laywerrobot/lib/python3.6/site-packages/pandas/tests/sparse/test_combine_concat.py

385 lines
15 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# pylint: disable-msg=E1101,W0612
import pytest
import numpy as np
import pandas as pd
import pandas.util.testing as tm
import itertools
class TestSparseSeriesConcat(object):
def test_concat(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
for kind in ['integer', 'block']:
sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
sparse2 = pd.SparseSeries(val2, name='y', kind=kind)
res = pd.concat([sparse1, sparse2])
exp = pd.concat([pd.Series(val1), pd.Series(val2)])
exp = pd.SparseSeries(exp, kind=kind)
tm.assert_sp_series_equal(res, exp)
sparse1 = pd.SparseSeries(val1, fill_value=0, name='x', kind=kind)
sparse2 = pd.SparseSeries(val2, fill_value=0, name='y', kind=kind)
res = pd.concat([sparse1, sparse2])
exp = pd.concat([pd.Series(val1), pd.Series(val2)])
exp = pd.SparseSeries(exp, fill_value=0, kind=kind)
tm.assert_sp_series_equal(res, exp)
def test_concat_axis1(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
sparse1 = pd.SparseSeries(val1, name='x')
sparse2 = pd.SparseSeries(val2, name='y')
res = pd.concat([sparse1, sparse2], axis=1)
exp = pd.concat([pd.Series(val1, name='x'),
pd.Series(val2, name='y')], axis=1)
exp = pd.SparseDataFrame(exp)
tm.assert_sp_frame_equal(res, exp)
def test_concat_different_fill(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
for kind in ['integer', 'block']:
sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
sparse2 = pd.SparseSeries(val2, name='y', kind=kind, fill_value=0)
res = pd.concat([sparse1, sparse2])
exp = pd.concat([pd.Series(val1), pd.Series(val2)])
exp = pd.SparseSeries(exp, kind=kind)
tm.assert_sp_series_equal(res, exp)
res = pd.concat([sparse2, sparse1])
exp = pd.concat([pd.Series(val2), pd.Series(val1)])
exp = pd.SparseSeries(exp, kind=kind, fill_value=0)
tm.assert_sp_series_equal(res, exp)
def test_concat_axis1_different_fill(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
sparse1 = pd.SparseSeries(val1, name='x')
sparse2 = pd.SparseSeries(val2, name='y', fill_value=0)
res = pd.concat([sparse1, sparse2], axis=1)
exp = pd.concat([pd.Series(val1, name='x'),
pd.Series(val2, name='y')], axis=1)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
def test_concat_different_kind(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
sparse1 = pd.SparseSeries(val1, name='x', kind='integer')
sparse2 = pd.SparseSeries(val2, name='y', kind='block', fill_value=0)
res = pd.concat([sparse1, sparse2])
exp = pd.concat([pd.Series(val1), pd.Series(val2)])
exp = pd.SparseSeries(exp, kind='integer')
tm.assert_sp_series_equal(res, exp)
res = pd.concat([sparse2, sparse1])
exp = pd.concat([pd.Series(val2), pd.Series(val1)])
exp = pd.SparseSeries(exp, kind='block', fill_value=0)
tm.assert_sp_series_equal(res, exp)
def test_concat_sparse_dense(self):
# use first input's fill_value
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
for kind in ['integer', 'block']:
sparse = pd.SparseSeries(val1, name='x', kind=kind)
dense = pd.Series(val2, name='y')
res = pd.concat([sparse, dense])
exp = pd.concat([pd.Series(val1), dense])
exp = pd.SparseSeries(exp, kind=kind)
tm.assert_sp_series_equal(res, exp)
res = pd.concat([dense, sparse, dense])
exp = pd.concat([dense, pd.Series(val1), dense])
exp = pd.SparseSeries(exp, kind=kind)
tm.assert_sp_series_equal(res, exp)
sparse = pd.SparseSeries(val1, name='x', kind=kind, fill_value=0)
dense = pd.Series(val2, name='y')
res = pd.concat([sparse, dense])
exp = pd.concat([pd.Series(val1), dense])
exp = pd.SparseSeries(exp, kind=kind, fill_value=0)
tm.assert_sp_series_equal(res, exp)
res = pd.concat([dense, sparse, dense])
