133 lines
4.9 KiB
Python
133 lines
4.9 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
|
||
|
import pandas.util.testing as tm
|
||
|
from pandas.compat import (is_platform_windows,
|
||
|
is_platform_32bit)
|
||
|
from pandas.core.config import option_context
|
||
|
|
||
|
|
||
|
use_32bit_repr = is_platform_windows() or is_platform_32bit()
|
||
|
|
||
|
|
||
|
class TestSparseSeriesFormatting(object):
|
||
|
|
||
|
@property
|
||
|
def dtype_format_for_platform(self):
|
||
|
return '' if use_32bit_repr else ', dtype=int32'
|
||
|
|
||
|
def test_sparse_max_row(self):
|
||
|
s = pd.Series([1, np.nan, np.nan, 3, np.nan]).to_sparse()
|
||
|
result = repr(s)
|
||
|
dfm = self.dtype_format_for_platform
|
||
|
exp = ("0 1.0\n1 NaN\n2 NaN\n3 3.0\n"
|
||
|
"4 NaN\ndtype: float64\nBlockIndex\n"
|
||
|
"Block locations: array([0, 3]{0})\n"
|
||
|
"Block lengths: array([1, 1]{0})".format(dfm))
|
||
|
assert result == exp
|
||
|
|
||
|
with option_context("display.max_rows", 3):
|
||
|
# GH 10560
|
||
|
result = repr(s)
|
||
|
exp = ("0 1.0\n ... \n4 NaN\n"
|
||
|
"Length: 5, dtype: float64\nBlockIndex\n"
|
||
|
"Block locations: array([0, 3]{0})\n"
|
||
|
"Block lengths: array([1, 1]{0})".format(dfm))
|
||
|
assert result == exp
|
||
|
|
||
|
def test_sparse_mi_max_row(self):
|
||
|
idx = pd.MultiIndex.from_tuples([('A', 0), ('A', 1), ('B', 0),
|
||
|
('C', 0), ('C', 1), ('C', 2)])
|
||
|
s = pd.Series([1, np.nan, np.nan, 3, np.nan, np.nan],
|
||
|
index=idx).to_sparse()
|
||
|
result = repr(s)
|
||
|
dfm = self.dtype_format_for_platform
|
||
|
exp = ("A 0 1.0\n 1 NaN\nB 0 NaN\n"
|
||
|
"C 0 3.0\n 1 NaN\n 2 NaN\n"
|
||
|
"dtype: float64\nBlockIndex\n"
|
||
|
"Block locations: array([0, 3]{0})\n"
|
||
|
"Block lengths: array([1, 1]{0})".format(dfm))
|
||
|
assert result == exp
|
||
|
|
||
|
with option_context("display.max_rows", 3,
|
||
|
"display.show_dimensions", False):
|
||
|
# GH 13144
|
||
|
result = repr(s)
|
||
|
exp = ("A 0 1.0\n ... \nC 2 NaN\n"
|
||
|
"dtype: float64\nBlockIndex\n"
|
||
|
"Block locations: array([0, 3]{0})\n"
|
||
|
"Block lengths: array([1, 1]{0})".format(dfm))
|
||
|
assert result == exp
|
||
|
|
||
|
def test_sparse_bool(self):
|
||
|
# GH 13110
|
||
|
s = pd.SparseSeries([True, False, False, True, False, False],
|
||
|
fill_value=False)
|
||
|
result = repr(s)
|
||
|
dtype = '' if use_32bit_repr else ', dtype=int32'
|
||
|
exp = ("0 True\n1 False\n2 False\n"
|
||
|
"3 True\n4 False\n5 False\n"
|
||
|
"dtype: bool\nBlockIndex\n"
|
||
|
"Block locations: array([0, 3]{0})\n"
|
||
|
"Block lengths: array([1, 1]{0})".format(dtype))
|
||
|
assert result == exp
|
||
|
|
||
|
with option_context("display.max_rows", 3):
|
||
|
result = repr(s)
|
||
|
exp = ("0 True\n ... \n5 False\n"
|
||
|
"Length: 6, dtype: bool\nBlockIndex\n"
|
||
|
"Block locations: array([0, 3]{0})\n"
|
||
|
"Block lengths: array([1, 1]{0})".format(dtype))
|
||
|
assert result == exp
|
||
|
|
||
|
def test_sparse_int(self):
|
||
|
# GH 13110
|
||
|
s = pd.SparseSeries([0, 1, 0, 0, 1, 0], fill_value=False)
|
||
|
|
||
|
result = repr(s)
|
||
|
dtype = '' if use_32bit_repr else ', dtype=int32'
|
||
|
exp = ("0 0\n1 1\n2 0\n3 0\n4 1\n"
|
||
|
"5 0\ndtype: int64\nBlockIndex\n"
|
||
|
"Block locations: array([1, 4]{0})\n"
|
||
|
"Block lengths: array([1, 1]{0})".format(dtype))
|
||
|
assert result == exp
|
||
|
|
||
|
with option_context("display.max_rows", 3,
|
||
|
"display.show_dimensions", False):
|
||
|
result = repr(s)
|
||
|
exp = ("0 0\n ..\n5 0\n"
|
||
|
"dtype: int64\nBlockIndex\n"
|
||
|
"Block locations: array([1, 4]{0})\n"
|
||
|
"Block lengths: array([1, 1]{0})".format(dtype))
|
||
|
assert result == exp
|
||
|
|
||
|
|
||
|
class TestSparseDataFrameFormatting(object):
|
||
|
|
||
|
def test_sparse_frame(self):
|
||
|
# GH 13110
|
||
|
df = pd.DataFrame({'A': [True, False, True, False, True],
|
||
|
'B': [True, False, True, False, True],
|
||
|
'C': [0, 0, 3, 0, 5],
|
||
|
'D': [np.nan, np.nan, np.nan, 1, 2]})
|
||
|
sparse = df.to_sparse()
|
||
|
assert repr(sparse) == repr(df)
|
||
|
|
||
|
with option_context("display.max_rows", 3):
|
||
|
assert repr(sparse) == repr(df)
|
||
|
|
||
|
def test_sparse_repr_after_set(self):
|
||
|
# GH 15488
|
||
|
sdf = pd.SparseDataFrame([[np.nan, 1], [2, np.nan]])
|
||
|
res = sdf.copy()
|
||
|
|
||
|
# Ignore the warning
|
||
|
with pd.option_context('mode.chained_assignment', None):
|
||
|
sdf[0][1] = 2 # This line triggers the bug
|
||
|
|
||
|
repr(sdf)
|
||
|
tm.assert_sp_frame_equal(sdf, res)
|