laywerrobot/lib/python3.6/site-packages/pandas/tests/series/test_datetime_values.py

463 lines
19 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# coding=utf-8
# pylint: disable-msg=E1101,W0612
import locale
import calendar
import pytest
from datetime import datetime, date
import numpy as np
import pandas as pd
from pandas.core.dtypes.common import is_integer_dtype, is_list_like
from pandas import (Index, Series, DataFrame, bdate_range,
date_range, period_range, timedelta_range,
PeriodIndex, DatetimeIndex, TimedeltaIndex)
import pandas.core.common as com
from pandas.util.testing import assert_series_equal
import pandas.util.testing as tm
from .common import TestData
class TestSeriesDatetimeValues(TestData):
def test_dt_namespace_accessor(self):
# GH 7207, 11128
# test .dt namespace accessor
ok_for_period = PeriodIndex._datetimelike_ops
ok_for_period_methods = ['strftime', 'to_timestamp', 'asfreq']
ok_for_dt = DatetimeIndex._datetimelike_ops
ok_for_dt_methods = ['to_period', 'to_pydatetime', 'tz_localize',
'tz_convert', 'normalize', 'strftime', 'round',
'floor', 'ceil', 'day_name', 'month_name']
ok_for_td = TimedeltaIndex._datetimelike_ops
ok_for_td_methods = ['components', 'to_pytimedelta', 'total_seconds',
'round', 'floor', 'ceil']
def get_expected(s, name):
result = getattr(Index(s._values), prop)
if isinstance(result, np.ndarray):
if is_integer_dtype(result):
result = result.astype('int64')
elif not is_list_like(result):
return result
return Series(result, index=s.index, name=s.name)
def compare(s, name):
a = getattr(s.dt, prop)
b = get_expected(s, prop)
if not (is_list_like(a) and is_list_like(b)):
assert a == b
else:
tm.assert_series_equal(a, b)
# datetimeindex
cases = [Series(date_range('20130101', periods=5), name='xxx'),
Series(date_range('20130101', periods=5, freq='s'),
name='xxx'),
Series(date_range('20130101 00:00:00', periods=5, freq='ms'),
name='xxx')]
for s in cases:
for prop in ok_for_dt:
# we test freq below
if prop != 'freq':
compare(s, prop)
for prop in ok_for_dt_methods:
getattr(s.dt, prop)
result = s.dt.to_pydatetime()
assert isinstance(result, np.ndarray)
assert result.dtype == object
result = s.dt.tz_localize('US/Eastern')
exp_values = DatetimeIndex(s.values).tz_localize('US/Eastern')
expected = Series(exp_values, index=s.index, name='xxx')
tm.assert_series_equal(result, expected)
tz_result = result.dt.tz
assert str(tz_result) == 'US/Eastern'
freq_result = s.dt.freq
assert freq_result == DatetimeIndex(s.values, freq='infer').freq
# let's localize, then convert
result = s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
exp_values = (DatetimeIndex(s.values).tz_localize('UTC')
.tz_convert('US/Eastern'))
expected = Series(exp_values, index=s.index, name='xxx')
tm.assert_series_equal(result, expected)
# round
s = Series(pd.to_datetime(['2012-01-01 13:00:00',
'2012-01-01 12:01:00',
'2012-01-01 08:00:00']), name='xxx')
result = s.dt.round('D')
expected = Series(pd.to_datetime(['2012-01-02', '2012-01-02',
'2012-01-01']), name='xxx')
tm.assert_series_equal(result, expected)
# round with tz
result = (s.dt.tz_localize('UTC')
.dt.tz_convert('US/Eastern')
.dt.round('D'))
exp_values = pd.to_datetime(['2012-01-01', '2012-01-01',
'2012-01-01']).tz_localize('US/Eastern')
expected = Series(exp_values, name='xxx')
tm.assert_series_equal(result, expected)
# floor
s = Series(pd.to_datetime(['2012-01-01 13:00:00',
'2012-01-01 12:01:00',
'2012-01-01 08:00:00']), name='xxx')
result = s.dt.floor('D')
expected = Series(pd.to_datetime(['2012-01-01', '2012-01-01',
'2012-01-01']), name='xxx')
