laywerrobot/lib/python3.6/site-packages/pandas/tests/sparse/test_pivot.py

51 lines
2.3 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
import numpy as np
import pandas as pd
import pandas.util.testing as tm
class TestPivotTable(object):
def setup_method(self, method):
self.dense = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'three',
'two', 'two', 'one', 'three'],
'C': np.random.randn(8),
'D': np.random.randn(8),
'E': [np.nan, np.nan, 1, 2,
np.nan, 1, np.nan, np.nan]})
self.sparse = self.dense.to_sparse()
def test_pivot_table(self):
res_sparse = pd.pivot_table(self.sparse, index='A', columns='B',
values='C')
res_dense = pd.pivot_table(self.dense, index='A', columns='B',
values='C')
tm.assert_frame_equal(res_sparse, res_dense)
res_sparse = pd.pivot_table(self.sparse, index='A', columns='B',
values='E')
res_dense = pd.pivot_table(self.dense, index='A', columns='B',
values='E')
tm.assert_frame_equal(res_sparse, res_dense)
res_sparse = pd.pivot_table(self.sparse, index='A', columns='B',
values='E', aggfunc='mean')
res_dense = pd.pivot_table(self.dense, index='A', columns='B',
values='E', aggfunc='mean')
tm.assert_frame_equal(res_sparse, res_dense)
# ToDo: sum doesn't handle nan properly
# res_sparse = pd.pivot_table(self.sparse, index='A', columns='B',
# values='E', aggfunc='sum')
# res_dense = pd.pivot_table(self.dense, index='A', columns='B',
# values='E', aggfunc='sum')
# tm.assert_frame_equal(res_sparse, res_dense)
def test_pivot_table_multi(self):
res_sparse = pd.pivot_table(self.sparse, index='A', columns='B',
values=['D', 'E'])
res_dense = pd.pivot_table(self.dense, index='A', columns='B',
values=['D', 'E'])
tm.assert_frame_equal(res_sparse, res_dense)