laywerrobot/lib/python3.6/site-packages/pandas/tests/test_base.py

1244 lines
45 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# -*- coding: utf-8 -*-
from __future__ import print_function
import re
import sys
from datetime import datetime, timedelta
import pytest
import numpy as np
import pandas as pd
import pandas.compat as compat
from pandas.core.dtypes.common import (
is_object_dtype, is_datetimetz, is_datetime64_dtype,
needs_i8_conversion)
import pandas.util.testing as tm
from pandas import (Series, Index, DatetimeIndex, TimedeltaIndex,
PeriodIndex, Timedelta, IntervalIndex, Interval,
CategoricalIndex, Timestamp)
from pandas.compat import StringIO, PYPY, long
from pandas.compat.numpy import np_array_datetime64_compat
from pandas.core.accessor import PandasDelegate
from pandas.core.base import PandasObject, NoNewAttributesMixin
from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin
from pandas._libs.tslib import iNaT
class CheckStringMixin(object):
def test_string_methods_dont_fail(self):
repr(self.container)
str(self.container)
bytes(self.container)
if not compat.PY3:
unicode(self.container) # noqa
def test_tricky_container(self):
if not hasattr(self, 'unicode_container'):
pytest.skip('Need unicode_container to test with this')
repr(self.unicode_container)
str(self.unicode_container)
bytes(self.unicode_container)
if not compat.PY3:
unicode(self.unicode_container) # noqa
class CheckImmutable(object):
mutable_regex = re.compile('does not support mutable operations')
def check_mutable_error(self, *args, **kwargs):
# Pass whatever function you normally would to assert_raises_regex
# (after the Exception kind).
tm.assert_raises_regex(
TypeError, self.mutable_regex, *args, **kwargs)
def test_no_mutable_funcs(self):
def setitem():
self.container[0] = 5
self.check_mutable_error(setitem)
def setslice():
self.container[1:2] = 3
self.check_mutable_error(setslice)
def delitem():
del self.container[0]
self.check_mutable_error(delitem)
def delslice():
del self.container[0:3]
self.check_mutable_error(delslice)
mutable_methods = getattr(self, "mutable_methods", [])
for meth in mutable_methods:
self.check_mutable_error(getattr(self.container, meth))
def test_slicing_maintains_type(self):
result = self.container[1:2]
expected = self.lst[1:2]
self.check_result(result, expected)
def check_result(self, result, expected, klass=None):
klass = klass or self.klass
assert isinstance(result, klass)
assert result == expected
class TestPandasDelegate(object):
class Delegator(object):
_properties = ['foo']
_methods = ['bar']
def _set_foo(self, value):
self.foo = value
def _get_foo(self):
return self.foo
foo = property(_get_foo, _set_foo, doc="foo property")
def bar(self, *args, **kwargs):
""" a test bar method """
pass
class Delegate(PandasDelegate, PandasObject):
def __init__(self, obj):
self.obj = obj
def setup_method(self, method):
pass
def test_invalid_delegation(self):
# these show that in order for the delegation to work
# the _delegate_* methods need to be overridden to not raise
# a TypeError
self.Delegate._add_delegate_accessors(
delegate=self.Delegator,
accessors=self.Delegator._properties,
typ='property'
)
self.Delegate._add_delegate_accessors(
delegate=self.Delegator,
accessors=self.Delegator._methods,
typ='method'
)
delegate = self.Delegate(self.Delegator())
def f():
delegate.foo
pytest.raises(TypeError, f)
def f():
delegate.foo = 5
pytest.raises(TypeError, f)
def f():
delegate.foo()
pytest.raises(TypeError, f)
@pytest.mark.skipif(PYPY, reason="not relevant for PyPy")
def test_memory_usage(self):
