laywerrobot/lib/python3.6/site-packages/pandas/tests/series/indexing/test_indexing.py

771 lines
22 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# coding=utf-8
# pylint: disable-msg=E1101,W0612
""" test get/set & misc """
import pytest
from datetime import timedelta
import numpy as np
import pandas as pd
from pandas.core.dtypes.common import is_scalar
from pandas import (Series, DataFrame, MultiIndex,
Timestamp, Timedelta, Categorical)
from pandas.tseries.offsets import BDay
from pandas.compat import lrange, range
from pandas.util.testing import (assert_series_equal)
import pandas.util.testing as tm
def test_basic_indexing():
s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b'])
pytest.raises(IndexError, s.__getitem__, 5)
pytest.raises(IndexError, s.__setitem__, 5, 0)
pytest.raises(KeyError, s.__getitem__, 'c')
s = s.sort_index()
pytest.raises(IndexError, s.__getitem__, 5)
pytest.raises(IndexError, s.__setitem__, 5, 0)
def test_basic_getitem_with_labels(test_data):
indices = test_data.ts.index[[5, 10, 15]]
result = test_data.ts[indices]
expected = test_data.ts.reindex(indices)
assert_series_equal(result, expected)
result = test_data.ts[indices[0]:indices[2]]
expected = test_data.ts.loc[indices[0]:indices[2]]
assert_series_equal(result, expected)
# integer indexes, be careful
s = Series(np.random.randn(10), index=lrange(0, 20, 2))
inds = [0, 2, 5, 7, 8]
arr_inds = np.array([0, 2, 5, 7, 8])
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = s[inds]
expected = s.reindex(inds)
assert_series_equal(result, expected)
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = s[arr_inds]
expected = s.reindex(arr_inds)
assert_series_equal(result, expected)
# GH12089
# with tz for values
s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"),
index=['a', 'b', 'c'])
expected = Timestamp('2011-01-01', tz='US/Eastern')
result = s.loc['a']
assert result == expected
result = s.iloc[0]
assert result == expected
result = s['a']
assert result == expected
def test_getitem_setitem_ellipsis():
s = Series(np.random.randn(10))
np.fix(s)
result = s[...]
assert_series_equal(result, s)
s[...] = 5
assert (result == 5).all()
def test_getitem_get(test_data):
test_series = test_data.series
test_obj_series = test_data.objSeries
idx1 = test_series.index[5]
idx2 = test_obj_series.index[5]
assert test_series[idx1] == test_series.get(idx1)
assert test_obj_series[idx2] == test_obj_series.get(idx2)
assert test_series[idx1] == test_series[5]
assert test_obj_series[idx2] == test_obj_series[5]
assert test_series.get(-1) == test_series.get(test_series.index[-1])
assert test_series[5] == test_series.get(test_series.index[5])
# missing
d = test_data.ts.index[0] - BDay()
pytest.raises(KeyError, test_data.ts.__getitem__, d)
# None
# GH 5652
for s in [Series(), Series(index=list('abc'))]:
result = s.get(None)
assert result is None
def test_getitem_fancy(test_data):
slice1 = test_data.series[[1, 2, 3]]
slice2 = test_data.objSeries[[1, 2, 3]]
assert test_data.series.index[2] == slice1.index[1]
assert test_data.objSeries.index[2] == slice2.index[1]
assert test_data.series[2] == slice1[1]
assert test_data.objSeries[2] == slice2[1]
def test_getitem_generator(test_data):
gen = (x > 0 for x in test_data.series)
result = test_data.series[gen]
result2 = test_data.series[iter(test_data.series > 0)]
expected = test_data.series[test_data.series > 0]
assert_series_equal(result, expected)
assert_series_equal(result2, expected)
def test_type_promotion():
# GH12599
s = pd.Series()
s["a"] = pd.Timestamp("2016-01-01")
s["b"] = 3.0
s["c"] = "foo"
expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"],
index=["a", "b", "c"])
assert_series_equal(s, expected)
@pytest.mark.parametrize(
'result_1, duplicate_item, expected_1',
[
[
pd.Series({1: 12, 2: [1, 2, 2, 3]}), pd.Series({1: 313}),
pd.Series({1: 12, }, dtype=object),
],
[
pd.Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}),
pd.Series({1: [1, 2, 3]}), pd.Series({1: [1, 2, 3], }),
],
])
def test_getitem_with_duplicates_indices(
result_1, duplicate_item, expected_1):
# GH 17610
result = result_1.append(duplicate_item)
expected = expected_1.append(duplicate_item)
assert_series_equal(result[1], expected)
