enumerate(left.columns):
assert col in right
lcol = left.iloc[:, i]
rcol = right.iloc[:, i]
assert_series_equal(
lcol, rcol, check_dtype=check_dtype,
check_index_type=check_index_type,
check_less_precise=check_less_precise,
check_exact=check_exact, check_names=check_names,
check_datetimelike_compat=check_datetimelike_compat,
check_categorical=check_categorical,
obj='DataFrame.iloc[:, {idx}]'.format(idx=i))
def assert_panel_equal(left, right,
check_dtype=True,
check_panel_type=False,
check_less_precise=False,
check_names=False,
by_blocks=False,
obj='Panel'):
"""Check that left and right Panels are equal.
Parameters
----------
left : Panel (or nd)
right : Panel (or nd)
check_dtype : bool, default True
Whether to check the Panel dtype is identical.
check_panel_type : bool, default False
Whether to check the Panel class is identical.
check_less_precise : bool or int, default False
Specify comparison precision. Only used when check_exact is False.
5 digits (False) or 3 digits (True) after decimal points are compared.
If int, then specify the digits to compare
check_names : bool, default True
Whether to check the Index names attribute.
by_blocks : bool, default False
Specify how to compare internal data. If False, compare by columns.
If True, compare by blocks.
obj : str, default 'Panel'
Specify the object name being compared, internally used to show
the appropriate assertion message.
"""
if check_panel_type:
assert_class_equal(left, right, obj=obj)
for axis in left._AXIS_ORDERS:
left_ind = getattr(left, axis)
right_ind = getattr(right, axis)
assert_index_equal(left_ind, right_ind, check_names=check_names)
if by_blocks:
rblocks = right._to_dict_of_blocks()
lblocks = left._to_dict_of_blocks()
for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))):
assert dtype in lblocks
assert dtype in rblocks
array_equivalent(lblocks[dtype].values, rblocks[dtype].values)
else:
# can potentially be slow
for i, item in enumerate(left._get_axis(0)):
msg = "non-matching item (right) '{item}'".format(item=item)
assert item in right, msg
litem = left.iloc[i]
ritem = right.iloc[i]
assert_frame_equal(litem, ritem,
check_less_precise=check_less_precise,
check_names=check_names)
for i, item in enumerate(right._get_axis(0)):
msg = "non-matching item (left) '{item}'".format(item=item)
assert item in left, msg
# -----------------------------------------------------------------------------
# Sparse
def assert_sp_array_equal(left, right, check_dtype=True):
"""Check that the left and right SparseArray are equal.
Parameters
----------
left : SparseArray
right : SparseArray
check_dtype : bool, default True
Whether to check the data dtype is identical.
"""
_check_isinstance(left, right, pd.SparseArray)
assert_numpy_array_equal(left.sp_values, right.sp_values,
check_dtype=check_dtype)
# SparseIndex comparison
assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex)
assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex)
if not left.sp_index.equals(right.sp_index):
raise_assert_detail('SparseArray.index', 'index are not equal',
left.sp_index, right.sp_index)
assert_attr_equal('fill_value', left, right)
if check_dtype:
assert_attr_equal('dtype', left, right)
assert_numpy_array_equal(left.values, right.values,
check_dtype=check_dtype)
def assert_sp_series_equal(left, right, check_dtype=True, exact_indices=True,
check_series_type=True, check_names=True,
obj='SparseSeries'):
"""Check that the left and right SparseSeries are equal.
Parameters
----------
left : SparseSeries
right : SparseSeries
check_dtype : bool, default True
Whether to check the Series dtype is identical.
exact_indices : bool, default True
check_series_type : bool, default True
Whether to check the SparseSeries class is identical.
check_names : bool, default True
Whether to check the SparseSeries name attribute.
obj : str, default 'SparseSeries'
Specify the object name being compared, internally used to show
the appropriate assertion message.
"""
_check_isinstance(left, right, pd.SparseSeries)
if check_series_type:
assert_class_equal(left, right, obj=obj)
assert_index_equal(left.index, right.index,
obj='{obj}.index'.format(obj=obj))
assert_sp_array_equal(left.block.values, right.block.values)
if check_names:
assert_attr_equal('name', left, right)
if check_dtype:
assert_attr_equal('dtype', left, right)
assert_numpy_array_equal(left.values, right.values)
def assert_sp_frame_equal(left, right, check_dtype=True, exact_indices=True,
check_frame_type=True, obj='SparseDataFrame'):
"""Check that the left and right SparseDataFrame are equal.
Parameters
----------
left : SparseDataFrame
right : SparseDataFrame
check_dtype : bool, default True
Whether to check the Series dtype is identical.
exact_indices : bool, default True
SparseSeries SparseIndex objects must be exactly the same,
otherwise just compare dense representations.
check_frame_type : bool, default True
Whether to check the SparseDataFrame class is identical.
obj : str, default 'SparseDataFrame'
Specify the object name being compared, internally used to show
the appropriate assertion message.