# Delegate does not implement memory_usage.
# Check that we fall back to in-built `__sizeof__`
# GH 12924
delegate = self.Delegate(self.Delegator())
sys.getsizeof(delegate)
class Ops(object):
def _allow_na_ops(self, obj):
"""Whether to skip test cases including NaN"""
if (isinstance(obj, Index) and
(obj.is_boolean() or not obj._can_hold_na)):
# don't test boolean / int64 index
return False
return True
def setup_method(self, method):
self.bool_index = tm.makeBoolIndex(10, name='a')
self.int_index = tm.makeIntIndex(10, name='a')
self.float_index = tm.makeFloatIndex(10, name='a')
self.dt_index = tm.makeDateIndex(10, name='a')
self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize(
tz='US/Eastern')
self.period_index = tm.makePeriodIndex(10, name='a')
self.string_index = tm.makeStringIndex(10, name='a')
self.unicode_index = tm.makeUnicodeIndex(10, name='a')
arr = np.random.randn(10)
self.int_series = Series(arr, index=self.int_index, name='a')
self.float_series = Series(arr, index=self.float_index, name='a')
self.dt_series = Series(arr, index=self.dt_index, name='a')
self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True)
self.period_series = Series(arr, index=self.period_index, name='a')
self.string_series = Series(arr, index=self.string_index, name='a')
types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string',
'unicode']
fmts = ["{0}_{1}".format(t, f)
for t in types for f in ['index', 'series']]
self.objs = [getattr(self, f)
for f in fmts if getattr(self, f, None) is not None]
def check_ops_properties(self, props, filter=None, ignore_failures=False):
for op in props:
for o in self.is_valid_objs:
# if a filter, skip if it doesn't match
if filter is not None:
filt = o.index if isinstance(o, Series) else o
if not filter(filt):
continue
try:
if isinstance(o, Series):
expected = Series(
getattr(o.index, op), index=o.index, name='a')
else:
expected = getattr(o, op)
except (AttributeError):
if ignore_failures:
continue
result = getattr(o, op)
# these couuld be series, arrays or scalars
if isinstance(result, Series) and isinstance(expected, Series):
tm.assert_series_equal(result, expected)
elif isinstance(result, Index) and isinstance(expected, Index):
tm.assert_index_equal(result, expected)
elif isinstance(result, np.ndarray) and isinstance(expected,
np.ndarray):
tm.assert_numpy_array_equal(result, expected)
else:
assert result == expected
# freq raises AttributeError on an Int64Index because its not
# defined we mostly care about Series here anyhow
if not ignore_failures:
for o in self.not_valid_objs:
# an object that is datetimelike will raise a TypeError,
# otherwise an AttributeError
if issubclass(type(o), DatetimeIndexOpsMixin):
pytest.raises(TypeError, lambda: getattr(o, op))
else:
pytest.raises(AttributeError,
lambda: getattr(o, op))
def test_binary_ops_docs(self):
from pandas import DataFrame, Panel
op_map = {'add': '+',
'sub': '-',
'mul': '*',
'mod': '%',
'pow': '**',
'truediv': '/',
'floordiv': '//'}
for op_name in ['add', 'sub', 'mul', 'mod', 'pow', 'truediv',
'floordiv']:
for klass in [Series, DataFrame, Panel]:
operand1 = klass.__name__.lower()
operand2 = 'other'
op = op_map[op_name]
expected_str = ' '.join([operand1, op, operand2])
assert expected_str in getattr(klass, op_name).__doc__
# reverse version of the binary ops
expected_str = ' '.join([operand2, op, operand1])
assert expected_str in getattr(klass, 'r' + op_name).__doc__
class TestIndexOps(Ops):
def setup_method(self, method):
super(TestIndexOps, self).setup_method(method)
self.is_valid_objs = self.objs
self.not_valid_objs = []
def test_none_comparison(self):
# bug brought up by #1079
# changed from TypeError in 0.17.0
for o in self.is_valid_objs:
if isinstance(o, Series):
o[0] = np.nan
# noinspection PyComparisonWithNone
result = o == None # noqa
assert not result.iat[0]
assert not result.iat[1]
# noinspection PyComparisonWithNone
result = o != None # noqa
assert result.iat[0]
assert result.iat[1]
result = None == o # noqa
assert not result.iat[0]
assert not result.iat[1]
# this fails for numpy < 1.9
# and oddly for *some* platforms
# result = None != o # noqa
# assert result.iat[0]
# assert result.iat[1]
if (is_datetime64_dtype(o) or is_datetimetz(o)):
# Following DatetimeIndex (and Timestamp) convention,
# inequality comparisons with Series[datetime64] raise
with pytest.raises(TypeError):
None > o
with pytest.raises(TypeError):
o > None
else:
result = None > o
assert not result.iat[0]
assert not result.iat[1]
result = o < None
assert not result.iat[0]
assert not result.iat[1]
def test_ndarray_compat_properties(self):
for o in self.objs:
