120 lines
2.8 KiB
Python
120 lines
2.8 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Testing that we work in the downstream packages
|
||
|
"""
|
||
|
import subprocess
|
||
|
import sys
|
||
|
|
||
|
import pytest
|
||
|
import numpy as np # noqa
|
||
|
from pandas import DataFrame
|
||
|
from pandas.compat import PY36
|
||
|
from pandas.util import testing as tm
|
||
|
import importlib
|
||
|
|
||
|
|
||
|
def import_module(name):
|
||
|
# we *only* want to skip if the module is truly not available
|
||
|
# and NOT just an actual import error because of pandas changes
|
||
|
|
||
|
if PY36:
|
||
|
try:
|
||
|
return importlib.import_module(name)
|
||
|
except ModuleNotFoundError: # noqa
|
||
|
pytest.skip("skipping as {} not available".format(name))
|
||
|
|
||
|
else:
|
||
|
try:
|
||
|
return importlib.import_module(name)
|
||
|
except ImportError as e:
|
||
|
if "No module named" in str(e) and name in str(e):
|
||
|
pytest.skip("skipping as {} not available".format(name))
|
||
|
raise
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def df():
|
||
|
return DataFrame({'A': [1, 2, 3]})
|
||
|
|
||
|
|
||
|
def test_dask(df):
|
||
|
|
||
|
toolz = import_module('toolz') # noqa
|
||
|
dask = import_module('dask') # noqa
|
||
|
|
||
|
import dask.dataframe as dd
|
||
|
|
||
|
ddf = dd.from_pandas(df, npartitions=3)
|
||
|
assert ddf.A is not None
|
||
|
assert ddf.compute() is not None
|
||
|
|
||
|
|
||
|
def test_xarray(df):
|
||
|
|
||
|
xarray = import_module('xarray') # noqa
|
||
|
|
||
|
assert df.to_xarray() is not None
|
||
|
|
||
|
|
||
|
def test_oo_optimizable():
|
||
|
# GH 21071
|
||
|
subprocess.check_call([sys.executable, "-OO", "-c", "import pandas"])
|
||
|
|
||
|
|
||
|
@tm.network
|
||
|
def test_statsmodels():
|
||
|
|
||
|
statsmodels = import_module('statsmodels') # noqa
|
||
|
import statsmodels.api as sm
|
||
|
import statsmodels.formula.api as smf
|
||
|
df = sm.datasets.get_rdataset("Guerry", "HistData").data
|
||
|
smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=df).fit()
|
||
|
|
||
|
|
||
|
def test_scikit_learn(df):
|
||
|
|
||
|
sklearn = import_module('sklearn') # noqa
|
||
|
from sklearn import svm, datasets
|
||
|
|
||
|
digits = datasets.load_digits()
|
||
|
clf = svm.SVC(gamma=0.001, C=100.)
|
||
|
clf.fit(digits.data[:-1], digits.target[:-1])
|
||
|
clf.predict(digits.data[-1:])
|
||
|
|
||
|
|
||
|
@tm.network
|
||
|
def test_seaborn():
|
||
|
|
||
|
seaborn = import_module('seaborn')
|
||
|
tips = seaborn.load_dataset("tips")
|
||
|
seaborn.stripplot(x="day", y="total_bill", data=tips)
|
||
|
|
||
|
|
||
|
def test_pandas_gbq(df):
|
||
|
|
||
|
pandas_gbq = import_module('pandas_gbq') # noqa
|
||
|
|
||
|
|
||
|
@pytest.mark.xfail(reason="0.7.0 pending")
|
||
|
@tm.network
|
||
|
def test_pandas_datareader():
|
||
|
|
||
|
pandas_datareader = import_module('pandas_datareader') # noqa
|
||
|
pandas_datareader.DataReader(
|
||
|
'F', 'quandl', '2017-01-01', '2017-02-01')
|
||
|
|
||
|
|
||
|
def test_geopandas():
|
||
|
|
||
|
geopandas = import_module('geopandas') # noqa
|
||
|
fp = geopandas.datasets.get_path('naturalearth_lowres')
|
||
|
assert geopandas.read_file(fp) is not None
|
||
|
|
||
|
|
||
|
def test_pyarrow(df):
|
||
|
|
||
|
pyarrow = import_module('pyarrow') # noqa
|
||
|
table = pyarrow.Table.from_pandas(df)
|
||
|
result = table.to_pandas()
|
||
|
tm.assert_frame_equal(result, df)
|