laywerrobot/lib/python3.6/site-packages/pandas/tests/test_take.py

516 lines
21 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# -*- coding: utf-8 -*-
import re
from datetime import datetime
import numpy as np
import pytest
from pandas.compat import long
import pandas.core.algorithms as algos
import pandas.util.testing as tm
from pandas._libs.tslib import iNaT
class TestTake(object):
# standard incompatible fill error
fill_error = re.compile("Incompatible type for fill_value")
def test_1d_with_out(self):
def _test_dtype(dtype, can_hold_na, writeable=True):
data = np.random.randint(0, 2, 4).astype(dtype)
data.flags.writeable = writeable
indexer = [2, 1, 0, 1]
out = np.empty(4, dtype=dtype)
algos.take_1d(data, indexer, out=out)
expected = data.take(indexer)
tm.assert_almost_equal(out, expected)
indexer = [2, 1, 0, -1]
out = np.empty(4, dtype=dtype)
if can_hold_na:
algos.take_1d(data, indexer, out=out)
expected = data.take(indexer)
expected[3] = np.nan
tm.assert_almost_equal(out, expected)
else:
with tm.assert_raises_regex(TypeError, self.fill_error):
algos.take_1d(data, indexer, out=out)
# no exception o/w
data.take(indexer, out=out)
for writeable in [True, False]:
# Check that take_nd works both with writeable arrays (in which
# case fast typed memoryviews implementation) and read-only
# arrays alike.
_test_dtype(np.float64, True, writeable=writeable)
_test_dtype(np.float32, True, writeable=writeable)
_test_dtype(np.uint64, False, writeable=writeable)
_test_dtype(np.uint32, False, writeable=writeable)
_test_dtype(np.uint16, False, writeable=writeable)
_test_dtype(np.uint8, False, writeable=writeable)
_test_dtype(np.int64, False, writeable=writeable)
_test_dtype(np.int32, False, writeable=writeable)
_test_dtype(np.int16, False, writeable=writeable)
_test_dtype(np.int8, False, writeable=writeable)
_test_dtype(np.object_, True, writeable=writeable)
_test_dtype(np.bool, False, writeable=writeable)
def test_1d_fill_nonna(self):
def _test_dtype(dtype, fill_value, out_dtype):
data = np.random.randint(0, 2, 4).astype(dtype)
indexer = [2, 1, 0, -1]
result = algos.take_1d(data, indexer, fill_value=fill_value)
assert ((result[[0, 1, 2]] == data[[2, 1, 0]]).all())
assert (result[3] == fill_value)
assert (result.dtype == out_dtype)
indexer = [2, 1, 0, 1]
result = algos.take_1d(data, indexer, fill_value=fill_value)
assert ((result[[0, 1, 2, 3]] == data[indexer]).all())
assert (result.dtype == dtype)
_test_dtype(np.int8, np.int16(127), np.int8)
_test_dtype(np.int8, np.int16(128), np.int16)
_test_dtype(np.int32, 1, np.int32)
_test_dtype(np.int32, 2.0, np.float64)
_test_dtype(np.int32, 3.0 + 4.0j, np.complex128)
_test_dtype(np.int32, True, np.object_)
_test_dtype(np.int32, '', np.object_)
_test_dtype(np.float64, 1, np.float64)
_test_dtype(np.float64, 2.0, np.float64)
_test_dtype(np.float64, 3.0 + 4.0j, np.complex128)
_test_dtype(np.float64, True, np.object_)
_test_dtype(np.float64, '', np.object_)
_test_dtype(np.complex128, 1, np.complex128)
_test_dtype(np.complex128, 2.0, np.complex128)
_test_dtype(np.complex128, 3.0 + 4.0j, np.complex128)
_test_dtype(np.complex128, True, np.object_)
_test_dtype(np.complex128, '', np.object_)
_test_dtype(np.bool_, 1, np.object_)
_test_dtype(np.bool_, 2.0, np.object_)
_test_dtype(np.bool_, 3.0 + 4.0j, np.object_)