# Check that we work.
for p in ['shape', 'dtype', 'T', 'nbytes']:
assert getattr(o, p, None) is not None
# deprecated properties
for p in ['flags', 'strides', 'itemsize']:
with tm.assert_produces_warning(FutureWarning):
assert getattr(o, p, None) is not None
with tm.assert_produces_warning(FutureWarning):
assert hasattr(o, 'base')
# If we have a datetime-like dtype then needs a view to work
# but the user is responsible for that
try:
with tm.assert_produces_warning(FutureWarning):
assert o.data is not None
except ValueError:
pass
with pytest.raises(ValueError):
o.item() # len > 1
assert o.ndim == 1
assert o.size == len(o)
assert Index([1]).item() == 1
assert Series([1]).item() == 1
def test_ops(self):
for op in ['max', 'min']:
for o in self.objs:
result = getattr(o, op)()
if not isinstance(o, PeriodIndex):
expected = getattr(o.values, op)()
else:
expected = pd.Period(
ordinal=getattr(o._ndarray_values, op)(),
freq=o.freq)
try:
assert result == expected
except TypeError:
# comparing tz-aware series with np.array results in
# TypeError
expected = expected.astype('M8[ns]').astype('int64')
assert result.value == expected
def test_nanops(self):
# GH 7261
for op in ['max', 'min']:
for klass in [Index, Series]:
obj = klass([np.nan, 2.0])
assert getattr(obj, op)() == 2.0
obj = klass([np.nan])
assert pd.isna(getattr(obj, op)())
obj = klass([])
assert pd.isna(getattr(obj, op)())
obj = klass([pd.NaT, datetime(2011, 11, 1)])
# check DatetimeIndex monotonic path
assert getattr(obj, op)() == datetime(2011, 11, 1)
obj = klass([pd.NaT, datetime(2011, 11, 1), pd.NaT])
# check DatetimeIndex non-monotonic path
assert getattr(obj, op)(), datetime(2011, 11, 1)
# argmin/max
obj = Index(np.arange(5, dtype='int64'))
assert obj.argmin() == 0
assert obj.argmax() == 4
obj = Index([np.nan, 1, np.nan, 2])
assert obj.argmin() == 1
assert obj.argmax() == 3
obj = Index([np.nan])
assert obj.argmin() == -1
assert obj.argmax() == -1
obj = Index([pd.NaT, datetime(2011, 11, 1), datetime(2011, 11, 2),
pd.NaT])
assert obj.argmin() == 1
assert obj.argmax() == 2
obj = Index([pd.NaT])
assert obj.argmin() == -1
assert obj.argmax() == -1
def test_value_counts_unique_nunique(self):
for orig in self.objs:
o = orig.copy()
klass = type(o)
values = o._values
if isinstance(values, Index):
# reset name not to affect latter process
values.name = None
# create repeated values, 'n'th element is repeated by n+1 times
# skip boolean, because it only has 2 values at most
if isinstance(o, Index) and o.is_boolean():
continue
elif isinstance(o, Index):
expected_index = Index(o[::-1])
expected_index.name = None
o = o.repeat(range(1, len(o) + 1))
o.name = 'a'
else:
expected_index = Index(values[::-1])
idx = o.index.repeat(range(1, len(o) + 1))
rep = np.repeat(values, range(1, len(o) + 1))
o = klass(rep, index=idx, name='a')
# check values has the same dtype as the original
assert o.dtype == orig.dtype
expected_s = Series(range(10, 0, -1), index=expected_index,
dtype='int64', name='a')
result = o.value_counts()
tm.assert_series_equal(result, expected_s)
assert result.index.name is None
assert result.name == 'a'
result = o.unique()
if isinstance(o, Index):
assert isinstance(result, o.__class__)
tm.assert_index_equal(result, orig)
elif is_datetimetz(o):
# datetimetz Series returns array of Timestamp
assert result[0] == orig[0]
for r in result:
assert isinstance(r, Timestamp)
tm.assert_numpy_array_equal(result,
orig._values.astype(object).values)
else:
tm.assert_numpy_array_equal(result, orig.values)
assert o.nunique() == len(np.unique(o.values))
def test_value_counts_unique_nunique_null(self):
for null_obj in [np.nan, None]:
for orig in self.objs:
o = orig.copy()
klass = type(o)
values = o._ndarray_values
if not self._allow_na_ops(o):
continue
# special assign to the numpy array
if is_datetimetz(o):
if isinstance(o, DatetimeIndex):
v = o.asi8
v[0:2] = iNaT
values = o._shallow_copy(v)
else:
o = o.copy()
o[0:2] = iNaT
values = o._values
elif needs_i8_conversion(o):
values[0:2] = iNaT
values = o._shallow_copy(values)
else:
values[0:2] = null_obj
# check values has the same dtype as the original
assert values.dtype == o.dtype