exp = pd.concat([dense, pd.Series(val1), dense])
exp = pd.SparseSeries(exp, kind=kind, fill_value=0)
tm.assert_sp_series_equal(res, exp)
class TestSparseDataFrameConcat(object):
def setup_method(self, method):
self.dense1 = pd.DataFrame({'A': [0., 1., 2., np.nan],
'B': [0., 0., 0., 0.],
'C': [np.nan, np.nan, np.nan, np.nan],
'D': [1., 2., 3., 4.]})
self.dense2 = pd.DataFrame({'A': [5., 6., 7., 8.],
'B': [np.nan, 0., 7., 8.],
'C': [5., 6., np.nan, np.nan],
'D': [np.nan, np.nan, np.nan, np.nan]})
self.dense3 = pd.DataFrame({'E': [5., 6., 7., 8.],
'F': [np.nan, 0., 7., 8.],
'G': [5., 6., np.nan, np.nan],
'H': [np.nan, np.nan, np.nan, np.nan]})
def test_concat(self):
# fill_value = np.nan
sparse = self.dense1.to_sparse()
sparse2 = self.dense2.to_sparse()
res = pd.concat([sparse, sparse])
exp = pd.concat([self.dense1, self.dense1]).to_sparse()
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse2, sparse2])
exp = pd.concat([self.dense2, self.dense2]).to_sparse()
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse, sparse2])
exp = pd.concat([self.dense1, self.dense2]).to_sparse()
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse2, sparse])
exp = pd.concat([self.dense2, self.dense1]).to_sparse()
tm.assert_sp_frame_equal(res, exp)
# fill_value = 0
sparse = self.dense1.to_sparse(fill_value=0)
sparse2 = self.dense2.to_sparse(fill_value=0)
res = pd.concat([sparse, sparse])
exp = pd.concat([self.dense1, self.dense1]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse2, sparse2])
exp = pd.concat([self.dense2, self.dense2]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse, sparse2])
exp = pd.concat([self.dense1, self.dense2]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse2, sparse])
exp = pd.concat([self.dense2, self.dense1]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
def test_concat_different_fill_value(self):
# 1st fill_value will be used
sparse = self.dense1.to_sparse()
sparse2 = self.dense2.to_sparse(fill_value=0)
res = pd.concat([sparse, sparse2])
exp = pd.concat([self.dense1, self.dense2]).to_sparse()
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse2, sparse])
exp = pd.concat([self.dense2, self.dense1]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
def test_concat_different_columns_sort_warns(self):
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse()
with tm.assert_produces_warning(FutureWarning):
res = pd.concat([sparse, sparse3])
with tm.assert_produces_warning(FutureWarning):
exp = pd.concat([self.dense1, self.dense3])
exp = exp.to_sparse()
tm.assert_sp_frame_equal(res, exp)
def test_concat_different_columns(self):
# fill_value = np.nan
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse()
res = pd.concat([sparse, sparse3], sort=True)
exp = pd.concat([self.dense1, self.dense3], sort=True).to_sparse()
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse3, sparse], sort=True)
exp = pd.concat([self.dense3, self.dense1], sort=True).to_sparse()
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# fill_value = 0
sparse = self.dense1.to_sparse(fill_value=0)
sparse3 = self.dense3.to_sparse(fill_value=0)
res = pd.concat([sparse, sparse3], sort=True)
exp = (pd.concat([self.dense1, self.dense3], sort=True)
.to_sparse(fill_value=0))
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse3, sparse], sort=True)
exp = (pd.concat([self.dense3, self.dense1], sort=True)
.to_sparse(fill_value=0))
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# different fill values
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse(fill_value=0)
# each columns keeps its fill_value, thus compare in dense
res = pd.concat([sparse, sparse3], sort=True)
exp = pd.concat([self.dense1, self.dense3], sort=True)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