"""
_check_isinstance(left, right, pd.SparseDataFrame)
if check_frame_type:
assert_class_equal(left, right, obj=obj)
assert_index_equal(left.index, right.index,
obj='{obj}.index'.format(obj=obj))
assert_index_equal(left.columns, right.columns,
obj='{obj}.columns'.format(obj=obj))
for col, series in compat.iteritems(left):
assert (col in right)
# trade-off?
if exact_indices:
assert_sp_series_equal(series, right[col],
check_dtype=check_dtype)
else:
assert_series_equal(series.to_dense(), right[col].to_dense(),
check_dtype=check_dtype)
assert_attr_equal('default_fill_value', left, right, obj=obj)
# do I care?
# assert(left.default_kind == right.default_kind)
for col in right:
assert (col in left)
# -----------------------------------------------------------------------------
# Others
def assert_contains_all(iterable, dic):
for k in iterable:
assert k in dic, "Did not contain item: '{key!r}'".format(key=k)
def assert_copy(iter1, iter2, **eql_kwargs):
"""
iter1, iter2: iterables that produce elements
comparable with assert_almost_equal
Checks that the elements are equal, but not
the same object. (Does not check that items
in sequences are also not the same object)
"""
for elem1, elem2 in zip(iter1, iter2):
assert_almost_equal(elem1, elem2, **eql_kwargs)
msg = ("Expected object {obj1!r} and object {obj2!r} to be "
"different objects, but they were the same object."
).format(obj1=type(elem1), obj2=type(elem2))
assert elem1 is not elem2, msg
def getCols(k):
return string.ascii_uppercase[:k]
def getArangeMat():
return np.arange(N * K).reshape((N, K))
# make index
def makeStringIndex(k=10, name=None):
return Index(rands_array(nchars=10, size=k), name=name)
def makeUnicodeIndex(k=10, name=None):
return Index(randu_array(nchars=10, size=k), name=name)
def makeCategoricalIndex(k=10, n=3, name=None, **kwargs):
""" make a length k index or n categories """
x = rands_array(nchars=4, size=n)
return CategoricalIndex(np.random.choice(x, k), name=name, **kwargs)
def makeIntervalIndex(k=10, name=None, **kwargs):
""" make a length k IntervalIndex """
x = np.linspace(0, 100, num=(k + 1))
return IntervalIndex.from_breaks(x, name=name, **kwargs)
def makeBoolIndex(k=10, name=None):
if k == 1:
return Index([True], name=name)
elif k == 2:
return Index([False, True], name=name)
return Index([False, True] + [False] * (k - 2), name=name)
def makeIntIndex(k=10, name=None):
return Index(lrange(k), name=name)
def makeUIntIndex(k=10, name=None):
return Index([2**63 + i for i in lrange(k)], name=name)
def makeRangeIndex(k=10, name=None, **kwargs):
return RangeIndex(0, k, 1, name=name, **kwargs)
def makeFloatIndex(k=10, name=None):
values = sorted(np.random.random_sample(k)) - np.random.random_sample(1)
return Index(values * (10 ** np.random.randint(0, 9)), name=name)
def makeDateIndex(k=10, freq='B', name=None, **kwargs):
dt = datetime(2000, 1, 1)
dr = bdate_range(dt, periods=k, freq=freq, name=name)
return DatetimeIndex(dr, name=name, **kwargs)
def makeTimedeltaIndex(k=10, freq='D', name=None, **kwargs):
return TimedeltaIndex(start='1 day', periods=k, freq=freq,
name=name, **kwargs)
def makePeriodIndex(k=10, name=None, **kwargs):
dt = datetime(2000, 1, 1)
dr = PeriodIndex(start=dt, periods=k, freq='B', name=name, **kwargs)
return dr
def makeMultiIndex(k=10, names=None, **kwargs):
return MultiIndex.from_product(
(('foo', 'bar'), (1, 2)), names=names, **kwargs)
def all_index_generator(k=10):
"""Generator which can be iterated over to get instances of all the various
index classes.
Parameters
----------
k: length of each of the index instances
"""
all_make_index_funcs = [makeIntIndex, makeFloatIndex, makeStringIndex,
makeUnicodeIndex, makeDateIndex, makePeriodIndex,
makeTimedeltaIndex, makeBoolIndex, makeRangeIndex,
makeIntervalIndex,
makeCategoricalIndex]
for make_index_func in all_make_index_funcs:
yield make_index_func(k=k)
def index_subclass_makers_generator():
make_index_funcs = [
makeDateIndex, makePeriodIndex,
makeTimedeltaIndex, makeRangeIndex,
makeIntervalIndex, makeCategoricalIndex,
makeMultiIndex
]
for make_index_func in make_index_funcs:
yield make_index_func
def all_timeseries_index_generator(k=10):
"""Generator which can be iterated over to get instances of all the classes
which represent time-seires.