# create repeated values, 'n'th element is repeated by n+1
# times
if isinstance(o, (DatetimeIndex, PeriodIndex)):
expected_index = o.copy()
expected_index.name = None
# attach name to klass
o = klass(values.repeat(range(1, len(o) + 1)))
o.name = 'a'
else:
if is_datetimetz(o):
expected_index = orig._values._shallow_copy(values)
else:
expected_index = Index(values)
expected_index.name = None
o = o.repeat(range(1, len(o) + 1))
o.name = 'a'
# check values has the same dtype as the original
assert o.dtype == orig.dtype
# check values correctly have NaN
nanloc = np.zeros(len(o), dtype=np.bool)
nanloc[:3] = True
if isinstance(o, Index):
tm.assert_numpy_array_equal(pd.isna(o), nanloc)
else:
exp = Series(nanloc, o.index, name='a')
tm.assert_series_equal(pd.isna(o), exp)
expected_s_na = Series(list(range(10, 2, -1)) + [3],
index=expected_index[9:0:-1],
dtype='int64', name='a')
expected_s = Series(list(range(10, 2, -1)),
index=expected_index[9:1:-1],
dtype='int64', name='a')
result_s_na = o.value_counts(dropna=False)
tm.assert_series_equal(result_s_na, expected_s_na)
assert result_s_na.index.name is None
assert result_s_na.name == 'a'
result_s = o.value_counts()
tm.assert_series_equal(o.value_counts(), expected_s)
assert result_s.index.name is None
assert result_s.name == 'a'
result = o.unique()
if isinstance(o, Index):
tm.assert_index_equal(result,
Index(values[1:], name='a'))
elif is_datetimetz(o):
# unable to compare NaT / nan
vals = values[2:].astype(object).values
tm.assert_numpy_array_equal(result[1:], vals)
assert result[0] is pd.NaT
else:
tm.assert_numpy_array_equal(result[1:], values[2:])
assert pd.isna(result[0])
assert result.dtype == orig.dtype
assert o.nunique() == 8
assert o.nunique(dropna=False) == 9
def test_value_counts_inferred(self):
klasses = [Index, Series]
for klass in klasses:
s_values = ['a', 'b', 'b', 'b', 'b', 'c', 'd', 'd', 'a', 'a']
s = klass(s_values)
expected = Series([4, 3, 2, 1], index=['b', 'a', 'd', 'c'])
tm.assert_series_equal(s.value_counts(), expected)
if isinstance(s, Index):
exp = Index(np.unique(np.array(s_values, dtype=np.object_)))
tm.assert_index_equal(s.unique(), exp)
else:
exp = np.unique(np.array(s_values, dtype=np.object_))
tm.assert_numpy_array_equal(s.unique(), exp)
assert s.nunique() == 4
# don't sort, have to sort after the fact as not sorting is
# platform-dep
hist = s.value_counts(sort=False).sort_values()
expected = Series([3, 1, 4, 2], index=list('acbd')).sort_values()
tm.assert_series_equal(hist, expected)
# sort ascending
hist = s.value_counts(ascending=True)
expected = Series([1, 2, 3, 4], index=list('cdab'))
tm.assert_series_equal(hist, expected)
# relative histogram.
hist = s.value_counts(normalize=True)
expected = Series([.4, .3, .2, .1], index=['b', 'a', 'd', 'c'])
tm.assert_series_equal(hist, expected)
def test_value_counts_bins(self):
klasses = [Index, Series]
for klass in klasses:
s_values = ['a', 'b', 'b', 'b', 'b', 'c', 'd', 'd', 'a', 'a']
s = klass(s_values)
# bins
pytest.raises(TypeError, lambda bins: s.value_counts(bins=bins), 1)
s1 = Series([1, 1, 2, 3])
res1 = s1.value_counts(bins=1)
exp1 = Series({Interval(0.997, 3.0): 4})
tm.assert_series_equal(res1, exp1)
res1n = s1.value_counts(bins=1, normalize=True)
exp1n = Series({Interval(0.997, 3.0): 1.0})
tm.assert_series_equal(res1n, exp1n)
if isinstance(s1, Index):
tm.assert_index_equal(s1.unique(), Index([1, 2, 3]))
else:
exp = np.array([1, 2, 3], dtype=np.int64)
tm.assert_numpy_array_equal(s1.unique(), exp)
assert s1.nunique() == 3
# these return the same
res4 = s1.value_counts(bins=4, dropna=True)
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]))
tm.assert_series_equal(res4, exp4)
res4 = s1.value_counts(bins=4, dropna=False)
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]))
tm.assert_series_equal(res4, exp4)
res4n = s1.value_counts(bins=4, normalize=True)
exp4n = Series([0.5, 0.25, 0.25, 0],
index=intervals.take([0, 3, 1, 2]))
tm.assert_series_equal(res4n, exp4n)
# handle NA's properly
s_values = ['a', 'b', 'b', 'b', np.nan, np.nan,
'd', 'd', 'a', 'a', 'b']
s = klass(s_values)