tm.assert_series_equal(result, expected)
# ceil
s = Series(pd.to_datetime(['2012-01-01 13:00:00',
'2012-01-01 12:01:00',
'2012-01-01 08:00:00']), name='xxx')
result = s.dt.ceil('D')
expected = Series(pd.to_datetime(['2012-01-02', '2012-01-02',
'2012-01-02']), name='xxx')
tm.assert_series_equal(result, expected)
# datetimeindex with tz
s = Series(date_range('20130101', periods=5, tz='US/Eastern'),
name='xxx')
for prop in ok_for_dt:
# we test freq below
if prop != 'freq':
compare(s, prop)
for prop in ok_for_dt_methods:
getattr(s.dt, prop)
result = s.dt.to_pydatetime()
assert isinstance(result, np.ndarray)
assert result.dtype == object
result = s.dt.tz_convert('CET')
expected = Series(s._values.tz_convert('CET'),
index=s.index, name='xxx')
tm.assert_series_equal(result, expected)
tz_result = result.dt.tz
assert str(tz_result) == 'CET'
freq_result = s.dt.freq
assert freq_result == DatetimeIndex(s.values, freq='infer').freq
# timedelta index
cases = [Series(timedelta_range('1 day', periods=5),
index=list('abcde'), name='xxx'),
Series(timedelta_range('1 day 01:23:45', periods=5,
freq='s'), name='xxx'),
Series(timedelta_range('2 days 01:23:45.012345', periods=5,
freq='ms'), name='xxx')]
for s in cases:
for prop in ok_for_td:
# we test freq below
if prop != 'freq':
compare(s, prop)
for prop in ok_for_td_methods:
getattr(s.dt, prop)
result = s.dt.components
assert isinstance(result, DataFrame)
tm.assert_index_equal(result.index, s.index)
result = s.dt.to_pytimedelta()
assert isinstance(result, np.ndarray)
assert result.dtype == object
result = s.dt.total_seconds()
assert isinstance(result, pd.Series)
assert result.dtype == 'float64'
freq_result = s.dt.freq
assert freq_result == TimedeltaIndex(s.values, freq='infer').freq
# both
index = date_range('20130101', periods=3, freq='D')
s = Series(date_range('20140204', periods=3, freq='s'),
index=index, name='xxx')
exp = Series(np.array([2014, 2014, 2014], dtype='int64'),
index=index, name='xxx')
tm.assert_series_equal(s.dt.year, exp)
exp = Series(np.array([2, 2, 2], dtype='int64'),
index=index, name='xxx')
tm.assert_series_equal(s.dt.month, exp)
exp = Series(np.array([0, 1, 2], dtype='int64'),
index=index, name='xxx')
tm.assert_series_equal(s.dt.second, exp)
exp = pd.Series([s[0]] * 3, index=index, name='xxx')
tm.assert_series_equal(s.dt.normalize(), exp)
# periodindex
cases = [Series(period_range('20130101', periods=5, freq='D'),
name='xxx')]
for s in cases:
for prop in ok_for_period:
# we test freq below
if prop != 'freq':
compare(s, prop)
for prop in ok_for_period_methods:
getattr(s.dt, prop)
freq_result = s.dt.freq
assert freq_result == PeriodIndex(s.values).freq
# test limited display api
def get_dir(s):
results = [r for r in s.dt.__dir__() if not r.startswith('_')]
return list(sorted(set(results)))
s = Series(date_range('20130101', periods=5, freq='D'), name='xxx')
results = get_dir(s)
tm.assert_almost_equal(
results, list(sorted(set(ok_for_dt + ok_for_dt_methods))))
s = Series(period_range('20130101', periods=5,
freq='D', name='xxx').astype(object))
results = get_dir(s)
tm.assert_almost_equal(
results, list(sorted(set(ok_for_period + ok_for_period_methods))))
# 11295
# ambiguous time error on the conversions
s = Series(pd.date_range('2015-01-01', '2016-01-01',
freq='T'), name='xxx')
s = s.dt.tz_localize('UTC').dt.tz_convert('America/Chicago')
results = get_dir(s)
tm.assert_almost_equal(
results, list(sorted(set(ok_for_dt + ok_for_dt_methods))))
exp_values = pd.date_range('2015-01-01', '2016-01-01', freq='T',
tz='UTC').tz_convert('America/Chicago')
expected = Series(exp_values, name='xxx')