Parameters
----------
k: length of each of the index instances
"""
make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex]
for make_index_func in make_index_funcs:
yield make_index_func(k=k)
# make series
def makeFloatSeries(name=None):
index = makeStringIndex(N)
return Series(randn(N), index=index, name=name)
def makeStringSeries(name=None):
index = makeStringIndex(N)
return Series(randn(N), index=index, name=name)
def makeObjectSeries(name=None):
dateIndex = makeDateIndex(N)
dateIndex = Index(dateIndex, dtype=object)
index = makeStringIndex(N)
return Series(dateIndex, index=index, name=name)
def getSeriesData():
index = makeStringIndex(N)
return {c: Series(randn(N), index=index) for c in getCols(K)}
def makeTimeSeries(nper=None, freq='B', name=None):
if nper is None:
nper = N
return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name)
def makePeriodSeries(nper=None, name=None):
if nper is None:
nper = N
return Series(randn(nper), index=makePeriodIndex(nper), name=name)
def getTimeSeriesData(nper=None, freq='B'):
return {c: makeTimeSeries(nper, freq) for c in getCols(K)}
def getPeriodData(nper=None):
return {c: makePeriodSeries(nper) for c in getCols(K)}
# make frame
def makeTimeDataFrame(nper=None, freq='B'):
data = getTimeSeriesData(nper, freq)
return DataFrame(data)
def makeDataFrame():
data = getSeriesData()
return DataFrame(data)
def getMixedTypeDict():
index = Index(['a', 'b', 'c', 'd', 'e'])
data = {
'A': [0., 1., 2., 3., 4.],
'B': [0., 1., 0., 1., 0.],
'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'],
'D': bdate_range('1/1/2009', periods=5)
}
return index, data
def makeMixedDataFrame():
return DataFrame(getMixedTypeDict()[1])
def makePeriodFrame(nper=None):
data = getPeriodData(nper)
return DataFrame(data)
def makePanel(nper=None):
with warnings.catch_warnings(record=True):
cols = ['Item' + c for c in string.ascii_uppercase[:K - 1]]
data = {c: makeTimeDataFrame(nper) for c in cols}
return Panel.fromDict(data)
def makePeriodPanel(nper=None):
with warnings.catch_warnings(record=True):
cols = ['Item' + c for c in string.ascii_uppercase[:K - 1]]
data = {c: makePeriodFrame(nper) for c in cols}
return Panel.fromDict(data)
def makeCustomIndex(nentries, nlevels, prefix='#', names=False, ndupe_l=None,
idx_type=None):
"""Create an index/multindex with given dimensions, levels, names, etc'
nentries - number of entries in index
nlevels - number of levels (> 1 produces multindex)
prefix - a string prefix for labels
names - (Optional), bool or list of strings. if True will use default
names, if false will use no names, if a list is given, the name of
each level in the index will be taken from the list.
ndupe_l - (Optional), list of ints, the number of rows for which the
label will repeated at the corresponding level, you can specify just
the first few, the rest will use the default ndupe_l of 1.
len(ndupe_l) <= nlevels.
idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td".
If idx_type is not None, `idx_nlevels` must be 1.
"i"/"f" creates an integer/float index,
"s"/"u" creates a string/unicode index
"dt" create a datetime index.
"td" create a datetime index.
if unspecified, string labels will be generated.
"""
if ndupe_l is None:
ndupe_l = [1] * nlevels
assert (is_sequence(ndupe_l) and len(ndupe_l) <= nlevels)
assert (names is None or names is False or
names is True or len(names) is nlevels)
assert idx_type is None or \
(idx_type in ('i', 'f', 's', 'u', 'dt', 'p', 'td') and nlevels == 1)
if names is True:
# build default names
names = [prefix + str(i) for i in range(nlevels)]
if names is False:
# pass None to index constructor for no name
names = None
# make singelton case uniform
if isinstance(names, compat.string_types) and nlevels == 1:
names = [names]
# specific 1D index type requested?
idx_func = dict(i=makeIntIndex, f=makeFloatIndex,
s=makeStringIndex, u=makeUnicodeIndex,
dt=makeDateIndex, td=makeTimedeltaIndex,
p=makePeriodIndex).get(idx_type)
if idx_func:
idx = idx_func(nentries)
# but we need to fill in the name
if names:
idx.name = names[0]
return idx
elif idx_type is not None:
raise ValueError('"{idx_type}" is not a legal value for `idx_type`, '
'use "i"/"f"/"s"/"u"/"dt/"p"/"td".'