assert result[2] == result_1[2]
def test_getitem_out_of_bounds(test_data):
# don't segfault, GH #495
pytest.raises(IndexError, test_data.ts.__getitem__, len(test_data.ts))
# GH #917
s = Series([])
pytest.raises(IndexError, s.__getitem__, -1)
def test_getitem_setitem_integers():
# caused bug without test
s = Series([1, 2, 3], ['a', 'b', 'c'])
assert s.iloc[0] == s['a']
s.iloc[0] = 5
tm.assert_almost_equal(s['a'], 5)
def test_getitem_box_float64(test_data):
value = test_data.ts[5]
assert isinstance(value, np.float64)
def test_series_box_timestamp():
rng = pd.date_range('20090415', '20090519', freq='B')
ser = Series(rng)
assert isinstance(ser[5], pd.Timestamp)
rng = pd.date_range('20090415', '20090519', freq='B')
ser = Series(rng, index=rng)
assert isinstance(ser[5], pd.Timestamp)
assert isinstance(ser.iat[5], pd.Timestamp)
def test_getitem_ambiguous_keyerror():
s = Series(lrange(10), index=lrange(0, 20, 2))
pytest.raises(KeyError, s.__getitem__, 1)
pytest.raises(KeyError, s.loc.__getitem__, 1)
def test_getitem_unordered_dup():
obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b'])
assert is_scalar(obj['c'])
assert obj['c'] == 0
def test_getitem_dups_with_missing():
# breaks reindex, so need to use .loc internally
# GH 4246
s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah'])
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
expected = s.loc[['foo', 'bar', 'bah', 'bam']]
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = s[['foo', 'bar', 'bah', 'bam']]
assert_series_equal(result, expected)
def test_getitem_dups():
s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64)
expected = Series([3, 4], index=['C', 'C'], dtype=np.int64)
result = s['C']
assert_series_equal(result, expected)
def test_setitem_ambiguous_keyerror():
s = Series(lrange(10), index=lrange(0, 20, 2))
# equivalent of an append
s2 = s.copy()
s2[1] = 5
expected = s.append(Series([5], index=[1]))
assert_series_equal(s2, expected)
s2 = s.copy()
s2.loc[1] = 5
expected = s.append(Series([5], index=[1]))
assert_series_equal(s2, expected)
def test_getitem_dataframe():
rng = list(range(10))
s = pd.Series(10, index=rng)
df = pd.DataFrame(rng, index=rng)
pytest.raises(TypeError, s.__getitem__, df > 5)
def test_setitem(test_data):
test_data.ts[test_data.ts.index[5]] = np.NaN
test_data.ts[[1, 2, 17]] = np.NaN
test_data.ts[6] = np.NaN
assert np.isnan(test_data.ts[6])
assert np.isnan(test_data.ts[2])
test_data.ts[np.isnan(test_data.ts)] = 5
assert not np.isnan(test_data.ts[2])
# caught this bug when writing tests
series = Series(tm.makeIntIndex(20).astype(float),
index=tm.makeIntIndex(20))
series[::2] = 0
assert (series[::2] == 0).all()
# set item that's not contained
s = test_data.series.copy()
s['foobar'] = 1
app = Series([1], index=['foobar'], name='series')
expected = test_data.series.append(app)
assert_series_equal(s, expected)
# Test for issue #10193
key = pd.Timestamp('2012-01-01')
series = pd.Series()
series[key] = 47
expected = pd.Series(47, [key])
assert_series_equal(series, expected)
series = pd.Series([], pd.DatetimeIndex([], freq='D'))
series[key] = 47
expected = pd.Series(47, pd.DatetimeIndex([key], freq='D'))
assert_series_equal(series, expected)
def test_setitem_dtypes():
# change dtypes
# GH 4463
expected = Series([np.nan, 2, 3])
s = Series([1, 2, 3])
s.iloc[0] = np.nan
assert_series_equal(s, expected)
s = Series([1, 2, 3])
s.loc[0] = np.nan
assert_series_equal(s, expected)
s = Series([1, 2, 3])
s[0] = np.nan
assert_series_equal(s, expected)
s = Series([False])
s.loc[0] = np.nan
assert_series_equal(s, Series([np.nan]))
s = Series([False, True])
s.loc[0] = np.nan
assert_series_equal(s, Series([np.nan, 1.0]))
def test_set_value(test_data):
idx = test_data.ts.index[10]
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
res = test_data.ts.set_value(idx, 0)
assert res is test_data.ts
assert test_data.ts[idx] == 0
# equiv
s = test_data.series.copy()
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
res = s.set_value('foobar', 0)
assert res is s
assert res.index[-1] == 'foobar'
assert res['foobar'] == 0
s = test_data.series.copy()
s.loc['foobar'] = 0
assert s.index[-1] == 'foobar'
assert s['foobar'] == 0