tm.assert_series_equal(s, expected)
# no setting allowed
s = Series(date_range('20130101', periods=5, freq='D'), name='xxx')
with tm.assert_raises_regex(ValueError, "modifications"):
s.dt.hour = 5
# trying to set a copy
with pd.option_context('chained_assignment', 'raise'):
def f():
s.dt.hour[0] = 5
pytest.raises(com.SettingWithCopyError, f)
def test_dt_namespace_accessor_categorical(self):
# GH 19468
dti = DatetimeIndex(['20171111', '20181212']).repeat(2)
s = Series(pd.Categorical(dti), name='foo')
result = s.dt.year
expected = Series([2017, 2017, 2018, 2018], name='foo')
tm.assert_series_equal(result, expected)
def test_dt_accessor_no_new_attributes(self):
# https://github.com/pandas-dev/pandas/issues/10673
s = Series(date_range('20130101', periods=5, freq='D'))
with tm.assert_raises_regex(AttributeError,
"You cannot add any new attribute"):
s.dt.xlabel = "a"
@pytest.mark.parametrize('time_locale', [
None] if tm.get_locales() is None else [None] + tm.get_locales())
def test_dt_accessor_datetime_name_accessors(self, time_locale):
# Test Monday -> Sunday and January -> December, in that sequence
if time_locale is None:
# If the time_locale is None, day-name and month_name should
# return the english attributes
expected_days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']
expected_months = ['January', 'February', 'March', 'April', 'May',
'June', 'July', 'August', 'September',
'October', 'November', 'December']
else:
with tm.set_locale(time_locale, locale.LC_TIME):
expected_days = calendar.day_name[:]
expected_months = calendar.month_name[1:]
s = Series(DatetimeIndex(freq='D', start=datetime(1998, 1, 1),
periods=365))
english_days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']
for day, name, eng_name in zip(range(4, 11),
expected_days,
english_days):
name = name.capitalize()
assert s.dt.weekday_name[day] == eng_name
assert s.dt.day_name(locale=time_locale)[day] == name
s = s.append(Series([pd.NaT]))
assert np.isnan(s.dt.day_name(locale=time_locale).iloc[-1])
s = Series(DatetimeIndex(freq='M', start='2012', end='2013'))
result = s.dt.month_name(locale=time_locale)
expected = Series([month.capitalize() for month in expected_months])
tm.assert_series_equal(result, expected)
for s_date, expected in zip(s, expected_months):
result = s_date.month_name(locale=time_locale)
assert result == expected.capitalize()
s = s.append(Series([pd.NaT]))
assert np.isnan(s.dt.month_name(locale=time_locale).iloc[-1])
def test_strftime(self):
# GH 10086
s = Series(date_range('20130101', periods=5))
result = s.dt.strftime('%Y/%m/%d')
expected = Series(['2013/01/01', '2013/01/02', '2013/01/03',
'2013/01/04', '2013/01/05'])
tm.assert_series_equal(result, expected)
s = Series(date_range('2015-02-03 11:22:33.4567', periods=5))
result = s.dt.strftime('%Y/%m/%d %H-%M-%S')
expected = Series(['2015/02/03 11-22-33', '2015/02/04 11-22-33',
'2015/02/05 11-22-33', '2015/02/06 11-22-33',
'2015/02/07 11-22-33'])
tm.assert_series_equal(result, expected)
s = Series(period_range('20130101', periods=5))
result = s.dt.strftime('%Y/%m/%d')
expected = Series(['2013/01/01', '2013/01/02', '2013/01/03',
'2013/01/04', '2013/01/05'])
tm.assert_series_equal(result, expected)
s = Series(period_range(
'2015-02-03 11:22:33.4567', periods=5, freq='s'))
result = s.dt.strftime('%Y/%m/%d %H-%M-%S')
expected = Series(['2015/02/03 11-22-33', '2015/02/03 11-22-34',
'2015/02/03 11-22-35', '2015/02/03 11-22-36',
'2015/02/03 11-22-37'])
tm.assert_series_equal(result, expected)
s = Series(date_range('20130101', periods=5))
s.iloc[0] = pd.NaT