.format(idx_type=idx_type))
if len(ndupe_l) < nlevels:
ndupe_l.extend([1] * (nlevels - len(ndupe_l)))
assert len(ndupe_l) == nlevels
assert all(x > 0 for x in ndupe_l)
tuples = []
for i in range(nlevels):
def keyfunc(x):
import re
numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_")
return lmap(int, numeric_tuple)
# build a list of lists to create the index from
div_factor = nentries // ndupe_l[i] + 1
cnt = Counter()
for j in range(div_factor):
label = '{prefix}_l{i}_g{j}'.format(prefix=prefix, i=i, j=j)
cnt[label] = ndupe_l[i]
# cute Counter trick
result = list(sorted(cnt.elements(), key=keyfunc))[:nentries]
tuples.append(result)
tuples = lzip(*tuples)
# convert tuples to index
if nentries == 1:
# we have a single level of tuples, i.e. a regular Index
index = Index(tuples[0], name=names[0])
elif nlevels == 1:
name = None if names is None else names[0]
index = Index((x[0] for x in tuples), name=name)
else:
index = MultiIndex.from_tuples(tuples, names=names)
return index
def makeCustomDataframe(nrows, ncols, c_idx_names=True, r_idx_names=True,
c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None,
c_ndupe_l=None, r_ndupe_l=None, dtype=None,
c_idx_type=None, r_idx_type=None):
"""
nrows, ncols - number of data rows/cols
c_idx_names, idx_names - False/True/list of strings, yields No names ,
default names or uses the provided names for the levels of the
corresponding index. You can provide a single string when
c_idx_nlevels ==1.
c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex
r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex
data_gen_f - a function f(row,col) which return the data value
at that position, the default generator used yields values of the form
"RxCy" based on position.
c_ndupe_l, r_ndupe_l - list of integers, determines the number
of duplicates for each label at a given level of the corresponding
index. The default `None` value produces a multiplicity of 1 across
all levels, i.e. a unique index. Will accept a partial list of length
N < idx_nlevels, for just the first N levels. If ndupe doesn't divide
nrows/ncol, the last label might have lower multiplicity.
dtype - passed to the DataFrame constructor as is, in case you wish to
have more control in conjuncion with a custom `data_gen_f`
r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt"/"td".
If idx_type is not None, `idx_nlevels` must be 1.
"i"/"f" creates an integer/float index,
"s"/"u" creates a string/unicode index
"dt" create a datetime index.
"td" create a timedelta index.
if unspecified, string labels will be generated.
Examples:
# 5 row, 3 columns, default names on both, single index on both axis
>> makeCustomDataframe(5,3)
# make the data a random int between 1 and 100
>> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100))
# 2-level multiindex on rows with each label duplicated
# twice on first level, default names on both axis, single
# index on both axis
>> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2])
# DatetimeIndex on row, index with unicode labels on columns
# no names on either axis
>> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False,
r_idx_type="dt",c_idx_type="u")
# 4-level multindex on rows with names provided, 2-level multindex
# on columns with default labels and default names.
>> a=makeCustomDataframe(5,3,r_idx_nlevels=4,
r_idx_names=["FEE","FI","FO","FAM"],
c_idx_nlevels=2)
>> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
"""
assert c_idx_nlevels > 0
assert r_idx_nlevels > 0
assert r_idx_type is None or \
(r_idx_type in ('i', 'f', 's',
'u', 'dt', 'p', 'td') and r_idx_nlevels == 1)
assert c_idx_type is None or \
(c_idx_type in ('i', 'f', 's',
'u', 'dt', 'p', 'td') and c_idx_nlevels == 1)
columns = makeCustomIndex(ncols, nlevels=c_idx_nlevels, prefix='C',
names=c_idx_names, ndupe_l=c_ndupe_l,
idx_type=c_idx_type)
index = makeCustomIndex(nrows, nlevels=r_idx_nlevels, prefix='R',
names=r_idx_names, ndupe_l=r_ndupe_l,
idx_type=r_idx_type)
# by default, generate data based on location
if data_gen_f is None:
data_gen_f = lambda r, c: "R{rows}C{cols}".format(rows=r, cols=c)
data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)]
return DataFrame(data, index, columns, dtype=dtype)
def _create_missing_idx(nrows, ncols, density, random_state=None):
if random_state is None:
random_state = np.random
else:
random_state = np.random.RandomState(random_state)
# below is cribbed from scipy.sparse
size = int(np.round((1 - density) * nrows * ncols))
# generate a few more to ensure unique values
min_rows = 5
fac = 1.02
extra_size = min(size + min_rows, fac * size)
def _gen_unique_rand(rng, _extra_size):
ind = rng.rand(int(_extra_size))
return np.unique(np.floor(ind * nrows * ncols))[:size]
ind = _gen_unique_rand(random_state, extra_size)
while ind.size < size:
extra_size *= 1.05
ind = _gen_unique_rand(random_state, extra_size)
j = np.floor(ind * 1. / nrows).astype(int)
i = (ind - j * nrows).astype(int)
return i.tolist(), j.tolist()
def makeMissingCustomDataframe(nrows, ncols, density=.9, random_state=None,
c_idx_names=True, r_idx_names=True,
c_idx_nlevels=1, r_idx_nlevels=1,
data_gen_f=None,
c_ndupe_l=None, r_ndupe_l=None, dtype=None,
c_idx_type=None, r_idx_type=None):
"""
Parameters
----------
Density : float, optional
Float in (0, 1) that gives the percentage of non-missing numbers in
the DataFrame.
random_state : {np.random.RandomState, int}, optional
Random number generator or random seed.