expected = Series([4, 3, 2], index=['b', 'a', 'd'])
tm.assert_series_equal(s.value_counts(), expected)
if isinstance(s, Index):
exp = Index(['a', 'b', np.nan, 'd'])
tm.assert_index_equal(s.unique(), exp)
else:
exp = np.array(['a', 'b', np.nan, 'd'], dtype=object)
tm.assert_numpy_array_equal(s.unique(), exp)
assert s.nunique() == 3
s = klass({})
expected = Series([], dtype=np.int64)
tm.assert_series_equal(s.value_counts(), expected,
check_index_type=False)
# returned dtype differs depending on original
if isinstance(s, Index):
tm.assert_index_equal(s.unique(), Index([]), exact=False)
else:
tm.assert_numpy_array_equal(s.unique(), np.array([]),
check_dtype=False)
assert s.nunique() == 0
@pytest.mark.parametrize('klass', [Index, Series])
def test_value_counts_datetime64(self, klass):
# GH 3002, datetime64[ns]
# don't test names though
txt = "\n".join(['xxyyzz20100101PIE', 'xxyyzz20100101GUM',
'xxyyzz20100101EGG', 'xxyyww20090101EGG',
'foofoo20080909PIE', 'foofoo20080909GUM'])
f = StringIO(txt)
df = pd.read_fwf(f, widths=[6, 8, 3],
names=["person_id", "dt", "food"],
parse_dates=["dt"])
s = klass(df['dt'].copy())
s.name = None
idx = pd.to_datetime(['2010-01-01 00:00:00Z',
'2008-09-09 00:00:00Z',
'2009-01-01 00:00:00Z'])
expected_s = Series([3, 2, 1], index=idx)
tm.assert_series_equal(s.value_counts(), expected_s)
expected = np_array_datetime64_compat(['2010-01-01 00:00:00Z',
'2009-01-01 00:00:00Z',
'2008-09-09 00:00:00Z'],
dtype='datetime64[ns]')
if isinstance(s, Index):
tm.assert_index_equal(s.unique(), DatetimeIndex(expected))
else:
tm.assert_numpy_array_equal(s.unique(), expected)
assert s.nunique() == 3
# with NaT
s = df['dt'].copy()
s = klass([v for v in s.values] + [pd.NaT])
result = s.value_counts()
assert result.index.dtype == 'datetime64[ns]'
tm.assert_series_equal(result, expected_s)
result = s.value_counts(dropna=False)
expected_s[pd.NaT] = 1
tm.assert_series_equal(result, expected_s)
unique = s.unique()
assert unique.dtype == 'datetime64[ns]'
# numpy_array_equal cannot compare pd.NaT
if isinstance(s, Index):
exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT])
tm.assert_index_equal(unique, exp_idx)
else:
tm.assert_numpy_array_equal(unique[:3], expected)
assert pd.isna(unique[3])
assert s.nunique() == 3
assert s.nunique(dropna=False) == 4
# timedelta64[ns]
td = df.dt - df.dt + timedelta(1)
td = klass(td, name='dt')
result = td.value_counts()
expected_s = Series([6], index=[Timedelta('1day')], name='dt')
tm.assert_series_equal(result, expected_s)
expected = TimedeltaIndex(['1 days'], name='dt')
if isinstance(td, Index):
tm.assert_index_equal(td.unique(), expected)
else:
tm.assert_numpy_array_equal(td.unique(), expected.values)
td2 = timedelta(1) + (df.dt - df.dt)
td2 = klass(td2, name='dt')
result2 = td2.value_counts()
tm.assert_series_equal(result2, expected_s)
def test_factorize(self):
for orig in self.objs:
o = orig.copy()
if isinstance(o, Index) and o.is_boolean():
exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp)
exp_uniques = o
exp_uniques = Index([False, True])
else:
exp_arr = np.array(range(len(o)), dtype=np.intp)
exp_uniques = o
labels, uniques = o.factorize()
tm.assert_numpy_array_equal(labels, exp_arr)
if isinstance(o, Series):
tm.assert_index_equal(uniques, Index(orig),
check_names=False)
else:
# factorize explicitly resets name
tm.assert_index_equal(uniques, exp_uniques,
check_names=False)
def test_factorize_repeated(self):
for orig in self.objs:
o = orig.copy()
# don't test boolean
if isinstance(o, Index) and o.is_boolean():
continue
# sort by value, and create duplicates
if isinstance(o, Series):
o = o.sort_values()
n = o.iloc[5:].append(o)
else:
indexer = o.argsort()
o = o.take(indexer)
n = o[5:].append(o)
exp_arr = np.array([5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
dtype=np.intp)
labels, uniques = n.factorize(sort=True)
tm.assert_numpy_array_equal(labels, exp_arr)
if isinstance(o, Series):
tm.assert_index_equal(uniques, Index(orig).sort_values(),
check_names=False)
else:
tm.assert_index_equal(uniques, o, check_names=False)
exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4],
np.intp)
labels, uniques = n.factorize(sort=False)