_test_dtype(np.bool_, True, np.bool_)
_test_dtype(np.bool_, '', np.object_)
def test_2d_with_out(self):
def _test_dtype(dtype, can_hold_na, writeable=True):
data = np.random.randint(0, 2, (5, 3)).astype(dtype)
data.flags.writeable = writeable
indexer = [2, 1, 0, 1]
out0 = np.empty((4, 3), dtype=dtype)
out1 = np.empty((5, 4), dtype=dtype)
algos.take_nd(data, indexer, out=out0, axis=0)
algos.take_nd(data, indexer, out=out1, axis=1)
expected0 = data.take(indexer, axis=0)
expected1 = data.take(indexer, axis=1)
tm.assert_almost_equal(out0, expected0)
tm.assert_almost_equal(out1, expected1)
indexer = [2, 1, 0, -1]
out0 = np.empty((4, 3), dtype=dtype)
out1 = np.empty((5, 4), dtype=dtype)
if can_hold_na:
algos.take_nd(data, indexer, out=out0, axis=0)
algos.take_nd(data, indexer, out=out1, axis=1)
expected0 = data.take(indexer, axis=0)
expected1 = data.take(indexer, axis=1)
expected0[3, :] = np.nan
expected1[:, 3] = np.nan
tm.assert_almost_equal(out0, expected0)
tm.assert_almost_equal(out1, expected1)
else:
for i, out in enumerate([out0, out1]):
with tm.assert_raises_regex(TypeError,
self.fill_error):
algos.take_nd(data, indexer, out=out, axis=i)
# no exception o/w
data.take(indexer, out=out, axis=i)
for writeable in [True, False]:
# Check that take_nd works both with writeable arrays (in which
# case fast typed memoryviews implementation) and read-only
# arrays alike.
_test_dtype(np.float64, True, writeable=writeable)
_test_dtype(np.float32, True, writeable=writeable)
_test_dtype(np.uint64, False, writeable=writeable)
_test_dtype(np.uint32, False, writeable=writeable)
_test_dtype(np.uint16, False, writeable=writeable)
_test_dtype(np.uint8, False, writeable=writeable)
_test_dtype(np.int64, False, writeable=writeable)
_test_dtype(np.int32, False, writeable=writeable)
_test_dtype(np.int16, False, writeable=writeable)
_test_dtype(np.int8, False, writeable=writeable)
_test_dtype(np.object_, True, writeable=writeable)
_test_dtype(np.bool, False, writeable=writeable)
def test_2d_fill_nonna(self):
def _test_dtype(dtype, fill_value, out_dtype):
data = np.random.randint(0, 2, (5, 3)).astype(dtype)
indexer = [2, 1, 0, -1]
result = algos.take_nd(data, indexer, axis=0,
fill_value=fill_value)
assert ((result[[0, 1, 2], :] == data[[2, 1, 0], :]).all())
assert ((result[3, :] == fill_value).all())
assert (result.dtype == out_dtype)
result = algos.take_nd(data, indexer, axis=1,
fill_value=fill_value)
assert ((result[:, [0, 1, 2]] == data[:, [2, 1, 0]]).all())
assert ((result[:, 3] == fill_value).all())
assert (result.dtype == out_dtype)
indexer = [2, 1, 0, 1]
result = algos.take_nd(data, indexer, axis=0,
fill_value=fill_value)
assert ((result[[0, 1, 2, 3], :] == data[indexer, :]).all())
assert (result.dtype == dtype)
result = algos.take_nd(data, indexer, axis=1,
fill_value=fill_value)
assert ((result[:, [0, 1, 2, 3]] == data[:, indexer]).all())
assert (result.dtype == dtype)
_test_dtype(np.int8, np.int16(127), np.int8)
_test_dtype(np.int8, np.int16(128), np.int16)
_test_dtype(np.int32, 1, np.int32)
_test_dtype(np.int32, 2.0, np.float64)
_test_dtype(np.int32, 3.0 + 4.0j, np.complex128)
_test_dtype(np.int32, True, np.object_)
_test_dtype(np.int32, '', np.object_)
_test_dtype(np.float64, 1, np.float64)
_test_dtype(np.float64, 2.0, np.float64)