See makeCustomDataframe for descriptions of the rest of the parameters.
"""
df = makeCustomDataframe(nrows, ncols, c_idx_names=c_idx_names,
r_idx_names=r_idx_names,
c_idx_nlevels=c_idx_nlevels,
r_idx_nlevels=r_idx_nlevels,
data_gen_f=data_gen_f,
c_ndupe_l=c_ndupe_l, r_ndupe_l=r_ndupe_l,
dtype=dtype, c_idx_type=c_idx_type,
r_idx_type=r_idx_type)
i, j = _create_missing_idx(nrows, ncols, density, random_state)
df.values[i, j] = np.nan
return df
def makeMissingDataframe(density=.9, random_state=None):
df = makeDataFrame()
i, j = _create_missing_idx(*df.shape, density=density,
random_state=random_state)
df.values[i, j] = np.nan
return df
def add_nans(panel):
I, J, N = panel.shape
for i, item in enumerate(panel.items):
dm = panel[item]
for j, col in enumerate(dm.columns):
dm[col][:i + j] = np.NaN
return panel
def add_nans_panel4d(panel4d):
for l, label in enumerate(panel4d.labels):
panel = panel4d[label]
add_nans(panel)
return panel4d
class TestSubDict(dict):
def __init__(self, *args, **kwargs):
dict.__init__(self, *args, **kwargs)
def optional_args(decorator):
"""allows a decorator to take optional positional and keyword arguments.
Assumes that taking a single, callable, positional argument means that
it is decorating a function, i.e. something like this::
@my_decorator
def function(): pass
Calls decorator with decorator(f, *args, **kwargs)"""
@wraps(decorator)
def wrapper(*args, **kwargs):
def dec(f):
return decorator(f, *args, **kwargs)
is_decorating = not kwargs and len(args) == 1 and callable(args[0])
if is_decorating:
f = args[0]
args = []
return dec(f)
else:
return dec
return wrapper
# skip tests on exceptions with this message
_network_error_messages = (
# 'urlopen error timed out',
# 'timeout: timed out',
# 'socket.timeout: timed out',
'timed out',
'Server Hangup',
'HTTP Error 503: Service Unavailable',
'502: Proxy Error',
'HTTP Error 502: internal error',
'HTTP Error 502',
'HTTP Error 503',
'HTTP Error 403',
'HTTP Error 400',
'Temporary failure in name resolution',
'Name or service not known',
'Connection refused',
'certificate verify',
)
# or this e.errno/e.reason.errno
_network_errno_vals = (
101, # Network is unreachable
111, # Connection refused
110, # Connection timed out
104, # Connection reset Error
54, # Connection reset by peer
60, # urllib.error.URLError: [Errno 60] Connection timed out
)
# Both of the above shouldn't mask real issues such as 404's
# or refused connections (changed DNS).
# But some tests (test_data yahoo) contact incredibly flakey
# servers.
# and conditionally raise on these exception types
_network_error_classes = (IOError, httplib.HTTPException)
if PY3:
_network_error_classes += (TimeoutError,) # noqa
def can_connect(url, error_classes=_network_error_classes):
"""Try to connect to the given url. True if succeeds, False if IOError
raised
Parameters
----------
url : basestring
The URL to try to connect to
Returns
-------
connectable : bool
Return True if no IOError (unable to connect) or URLError (bad url) was
raised
"""
try:
with urlopen(url):
pass
except error_classes:
return False
else:
return True
@optional_args
def network(t, url="http://www.google.com",
raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT,
check_before_test=False,
error_classes=_network_error_classes,
skip_errnos=_network_errno_vals,
_skip_on_messages=_network_error_messages,
):
"""
Label a test as requiring network connection and, if an error is
encountered, only raise if it does not find a network connection.
In comparison to ``network``, this assumes an added contract to your test:
you must assert that, under normal conditions, your test will ONLY fail if
it does not have network connectivity.
You can call this in 3 ways: as a standard decorator, with keyword
arguments, or with a positional argument that is the url to check.
Parameters
----------
t : callable
The test requiring network connectivity.
url : path
The url to test via ``pandas.io.common.urlopen`` to check
for connectivity. Defaults to 'http://www.google.com'.
raise_on_error : bool
If True, never catches errors.
check_before_test : bool
If True, checks connectivity before running the test case.
error_classes : tuple or Exception
error classes to ignore. If not in ``error_classes``, raises the error.
defaults to IOError. Be careful about changing the error classes here.
skip_errnos : iterable of int
Any exception that has .errno or .reason.erno set to one
of these values will be skipped with an appropriate
message.
_skip_on_messages: iterable of string
any exception e for which one of the strings is
a substring of str(e) will be skipped with an appropriate
message. Intended to suppress errors where an errno isn't available.
Notes
-----
* ``raise_on_error`` supercedes ``check_before_test``
Returns
-------
t : callable
The decorated test ``t``, with checks for connectivity errors.