tm.assert_numpy_array_equal(labels, exp_arr)
if isinstance(o, Series):
expected = Index(o.iloc[5:10].append(o.iloc[:5]))
tm.assert_index_equal(uniques, expected, check_names=False)
else:
expected = o[5:10].append(o[:5])
tm.assert_index_equal(uniques, expected, check_names=False)
def test_duplicated_drop_duplicates_index(self):
# GH 4060
for original in self.objs:
if isinstance(original, Index):
# special case
if original.is_boolean():
result = original.drop_duplicates()
expected = Index([False, True], name='a')
tm.assert_index_equal(result, expected)
continue
# original doesn't have duplicates
expected = np.array([False] * len(original), dtype=bool)
duplicated = original.duplicated()
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
result = original.drop_duplicates()
tm.assert_index_equal(result, original)
assert result is not original
# has_duplicates
assert not original.has_duplicates
# create repeated values, 3rd and 5th values are duplicated
idx = original[list(range(len(original))) + [5, 3]]
expected = np.array([False] * len(original) + [True, True],
dtype=bool)
duplicated = idx.duplicated()
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
tm.assert_index_equal(idx.drop_duplicates(), original)
base = [False] * len(idx)
base[3] = True
base[5] = True
expected = np.array(base)
duplicated = idx.duplicated(keep='last')
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
result = idx.drop_duplicates(keep='last')
tm.assert_index_equal(result, idx[~expected])
base = [False] * len(original) + [True, True]
base[3] = True
base[5] = True
expected = np.array(base)
duplicated = idx.duplicated(keep=False)
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
result = idx.drop_duplicates(keep=False)
tm.assert_index_equal(result, idx[~expected])
with tm.assert_raises_regex(
TypeError, r"drop_duplicates\(\) got an unexpected "
"keyword argument"):
idx.drop_duplicates(inplace=True)
else:
expected = Series([False] * len(original),
index=original.index, name='a')
tm.assert_series_equal(original.duplicated(), expected)
result = original.drop_duplicates()
tm.assert_series_equal(result, original)
assert result is not original
idx = original.index[list(range(len(original))) + [5, 3]]
values = original._values[list(range(len(original))) + [5, 3]]
s = Series(values, index=idx, name='a')
expected = Series([False] * len(original) + [True, True],
index=idx, name='a')
tm.assert_series_equal(s.duplicated(), expected)
tm.assert_series_equal(s.drop_duplicates(), original)
base = [False] * len(idx)
base[3] = True
base[5] = True
expected = Series(base, index=idx, name='a')
tm.assert_series_equal(s.duplicated(keep='last'), expected)
tm.assert_series_equal(s.drop_duplicates(keep='last'),
s[~np.array(base)])
base = [False] * len(original) + [True, True]
base[3] = True
base[5] = True
expected = Series(base, index=idx, name='a')
tm.assert_series_equal(s.duplicated(keep=False), expected)
tm.assert_series_equal(s.drop_duplicates(keep=False),
s[~np.array(base)])
s.drop_duplicates(inplace=True)
tm.assert_series_equal(s, original)
def test_drop_duplicates_series_vs_dataframe(self):
# GH 14192
df = pd.DataFrame({'a': [1, 1, 1, 'one', 'one'],
'b': [2, 2, np.nan, np.nan, np.nan],
'c': [3, 3, np.nan, np.nan, 'three'],
'd': [1, 2, 3, 4, 4],
'e': [datetime(2015, 1, 1), datetime(2015, 1, 1),
datetime(2015, 2, 1), pd.NaT, pd.NaT]
})
for column in df.columns:
for keep in ['first', 'last', False]:
dropped_frame = df[[column]].drop_duplicates(keep=keep)
dropped_series = df[column].drop_duplicates(keep=keep)
tm.assert_frame_equal(dropped_frame, dropped_series.to_frame())
def test_fillna(self):
# # GH 11343
# though Index.fillna and Series.fillna has separate impl,
# test here to confirm these works as the same
for orig in self.objs:
o = orig.copy()
values = o.values
# values will not be changed
result = o.fillna(o.astype(object).values[0])
if isinstance(o, Index):
tm.assert_index_equal(o, result)
else:
tm.assert_series_equal(o, result)
# check shallow_copied
assert o is not result
for null_obj in [np.nan, None]:
for orig in self.objs:
o = orig.copy()
klass = type(o)