_test_dtype(np.float64, 3.0 + 4.0j, np.complex128)
_test_dtype(np.float64, True, np.object_)
_test_dtype(np.float64, '', np.object_)
_test_dtype(np.complex128, 1, np.complex128)
_test_dtype(np.complex128, 2.0, np.complex128)
_test_dtype(np.complex128, 3.0 + 4.0j, np.complex128)
_test_dtype(np.complex128, True, np.object_)
_test_dtype(np.complex128, '', np.object_)
_test_dtype(np.bool_, 1, np.object_)
_test_dtype(np.bool_, 2.0, np.object_)
_test_dtype(np.bool_, 3.0 + 4.0j, np.object_)
_test_dtype(np.bool_, True, np.bool_)
_test_dtype(np.bool_, '', np.object_)
def test_3d_with_out(self):
def _test_dtype(dtype, can_hold_na):
data = np.random.randint(0, 2, (5, 4, 3)).astype(dtype)
indexer = [2, 1, 0, 1]
out0 = np.empty((4, 4, 3), dtype=dtype)
out1 = np.empty((5, 4, 3), dtype=dtype)
out2 = np.empty((5, 4, 4), dtype=dtype)
algos.take_nd(data, indexer, out=out0, axis=0)
algos.take_nd(data, indexer, out=out1, axis=1)
algos.take_nd(data, indexer, out=out2, axis=2)
expected0 = data.take(indexer, axis=0)
expected1 = data.take(indexer, axis=1)
expected2 = data.take(indexer, axis=2)
tm.assert_almost_equal(out0, expected0)
tm.assert_almost_equal(out1, expected1)
tm.assert_almost_equal(out2, expected2)
indexer = [2, 1, 0, -1]
out0 = np.empty((4, 4, 3), dtype=dtype)
out1 = np.empty((5, 4, 3), dtype=dtype)
out2 = np.empty((5, 4, 4), dtype=dtype)
if can_hold_na:
algos.take_nd(data, indexer, out=out0, axis=0)
algos.take_nd(data, indexer, out=out1, axis=1)
algos.take_nd(data, indexer, out=out2, axis=2)
expected0 = data.take(indexer, axis=0)
expected1 = data.take(indexer, axis=1)
expected2 = data.take(indexer, axis=2)
expected0[3, :, :] = np.nan
expected1[:, 3, :] = np.nan
expected2[:, :, 3] = np.nan
tm.assert_almost_equal(out0, expected0)
tm.assert_almost_equal(out1, expected1)
tm.assert_almost_equal(out2, expected2)
else:
for i, out in enumerate([out0, out1, out2]):
with tm.assert_raises_regex(TypeError,
self.fill_error):
algos.take_nd(data, indexer, out=out, axis=i)
# no exception o/w
data.take(indexer, out=out, axis=i)
_test_dtype(np.float64, True)
_test_dtype(np.float32, True)
_test_dtype(np.uint64, False)
_test_dtype(np.uint32, False)
_test_dtype(np.uint16, False)
_test_dtype(np.uint8, False)
_test_dtype(np.int64, False)
_test_dtype(np.int32, False)
_test_dtype(np.int16, False)
_test_dtype(np.int8, False)
_test_dtype(np.object_, True)
_test_dtype(np.bool, False)
def test_3d_fill_nonna(self):
def _test_dtype(dtype, fill_value, out_dtype):
data = np.random.randint(0, 2, (5, 4, 3)).astype(dtype)
indexer = [2, 1, 0, -1]
result = algos.take_nd(data, indexer, axis=0,
fill_value=fill_value)
assert ((result[[0, 1, 2], :, :] == data[[2, 1, 0], :, :]).all())
assert ((result[3, :, :] == fill_value).all())
assert (result.dtype == out_dtype)
result = algos.take_nd(data, indexer, axis=1,
fill_value=fill_value)
assert ((result[:, [0, 1, 2], :] == data[:, [2, 1, 0], :]).all())
assert ((result[:, 3, :] == fill_value).all())
assert (result.dtype == out_dtype)
result = algos.take_nd(data, indexer, axis=2,
fill_value=fill_value)
assert ((result[:, :, [0, 1, 2]] == data[:, :, [2, 1, 0]]).all())
assert ((result[:, :, 3] == fill_value).all())
assert (result.dtype == out_dtype)
indexer = [2, 1, 0, 1]
result = algos.take_nd(data, indexer, axis=0,