Example
-------
Tests decorated with @network will fail if it's possible to make a network
connection to another URL (defaults to google.com)::
>>> from pandas.util.testing import network
>>> from pandas.io.common import urlopen
>>> @network
... def test_network():
... with urlopen("rabbit://bonanza.com"):
... pass
Traceback
...
URLError: <urlopen error unknown url type: rabit>
You can specify alternative URLs::
>>> @network("http://www.yahoo.com")
... def test_something_with_yahoo():
... raise IOError("Failure Message")
>>> test_something_with_yahoo()
Traceback (most recent call last):
...
IOError: Failure Message
If you set check_before_test, it will check the url first and not run the
test on failure::
>>> @network("failing://url.blaher", check_before_test=True)
... def test_something():
... print("I ran!")
... raise ValueError("Failure")
>>> test_something()
Traceback (most recent call last):
...
Errors not related to networking will always be raised.
"""
from pytest import skip
t.network = True
@compat.wraps(t)
def wrapper(*args, **kwargs):
if check_before_test and not raise_on_error:
if not can_connect(url, error_classes):
skip()
try:
return t(*args, **kwargs)
except Exception as e:
errno = getattr(e, 'errno', None)
if not errno and hasattr(errno, "reason"):
errno = getattr(e.reason, 'errno', None)
if errno in skip_errnos:
skip("Skipping test due to known errno"
" and error {error}".format(error=e))
try:
e_str = traceback.format_exc(e)
except Exception:
e_str = str(e)
if any(m.lower() in e_str.lower() for m in _skip_on_messages):
skip("Skipping test because exception "
"message is known and error {error}".format(error=e))
if not isinstance(e, error_classes):
raise
if raise_on_error or can_connect(url, error_classes):
raise
else:
skip("Skipping test due to lack of connectivity"
" and error {error}".format(e))
return wrapper
with_connectivity_check = network
class SimpleMock(object):
"""
Poor man's mocking object
Note: only works for new-style classes, assumes __getattribute__ exists.
>>> a = type("Duck",(),{})
>>> a.attr1,a.attr2 ="fizz","buzz"
>>> b = SimpleMock(a,"attr1","bar")
>>> b.attr1 == "bar" and b.attr2 == "buzz"
True
>>> a.attr1 == "fizz" and a.attr2 == "buzz"
True
"""
def __init__(self, obj, *args, **kwds):
assert(len(args) % 2 == 0)
attrs = kwds.get("attrs", {})
for k, v in zip(args[::2], args[1::2]):
# dict comprehensions break 2.6
attrs[k] = v
self.attrs = attrs
self.obj = obj
def __getattribute__(self, name):
attrs = object.__getattribute__(self, "attrs")
obj = object.__getattribute__(self, "obj")
return attrs.get(name, type(obj).__getattribute__(obj, name))
@contextmanager
def stdin_encoding(encoding=None):
"""
Context manager for running bits of code while emulating an arbitrary
stdin encoding.
>>> import sys
>>> _encoding = sys.stdin.encoding
>>> with stdin_encoding('AES'): sys.stdin.encoding
'AES'
>>> sys.stdin.encoding==_encoding
True
"""
import sys
_stdin = sys.stdin
sys.stdin = SimpleMock(sys.stdin, "encoding", encoding)
yield
sys.stdin = _stdin
def assert_raises_regex(_exception, _regexp, _callable=None,
*args, **kwargs):
r"""
Check that the specified Exception is raised and that the error message
matches a given regular expression pattern. This may be a regular
expression object or a string containing a regular expression suitable
for use by `re.search()`. This is a port of the `assertRaisesRegexp`
function from unittest in Python 2.7.
Examples
--------
>>> assert_raises_regex(ValueError, 'invalid literal for.*XYZ', int, 'XYZ')
>>> import re
>>> assert_raises_regex(ValueError, re.compile('literal'), int, 'XYZ')
If an exception of a different type is raised, it bubbles up.
>>> assert_raises_regex(TypeError, 'literal', int, 'XYZ')
Traceback (most recent call last):
...
ValueError: invalid literal for int() with base 10: 'XYZ'
>>> dct = dict()
>>> assert_raises_regex(KeyError, 'pear', dct.__getitem__, 'apple')
Traceback (most recent call last):
...
AssertionError: "pear" does not match "'apple'"
You can also use this in a with statement.
>>> with assert_raises_regex(TypeError, 'unsupported operand type\(s\)'):
... 1 + {}
>>> with assert_raises_regex(TypeError, 'banana'):
... 'apple'[0] = 'b'
Traceback (most recent call last):
...
AssertionError: "banana" does not match "'str' object does not support \
item assignment"
"""
manager = _AssertRaisesContextmanager(exception=_exception, regexp=_regexp)
if _callable is not None:
with manager:
_callable(*args, **kwargs)
else:
return manager
class _AssertRaisesContextmanager(object):
"""
Context manager behind `assert_raises_regex`.
"""
def __init__(self, exception, regexp=None):
"""
Initialize an _AssertRaisesContextManager instance.
Parameters
----------
exception : class
The expected Exception class.
regexp : str, default None
The regex to compare against the Exception message.