result = s.dt.strftime('%Y/%m/%d')
expected = Series(['NaT', '2013/01/02', '2013/01/03', '2013/01/04',
'2013/01/05'])
tm.assert_series_equal(result, expected)
datetime_index = date_range('20150301', periods=5)
result = datetime_index.strftime("%Y/%m/%d")
expected = Index(['2015/03/01', '2015/03/02', '2015/03/03',
'2015/03/04', '2015/03/05'], dtype=np.object_)
# dtype may be S10 or U10 depending on python version
tm.assert_index_equal(result, expected)
period_index = period_range('20150301', periods=5)
result = period_index.strftime("%Y/%m/%d")
expected = Index(['2015/03/01', '2015/03/02', '2015/03/03',
'2015/03/04', '2015/03/05'], dtype='=U10')
tm.assert_index_equal(result, expected)
s = Series([datetime(2013, 1, 1, 2, 32, 59), datetime(2013, 1, 2, 14,
32, 1)])
result = s.dt.strftime('%Y-%m-%d %H:%M:%S')
expected = Series(["2013-01-01 02:32:59", "2013-01-02 14:32:01"])
tm.assert_series_equal(result, expected)
s = Series(period_range('20130101', periods=4, freq='H'))
result = s.dt.strftime('%Y/%m/%d %H:%M:%S')
expected = Series(["2013/01/01 00:00:00", "2013/01/01 01:00:00",
"2013/01/01 02:00:00", "2013/01/01 03:00:00"])
s = Series(period_range('20130101', periods=4, freq='L'))
result = s.dt.strftime('%Y/%m/%d %H:%M:%S.%l')
expected = Series(["2013/01/01 00:00:00.000",
"2013/01/01 00:00:00.001",
"2013/01/01 00:00:00.002",
"2013/01/01 00:00:00.003"])
tm.assert_series_equal(result, expected)
def test_valid_dt_with_missing_values(self):
from datetime import date, time
# GH 8689
s = Series(date_range('20130101', periods=5, freq='D'))
s.iloc[2] = pd.NaT
for attr in ['microsecond', 'nanosecond', 'second', 'minute', 'hour',
'day']:
expected = getattr(s.dt, attr).copy()
expected.iloc[2] = np.nan
result = getattr(s.dt, attr)
tm.assert_series_equal(result, expected)
result = s.dt.date
expected = Series(
[date(2013, 1, 1), date(2013, 1, 2), np.nan, date(2013, 1, 4),
date(2013, 1, 5)], dtype='object')
tm.assert_series_equal(result, expected)
result = s.dt.time
expected = Series(
[time(0), time(0), np.nan, time(0), time(0)], dtype='object')
tm.assert_series_equal(result, expected)
def test_dt_accessor_api(self):
# GH 9322
from pandas.core.indexes.accessors import (
CombinedDatetimelikeProperties, DatetimeProperties)
assert Series.dt is CombinedDatetimelikeProperties
s = Series(date_range('2000-01-01', periods=3))
assert isinstance(s.dt, DatetimeProperties)
for s in [Series(np.arange(5)), Series(list('abcde')),
Series(np.random.randn(5))]:
with tm.assert_raises_regex(AttributeError,
"only use .dt accessor"):
s.dt
assert not hasattr(s, 'dt')
def test_between(self):
s = Series(bdate_range('1/1/2000', periods=20).astype(object))
s[::2] = np.nan
result = s[s.between(s[3], s[17])]
expected = s[3:18].dropna()
assert_series_equal(result, expected)
result = s[s.between(s[3], s[17], inclusive=False)]
expected = s[5:16].dropna()
assert_series_equal(result, expected)
def test_date_tz(self):
# GH11757
rng = pd.DatetimeIndex(['2014-04-04 23:56',
'2014-07-18 21:24',
'2015-11-22 22:14'], tz="US/Eastern")
s = Series(rng)
expected = Series([date(2014, 4, 4),
date(2014, 7, 18),
date(2015, 11, 22)])
assert_series_equal(s.dt.date, expected)
assert_series_equal(s.apply(lambda x: x.date()), expected)
def test_datetime_understood(self):
# Ensures it doesn't fail to create the right series
# reported in issue#16726
series = pd.Series(pd.date_range("2012-01-01", periods=3))
offset = pd.offsets.DateOffset(days=6)
result = series - offset
expected = pd.Series(pd.to_datetime([
'2011-12-26', '2011-12-27', '2011-12-28']))
tm.assert_series_equal(result, expected)