if not self._allow_na_ops(o):
continue
if needs_i8_conversion(o):
values = o.astype(object).values
fill_value = values[0]
values[0:2] = pd.NaT
else:
values = o.values.copy()
fill_value = o.values[0]
values[0:2] = null_obj
expected = [fill_value] * 2 + list(values[2:])
expected = klass(expected)
o = klass(values)
# check values has the same dtype as the original
assert o.dtype == orig.dtype
result = o.fillna(fill_value)
if isinstance(o, Index):
tm.assert_index_equal(result, expected)
else:
tm.assert_series_equal(result, expected)
# check shallow_copied
assert o is not result
@pytest.mark.skipif(PYPY, reason="not relevant for PyPy")
def test_memory_usage(self):
for o in self.objs:
res = o.memory_usage()
res_deep = o.memory_usage(deep=True)
if (is_object_dtype(o) or (isinstance(o, Series) and
is_object_dtype(o.index))):
# if there are objects, only deep will pick them up
assert res_deep > res
else:
assert res == res_deep
if isinstance(o, Series):
assert ((o.memory_usage(index=False) +
o.index.memory_usage()) ==
o.memory_usage(index=True))
# sys.getsizeof will call the .memory_usage with
# deep=True, and add on some GC overhead
diff = res_deep - sys.getsizeof(o)
assert abs(diff) < 100
def test_searchsorted(self):
# See gh-12238
for o in self.objs:
index = np.searchsorted(o, max(o))
assert 0 <= index <= len(o)
index = np.searchsorted(o, max(o), sorter=range(len(o)))
assert 0 <= index <= len(o)
def test_validate_bool_args(self):
invalid_values = [1, "True", [1, 2, 3], 5.0]
for value in invalid_values:
with pytest.raises(ValueError):
self.int_series.drop_duplicates(inplace=value)
class TestTranspose(Ops):
errmsg = "the 'axes' parameter is not supported"
def test_transpose(self):
for obj in self.objs:
if isinstance(obj, Index):
tm.assert_index_equal(obj.transpose(), obj)
else:
tm.assert_series_equal(obj.transpose(), obj)
def test_transpose_non_default_axes(self):
for obj in self.objs:
tm.assert_raises_regex(ValueError, self.errmsg,
obj.transpose, 1)
tm.assert_raises_regex(ValueError, self.errmsg,
obj.transpose, axes=1)
def test_numpy_transpose(self):
for obj in self.objs:
if isinstance(obj, Index):
tm.assert_index_equal(np.transpose(obj), obj)
else:
tm.assert_series_equal(np.transpose(obj), obj)
tm.assert_raises_regex(ValueError, self.errmsg,
np.transpose, obj, axes=1)
class TestNoNewAttributesMixin(object):
def test_mixin(self):
class T(NoNewAttributesMixin):
pass
t = T()
assert not hasattr(t, "__frozen")
t.a = "test"
assert t.a == "test"
t._freeze()
assert "__frozen" in dir(t)
assert getattr(t, "__frozen")
def f():
t.b = "test"
pytest.raises(AttributeError, f)
assert not hasattr(t, "b")
class TestToIterable(object):
# test that we convert an iterable to python types
dtypes = [
('int8', (int, long)),
('int16', (int, long)),
('int32', (int, long)),
('int64', (int, long)),
('uint8', (int, long)),
('uint16', (int, long)),
('uint32', (int, long)),
('uint64', (int, long)),
('float16', float),
('float32', float),
('float64', float),
('datetime64[ns]', Timestamp),
('datetime64[ns, US/Eastern]', Timestamp),
('timedelta64[ns]', Timedelta)]
@pytest.mark.parametrize(
'dtype, rdtype', dtypes)
@pytest.mark.parametrize(
'method',
[
lambda x: x.tolist(),
lambda x: list(x),
lambda x: list(x.__iter__()),
], ids=['tolist', 'list', 'iter'])
@pytest.mark.parametrize('typ', [Series, Index])
def test_iterable(self, typ, method, dtype, rdtype):
# gh-10904
# gh-13258
# coerce iteration to underlying python / pandas types
s = typ([1], dtype=dtype)
result = method(s)[0]
assert isinstance(result, rdtype)
@pytest.mark.parametrize(
'dtype, rdtype, obj',
[
('object', object, 'a'),
('object', (int, long), 1),
('category', object, 'a'),
('category', (int, long), 1)])
@pytest.mark.parametrize(
'method',
[
lambda x: x.tolist(),
lambda x: list(x),
lambda x: list(x.__iter__()),
], ids=['tolist', 'list', 'iter'])
@pytest.mark.parametrize('typ', [Series, Index])
def test_iterable_object_and_category(self, typ, method,
dtype, rdtype, obj):
# gh-10904
# gh-13258
# coerce iteration to underlying python / pandas types
s = typ([obj], dtype=dtype)
result = method(s)[0]