"""
self.exception = exception
if regexp is not None and not hasattr(regexp, "search"):
regexp = re.compile(regexp, re.DOTALL)
self.regexp = regexp
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, trace_back):
expected = self.exception
if not exc_type:
exp_name = getattr(expected, "__name__", str(expected))
raise AssertionError("{name} not raised.".format(name=exp_name))
return self.exception_matches(exc_type, exc_value, trace_back)
def exception_matches(self, exc_type, exc_value, trace_back):
"""
Check that the Exception raised matches the expected Exception
and expected error message regular expression.
Parameters
----------
exc_type : class
The type of Exception raised.
exc_value : Exception
The instance of `exc_type` raised.
trace_back : stack trace object
The traceback object associated with `exc_value`.
Returns
-------
is_matched : bool
Whether or not the Exception raised matches the expected
Exception class and expected error message regular expression.
Raises
------
AssertionError : The error message provided does not match
the expected error message regular expression.
"""
if issubclass(exc_type, self.exception):
if self.regexp is not None:
val = str(exc_value)
if not self.regexp.search(val):
msg = '"{pat}" does not match "{val}"'.format(
pat=self.regexp.pattern, val=val)
e = AssertionError(msg)
raise_with_traceback(e, trace_back)
return True
else:
# Failed, so allow Exception to bubble up.
return False
@contextmanager
def assert_produces_warning(expected_warning=Warning, filter_level="always",
clear=None, check_stacklevel=True):
"""
Context manager for running code expected to either raise a specific
warning, or not raise any warnings. Verifies that the code raises the
expected warning, and that it does not raise any other unexpected
warnings. It is basically a wrapper around ``warnings.catch_warnings``.
Parameters
----------
expected_warning : {Warning, False, None}, default Warning
The type of Exception raised. ``exception.Warning`` is the base
class for all warnings. To check that no warning is returned,
specify ``False`` or ``None``.
filter_level : str, default "always"
Specifies whether warnings are ignored, displayed, or turned
into errors.
Valid values are:
* "error" - turns matching warnings into exceptions
* "ignore" - discard the warning
* "always" - always emit a warning
* "default" - print the warning the first time it is generated
from each location
* "module" - print the warning the first time it is generated
from each module
* "once" - print the warning the first time it is generated
clear : str, default None
If not ``None`` then remove any previously raised warnings from
the ``__warningsregistry__`` to ensure that no warning messages are
suppressed by this context manager. If ``None`` is specified,
the ``__warningsregistry__`` keeps track of which warnings have been
shown, and does not show them again.
check_stacklevel : bool, default True
If True, displays the line that called the function containing
the warning to show were the function is called. Otherwise, the
line that implements the function is displayed.
Examples
--------
>>> import warnings
>>> with assert_produces_warning():
... warnings.warn(UserWarning())
...
>>> with assert_produces_warning(False):
... warnings.warn(RuntimeWarning())
...
Traceback (most recent call last):
...
AssertionError: Caused unexpected warning(s): ['RuntimeWarning'].
>>> with assert_produces_warning(UserWarning):
... warnings.warn(RuntimeWarning())
Traceback (most recent call last):
...
AssertionError: Did not see expected warning of class 'UserWarning'.
..warn:: This is *not* thread-safe.
"""
with warnings.catch_warnings(record=True) as w:
if clear is not None:
# make sure that we are clearning these warnings
# if they have happened before
# to guarantee that we will catch them
if not is_list_like(clear):
clear = [clear]
for m in clear:
try:
m.__warningregistry__.clear()
except Exception:
pass
saw_warning = False
warnings.simplefilter(filter_level)
yield w
extra_warnings = []
for actual_warning in w:
if (expected_warning and issubclass(actual_warning.category,
expected_warning)):
saw_warning = True
if check_stacklevel and issubclass(actual_warning.category,
(FutureWarning,
DeprecationWarning)):
from inspect import getframeinfo, stack
caller = getframeinfo(stack()[2][0])
msg = ("Warning not set with correct stacklevel. "
"File where warning is raised: {actual} != "
"{caller}. Warning message: {message}"
).format(actual=actual_warning.filename,
caller=caller.filename,
message=actual_warning.message)
assert actual_warning.filename == caller.filename, msg
else:
extra_warnings.append(actual_warning.category.__name__)
if expected_warning:
msg = "Did not see expected warning of class {name!r}.".format(
name=expected_warning.__name__)
assert saw_warning, msg
assert not extra_warnings, ("Caused unexpected warning(s): {extra!r}."
).format(extra=extra_warnings)
class RNGContext(object):
"""
Context manager to set the numpy random number generator speed. Returns
to the original value upon exiting the context manager.