fill_value=fill_value)
assert ((result[[0, 1, 2, 3], :, :] == data[indexer, :, :]).all())
assert (result.dtype == dtype)
result = algos.take_nd(data, indexer, axis=1,
fill_value=fill_value)
assert ((result[:, [0, 1, 2, 3], :] == data[:, indexer, :]).all())
assert (result.dtype == dtype)
result = algos.take_nd(data, indexer, axis=2,
fill_value=fill_value)
assert ((result[:, :, [0, 1, 2, 3]] == data[:, :, indexer]).all())
assert (result.dtype == dtype)
_test_dtype(np.int8, np.int16(127), np.int8)
_test_dtype(np.int8, np.int16(128), np.int16)
_test_dtype(np.int32, 1, np.int32)
_test_dtype(np.int32, 2.0, np.float64)
_test_dtype(np.int32, 3.0 + 4.0j, np.complex128)
_test_dtype(np.int32, True, np.object_)
_test_dtype(np.int32, '', np.object_)
_test_dtype(np.float64, 1, np.float64)
_test_dtype(np.float64, 2.0, np.float64)
_test_dtype(np.float64, 3.0 + 4.0j, np.complex128)
_test_dtype(np.float64, True, np.object_)
_test_dtype(np.float64, '', np.object_)
_test_dtype(np.complex128, 1, np.complex128)
_test_dtype(np.complex128, 2.0, np.complex128)
_test_dtype(np.complex128, 3.0 + 4.0j, np.complex128)
_test_dtype(np.complex128, True, np.object_)
_test_dtype(np.complex128, '', np.object_)
_test_dtype(np.bool_, 1, np.object_)
_test_dtype(np.bool_, 2.0, np.object_)
_test_dtype(np.bool_, 3.0 + 4.0j, np.object_)
_test_dtype(np.bool_, True, np.bool_)
_test_dtype(np.bool_, '', np.object_)
def test_1d_other_dtypes(self):
arr = np.random.randn(10).astype(np.float32)
indexer = [1, 2, 3, -1]
result = algos.take_1d(arr, indexer)
expected = arr.take(indexer)
expected[-1] = np.nan
tm.assert_almost_equal(result, expected)
def test_2d_other_dtypes(self):
arr = np.random.randn(10, 5).astype(np.float32)
indexer = [1, 2, 3, -1]
# axis=0
result = algos.take_nd(arr, indexer, axis=0)
expected = arr.take(indexer, axis=0)
expected[-1] = np.nan
tm.assert_almost_equal(result, expected)
# axis=1
result = algos.take_nd(arr, indexer, axis=1)
expected = arr.take(indexer, axis=1)
expected[:, -1] = np.nan
tm.assert_almost_equal(result, expected)
def test_1d_bool(self):
arr = np.array([0, 1, 0], dtype=bool)
result = algos.take_1d(arr, [0, 2, 2, 1])
expected = arr.take([0, 2, 2, 1])
tm.assert_numpy_array_equal(result, expected)
result = algos.take_1d(arr, [0, 2, -1])
assert result.dtype == np.object_
def test_2d_bool(self):
arr = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 1]], dtype=bool)
result = algos.take_nd(arr, [0, 2, 2, 1])
expected = arr.take([0, 2, 2, 1], axis=0)
tm.assert_numpy_array_equal(result, expected)
result = algos.take_nd(arr, [0, 2, 2, 1], axis=1)
expected = arr.take([0, 2, 2, 1], axis=1)
tm.assert_numpy_array_equal(result, expected)
result = algos.take_nd(arr, [0, 2, -1])
assert result.dtype == np.object_
def test_2d_float32(self):
arr = np.random.randn(4, 3).astype(np.float32)
indexer = [0, 2, -1, 1, -1]
# axis=0
result = algos.take_nd(arr, indexer, axis=0)
result2 = np.empty_like(result)
algos.take_nd(arr, indexer, axis=0, out=result2)
tm.assert_almost_equal(result, result2)
expected = arr.take(indexer, axis=0)
expected[[2, 4], :] = np.nan
tm.assert_almost_equal(result, expected)
# this now accepts a float32! # test with float64 out buffer
out = np.empty((len(indexer), arr.shape[1]), dtype='float32')
algos.take_nd(arr, indexer, out=out) # it works!