assert isinstance(result, rdtype)
@pytest.mark.parametrize(
'dtype, rdtype', dtypes)
def test_iterable_items(self, dtype, rdtype):
# gh-13258
# test items / iteritems yields the correct boxed scalars
# this only applies to series
s = Series([1], dtype=dtype)
_, result = list(s.items())[0]
assert isinstance(result, rdtype)
_, result = list(s.iteritems())[0]
assert isinstance(result, rdtype)
@pytest.mark.parametrize(
'dtype, rdtype',
dtypes + [
('object', (int, long)),
('category', (int, long))])
@pytest.mark.parametrize('typ', [Series, Index])
def test_iterable_map(self, typ, dtype, rdtype):
# gh-13236
# coerce iteration to underlying python / pandas types
s = typ([1], dtype=dtype)
result = s.map(type)[0]
if not isinstance(rdtype, tuple):
rdtype = tuple([rdtype])
assert result in rdtype
@pytest.mark.parametrize(
'method',
[
lambda x: x.tolist(),
lambda x: list(x),
lambda x: list(x.__iter__()),
], ids=['tolist', 'list', 'iter'])
def test_categorial_datetimelike(self, method):
i = CategoricalIndex([Timestamp('1999-12-31'),
Timestamp('2000-12-31')])
result = method(i)[0]
assert isinstance(result, Timestamp)
def test_iter_box(self):
vals = [Timestamp('2011-01-01'), Timestamp('2011-01-02')]
s = Series(vals)
assert s.dtype == 'datetime64[ns]'
for res, exp in zip(s, vals):
assert isinstance(res, Timestamp)
assert res.tz is None
assert res == exp
vals = [Timestamp('2011-01-01', tz='US/Eastern'),
Timestamp('2011-01-02', tz='US/Eastern')]
s = Series(vals)
assert s.dtype == 'datetime64[ns, US/Eastern]'
for res, exp in zip(s, vals):
assert isinstance(res, Timestamp)
assert res.tz == exp.tz
assert res == exp
# timedelta
vals = [Timedelta('1 days'), Timedelta('2 days')]
s = Series(vals)
assert s.dtype == 'timedelta64[ns]'
for res, exp in zip(s, vals):
assert isinstance(res, Timedelta)
assert res == exp
# period (object dtype, not boxed)
vals = [pd.Period('2011-01-01', freq='M'),
pd.Period('2011-01-02', freq='M')]
s = Series(vals)
assert s.dtype == 'object'
for res, exp in zip(s, vals):
assert isinstance(res, pd.Period)
assert res.freq == 'M'
assert res == exp
@pytest.mark.parametrize('array, expected_type, dtype', [
(np.array([0, 1], dtype=np.int64), np.ndarray, 'int64'),
(np.array(['a', 'b']), np.ndarray, 'object'),
(pd.Categorical(['a', 'b']), pd.Categorical, 'category'),
(pd.DatetimeIndex(['2017', '2018']), np.ndarray, 'datetime64[ns]'),
(pd.DatetimeIndex(['2017', '2018'], tz="US/Central"), pd.DatetimeIndex,
'datetime64[ns, US/Central]'),
(pd.TimedeltaIndex([10**10]), np.ndarray, 'm8[ns]'),
(pd.PeriodIndex([2018, 2019], freq='A'), np.ndarray, 'object'),
(pd.IntervalIndex.from_breaks([0, 1, 2]), np.ndarray, 'object'),
])
def test_values_consistent(array, expected_type, dtype):
l_values = pd.Series(array)._values
r_values = pd.Index(array)._values
assert type(l_values) is expected_type
assert type(l_values) is type(r_values)
if isinstance(l_values, np.ndarray):
tm.assert_numpy_array_equal(l_values, r_values)
elif isinstance(l_values, pd.Index):
tm.assert_index_equal(l_values, r_values)
elif pd.api.types.is_categorical(l_values):
tm.assert_categorical_equal(l_values, r_values)
else:
raise TypeError("Unexpected type {}".format(type(l_values)))
assert l_values.dtype == dtype
assert r_values.dtype == dtype
@pytest.mark.parametrize('array, expected', [
(np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)),
(np.array(['0', '1']), np.array(['0', '1'], dtype=object)),
(pd.Categorical(['a', 'a']), np.array([0, 0], dtype='int8')),
(pd.DatetimeIndex(['2017-01-01T00:00:00']),
np.array(['2017-01-01T00:00:00'], dtype='M8[ns]')),
(pd.DatetimeIndex(['2017-01-01T00:00:00'], tz="US/Eastern"),
np.array(['2017-01-01T05:00:00'], dtype='M8[ns]')),
(pd.TimedeltaIndex([10**10]), np.array([10**10], dtype='m8[ns]')),
pytest.param(
pd.PeriodIndex(['2017', '2018'], freq='D'),
np.array([17167, 17532]),
marks=pytest.mark.xfail(reason="PeriodArray Not implemented")
),
])
def test_ndarray_values(array, expected):
l_values = pd.Series(array)._ndarray_values
r_values = pd.Index(array)._ndarray_values
tm.assert_numpy_array_equal(l_values, r_values)
tm.assert_numpy_array_equal(l_values, expected)