Parameters
----------
seed : int
Seed for numpy.random.seed
Examples
--------
with RNGContext(42):
np.random.randn()
"""
def __init__(self, seed):
self.seed = seed
def __enter__(self):
self.start_state = np.random.get_state()
np.random.seed(self.seed)
def __exit__(self, exc_type, exc_value, traceback):
np.random.set_state(self.start_state)
@contextmanager
def use_numexpr(use, min_elements=None):
from pandas.core.computation import expressions as expr
if min_elements is None:
min_elements = expr._MIN_ELEMENTS
olduse = expr._USE_NUMEXPR
oldmin = expr._MIN_ELEMENTS
expr.set_use_numexpr(use)
expr._MIN_ELEMENTS = min_elements
yield
expr._MIN_ELEMENTS = oldmin
expr.set_use_numexpr(olduse)
def test_parallel(num_threads=2, kwargs_list=None):
"""Decorator to run the same function multiple times in parallel.
Parameters
----------
num_threads : int, optional
The number of times the function is run in parallel.
kwargs_list : list of dicts, optional
The list of kwargs to update original
function kwargs on different threads.
Notes
-----
This decorator does not pass the return value of the decorated function.
Original from scikit-image:
https://github.com/scikit-image/scikit-image/pull/1519
"""
assert num_threads > 0
has_kwargs_list = kwargs_list is not None
if has_kwargs_list:
assert len(kwargs_list) == num_threads
import threading
def wrapper(func):
@wraps(func)
def inner(*args, **kwargs):
if has_kwargs_list:
update_kwargs = lambda i: dict(kwargs, **kwargs_list[i])
else:
update_kwargs = lambda i: kwargs
threads = []
for i in range(num_threads):
updated_kwargs = update_kwargs(i)
thread = threading.Thread(target=func, args=args,
kwargs=updated_kwargs)
threads.append(thread)
for thread in threads:
thread.start()
for thread in threads:
thread.join()
return inner
return wrapper
class SubclassedSeries(Series):
_metadata = ['testattr', 'name']
@property
def _constructor(self):
return SubclassedSeries
@property
def _constructor_expanddim(self):
return SubclassedDataFrame
class SubclassedDataFrame(DataFrame):
_metadata = ['testattr']
@property
def _constructor(self):
return SubclassedDataFrame
@property
def _constructor_sliced(self):
return SubclassedSeries
class SubclassedSparseSeries(pd.SparseSeries):
_metadata = ['testattr']
@property
def _constructor(self):
return SubclassedSparseSeries
@property
def _constructor_expanddim(self):
return SubclassedSparseDataFrame
class SubclassedSparseDataFrame(pd.SparseDataFrame):
_metadata = ['testattr']
@property
def _constructor(self):
return SubclassedSparseDataFrame
@property
def _constructor_sliced(self):
return SubclassedSparseSeries
class SubclassedCategorical(Categorical):
@property
def _constructor(self):
return SubclassedCategorical
@contextmanager
def patch(ob, attr, value):
"""Temporarily patch an attribute of an object.
Parameters
----------
ob : any
The object to patch. This must support attribute assignment for `attr`.
attr : str
The name of the attribute to patch.
value : any
The temporary attribute to assign.
Examples
--------
>>> class C(object):
... attribute = 'original'
...
>>> C.attribute
'original'
>>> with patch(C, 'attribute', 'patched'):
... in_context = C.attribute
...
>>> in_context
'patched'
>>> C.attribute # the value is reset when the context manager exists
'original'
Correctly replaces attribute when the manager exits with an exception.
>>> with patch(C, 'attribute', 'patched'):
... in_context = C.attribute
... raise ValueError()
Traceback (most recent call last):
...
ValueError
>>> in_context
'patched'
>>> C.attribute
'original'
"""
noattr = object() # mark that the attribute never existed
old = getattr(ob, attr, noattr)
setattr(ob, attr, value)
try:
yield
finally:
if old is noattr:
delattr(ob, attr)
else:
setattr(ob, attr, old)
@contextmanager
def set_timezone(tz):
"""Context manager for temporarily setting a timezone.
Parameters
----------
tz : str
A string representing a valid timezone.
Examples
--------
>>> from datetime import datetime
>>> from dateutil.tz import tzlocal
>>> tzlocal().tzname(datetime.now())
'IST'
>>> with set_timezone('US/Eastern'):
... tzlocal().tzname(datetime.now())
...
'EDT'
"""
import os
import time
def setTZ(tz):
if tz is None:
try:
del os.environ['TZ']
except KeyError:
pass
else:
os.environ['TZ'] = tz
time.tzset()
orig_tz = os.environ.get('TZ')
setTZ(tz)
try:
yield
finally:
setTZ(orig_tz)
def _make_skipna_wrapper(alternative, skipna_alternative=None):
"""Create a function for calling on an array.
Parameters
----------
alternative : function
The function to be called on the array with no NaNs.
Only used when 'skipna_alternative' is None.
skipna_alternative : function
The function to be called on the original array
Returns
-------
skipna_wrapper : function
"""
if skipna_alternative:
def skipna_wrapper(x):
return skipna_alternative(x.values)
else:
def skipna_wrapper(x):
nona = x.dropna()
if len(nona) == 0:
return np.nan
return alternative(nona)
return skipna_wrapper