# axis=1
result = algos.take_nd(arr, indexer, axis=1)
result2 = np.empty_like(result)
algos.take_nd(arr, indexer, axis=1, out=result2)
tm.assert_almost_equal(result, result2)
expected = arr.take(indexer, axis=1)
expected[:, [2, 4]] = np.nan
tm.assert_almost_equal(result, expected)
def test_2d_datetime64(self):
# 2005/01/01 - 2006/01/01
arr = np.random.randint(
long(11045376), long(11360736), (5, 3)) * 100000000000
arr = arr.view(dtype='datetime64[ns]')
indexer = [0, 2, -1, 1, -1]
# axis=0
result = algos.take_nd(arr, indexer, axis=0)
result2 = np.empty_like(result)
algos.take_nd(arr, indexer, axis=0, out=result2)
tm.assert_almost_equal(result, result2)
expected = arr.take(indexer, axis=0)
expected.view(np.int64)[[2, 4], :] = iNaT
tm.assert_almost_equal(result, expected)
result = algos.take_nd(arr, indexer, axis=0,
fill_value=datetime(2007, 1, 1))
result2 = np.empty_like(result)
algos.take_nd(arr, indexer, out=result2, axis=0,
fill_value=datetime(2007, 1, 1))
tm.assert_almost_equal(result, result2)
expected = arr.take(indexer, axis=0)
expected[[2, 4], :] = datetime(2007, 1, 1)
tm.assert_almost_equal(result, expected)
# axis=1
result = algos.take_nd(arr, indexer, axis=1)
result2 = np.empty_like(result)
algos.take_nd(arr, indexer, axis=1, out=result2)
tm.assert_almost_equal(result, result2)
expected = arr.take(indexer, axis=1)
expected.view(np.int64)[:, [2, 4]] = iNaT
tm.assert_almost_equal(result, expected)
result = algos.take_nd(arr, indexer, axis=1,
fill_value=datetime(2007, 1, 1))
result2 = np.empty_like(result)
algos.take_nd(arr, indexer, out=result2, axis=1,
fill_value=datetime(2007, 1, 1))
tm.assert_almost_equal(result, result2)
expected = arr.take(indexer, axis=1)
expected[:, [2, 4]] = datetime(2007, 1, 1)
tm.assert_almost_equal(result, expected)
def test_take_axis_0(self):
arr = np.arange(12).reshape(4, 3)
result = algos.take(arr, [0, -1])
expected = np.array([[0, 1, 2], [9, 10, 11]])
tm.assert_numpy_array_equal(result, expected)
# allow_fill=True
result = algos.take(arr, [0, -1], allow_fill=True, fill_value=0)
expected = np.array([[0, 1, 2], [0, 0, 0]])
tm.assert_numpy_array_equal(result, expected)
def test_take_axis_1(self):
arr = np.arange(12).reshape(4, 3)
result = algos.take(arr, [0, -1], axis=1)
expected = np.array([[0, 2], [3, 5], [6, 8], [9, 11]])
tm.assert_numpy_array_equal(result, expected)
# allow_fill=True
result = algos.take(arr, [0, -1], axis=1, allow_fill=True,
fill_value=0)
expected = np.array([[0, 0], [3, 0], [6, 0], [9, 0]])
tm.assert_numpy_array_equal(result, expected)
class TestExtensionTake(object):
# The take method found in pd.api.extensions
def test_bounds_check_large(self):
arr = np.array([1, 2])
with pytest.raises(IndexError):
algos.take(arr, [2, 3], allow_fill=True)
with pytest.raises(IndexError):
algos.take(arr, [2, 3], allow_fill=False)
def test_bounds_check_small(self):
arr = np.array([1, 2, 3], dtype=np.int64)
indexer = [0, -1, -2]
with pytest.raises(ValueError):
algos.take(arr, indexer, allow_fill=True)
result = algos.take(arr, indexer)
expected = np.array([1, 3, 2], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize('allow_fill', [True, False])
def test_take_empty(self, allow_fill):
arr = np.array([], dtype=np.int64)
# empty take is ok
result = algos.take(arr, [], allow_fill=allow_fill)
tm.assert_numpy_array_equal(arr, result)
with pytest.raises(IndexError):
algos.take(arr, [0], allow_fill=allow_fill)
def test_take_na_empty(self):
result = algos.take(np.array([]), [-1, -1], allow_fill=True,
fill_value=0.0)
expected = np.array([0., 0.])
tm.assert_numpy_array_equal(result, expected)
def test_take_coerces_list(self):
arr = [1, 2, 3]
result = algos.take(arr, [0, 0])
expected = np.array([1, 1])
tm.assert_numpy_array_equal(result, expected)