res = pd.concat([sparse3, sparse], sort=True)
exp = pd.concat([self.dense3, self.dense1], sort=True)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
def test_concat_series(self):
# fill_value = np.nan
sparse = self.dense1.to_sparse()
sparse2 = self.dense2.to_sparse()
for col in ['A', 'D']:
res = pd.concat([sparse, sparse2[col]])
exp = pd.concat([self.dense1, self.dense2[col]]).to_sparse()
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse2[col], sparse])
exp = pd.concat([self.dense2[col], self.dense1]).to_sparse()
tm.assert_sp_frame_equal(res, exp)
# fill_value = 0
sparse = self.dense1.to_sparse(fill_value=0)
sparse2 = self.dense2.to_sparse(fill_value=0)
for col in ['C', 'D']:
res = pd.concat([sparse, sparse2[col]])
exp = pd.concat([self.dense1,
self.dense2[col]]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse2[col], sparse])
exp = pd.concat([self.dense2[col],
self.dense1]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
def test_concat_axis1(self):
# fill_value = np.nan
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse()
res = pd.concat([sparse, sparse3], axis=1)
exp = pd.concat([self.dense1, self.dense3], axis=1).to_sparse()
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse3, sparse], axis=1)
exp = pd.concat([self.dense3, self.dense1], axis=1).to_sparse()
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# fill_value = 0
sparse = self.dense1.to_sparse(fill_value=0)
sparse3 = self.dense3.to_sparse(fill_value=0)
res = pd.concat([sparse, sparse3], axis=1)
exp = pd.concat([self.dense1, self.dense3],
axis=1).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse3, sparse], axis=1)
exp = pd.concat([self.dense3, self.dense1],
axis=1).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# different fill values
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse(fill_value=0)
# each columns keeps its fill_value, thus compare in dense
res = pd.concat([sparse, sparse3], axis=1)
exp = pd.concat([self.dense1, self.dense3], axis=1)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
res = pd.concat([sparse3, sparse], axis=1)
exp = pd.concat([self.dense3, self.dense1], axis=1)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
@pytest.mark.parametrize('fill_value,sparse_idx,dense_idx',
itertools.product([None, 0, 1, np.nan],
[0, 1],
[1, 0]))
def test_concat_sparse_dense_rows(self, fill_value, sparse_idx, dense_idx):
frames = [self.dense1, self.dense2]
sparse_frame = [frames[dense_idx],
frames[sparse_idx].to_sparse(fill_value=fill_value)]
dense_frame = [frames[dense_idx], frames[sparse_idx]]
# This will try both directions sparse + dense and dense + sparse
for _ in range(2):
res = pd.concat(sparse_frame)
exp = pd.concat(dense_frame)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
sparse_frame = sparse_frame[::-1]
dense_frame = dense_frame[::-1]
@pytest.mark.parametrize('fill_value,sparse_idx,dense_idx',
itertools.product([None, 0, 1, np.nan],
[0, 1],
[1, 0]))
def test_concat_sparse_dense_cols(self, fill_value, sparse_idx, dense_idx):
# See GH16874, GH18914 and #18686 for why this should be a DataFrame
frames = [self.dense1, self.dense3]
sparse_frame = [frames[dense_idx],
frames[sparse_idx].to_sparse(fill_value=fill_value)]
dense_frame = [frames[dense_idx], frames[sparse_idx]]
# This will try both directions sparse + dense and dense + sparse
for _ in range(2):
res = pd.concat(sparse_frame, axis=1)
exp = pd.concat(dense_frame, axis=1)
for column in frames[dense_idx].columns:
if dense_idx == sparse_idx:
tm.assert_frame_equal(res[column], exp[column])
else:
tm.assert_series_equal(res[column], exp[column])
tm.assert_frame_equal(res, exp)
sparse_frame = sparse_frame[::-1]
dense_frame = dense_frame[::-1]