def test_setslice(test_data):
sl = test_data.ts[5:20]
assert len(sl) == len(sl.index)
assert sl.index.is_unique
def test_basic_getitem_setitem_corner(test_data):
# invalid tuples, e.g. td.ts[:, None] vs. td.ts[:, 2]
with tm.assert_raises_regex(ValueError, 'tuple-index'):
test_data.ts[:, 2]
with tm.assert_raises_regex(ValueError, 'tuple-index'):
test_data.ts[:, 2] = 2
# weird lists. [slice(0, 5)] will work but not two slices
result = test_data.ts[[slice(None, 5)]]
expected = test_data.ts[:5]
assert_series_equal(result, expected)
# OK
pytest.raises(Exception, test_data.ts.__getitem__,
[5, slice(None, None)])
pytest.raises(Exception, test_data.ts.__setitem__,
[5, slice(None, None)], 2)
@pytest.mark.parametrize('tz', ['US/Eastern', 'UTC', 'Asia/Tokyo'])
def test_setitem_with_tz(tz):
orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3,
tz=tz))
assert orig.dtype == 'datetime64[ns, {0}]'.format(tz)
# scalar
s = orig.copy()
s[1] = pd.Timestamp('2011-01-01', tz=tz)
exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz),
pd.Timestamp('2011-01-01 00:00', tz=tz),
pd.Timestamp('2016-01-01 02:00', tz=tz)])
tm.assert_series_equal(s, exp)
s = orig.copy()
s.loc[1] = pd.Timestamp('2011-01-01', tz=tz)
tm.assert_series_equal(s, exp)
s = orig.copy()
s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz)
tm.assert_series_equal(s, exp)
# vector
vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz),
pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2])
assert vals.dtype == 'datetime64[ns, {0}]'.format(tz)
s[[1, 2]] = vals
exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz),
pd.Timestamp('2011-01-01 00:00', tz=tz),
pd.Timestamp('2012-01-01 00:00', tz=tz)])
tm.assert_series_equal(s, exp)
s = orig.copy()
s.loc[[1, 2]] = vals
tm.assert_series_equal(s, exp)
s = orig.copy()
s.iloc[[1, 2]] = vals
tm.assert_series_equal(s, exp)
def test_setitem_with_tz_dst():
# GH XXX
tz = 'US/Eastern'
orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3,
tz=tz))
assert orig.dtype == 'datetime64[ns, {0}]'.format(tz)
# scalar
s = orig.copy()
s[1] = pd.Timestamp('2011-01-01', tz=tz)
exp = pd.Series([pd.Timestamp('2016-11-06 00:00-04:00', tz=tz),
pd.Timestamp('2011-01-01 00:00-05:00', tz=tz),
pd.Timestamp('2016-11-06 01:00-05:00', tz=tz)])
tm.assert_series_equal(s, exp)
s = orig.copy()
s.loc[1] = pd.Timestamp('2011-01-01', tz=tz)
tm.assert_series_equal(s, exp)
s = orig.copy()
s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz)
tm.assert_series_equal(s, exp)
# vector
vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz),
pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2])
assert vals.dtype == 'datetime64[ns, {0}]'.format(tz)
s[[1, 2]] = vals
exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz),
pd.Timestamp('2011-01-01 00:00', tz=tz),
pd.Timestamp('2012-01-01 00:00', tz=tz)])
tm.assert_series_equal(s, exp)
s = orig.copy()
s.loc[[1, 2]] = vals
tm.assert_series_equal(s, exp)
s = orig.copy()
s.iloc[[1, 2]] = vals
tm.assert_series_equal(s, exp)
def test_categorial_assigning_ops():
orig = Series(Categorical(["b", "b"], categories=["a", "b"]))
s = orig.copy()
s[:] = "a"
exp = Series(Categorical(["a", "a"], categories=["a", "b"]))
tm.assert_series_equal(s, exp)
s = orig.copy()
s[1] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(s, exp)
s = orig.copy()
s[s.index > 0] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(s, exp)
s = orig.copy()
s[[False, True]] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
tm.assert_series_equal(s, exp)
s = orig.copy()
s.index = ["x", "y"]
s["y"] = "a"
exp = Series(Categorical(["b", "a"], categories=["a", "b"]),
index=["x", "y"])
tm.assert_series_equal(s, exp)
# ensure that one can set something to np.nan
s = Series(Categorical([1, 2, 3]))
exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3]))
s[1] = np.nan
tm.assert_series_equal(s, exp)
def test_slice(test_data):
numSlice = test_data.series[10:20]
numSliceEnd = test_data.series[-10:]
objSlice = test_data.objSeries[10:20]
assert test_data.series.index[9] not in numSlice.index
assert test_data.objSeries.index[9] not in objSlice.index
assert len(numSlice) == len(numSlice.index)
assert test_data.series[numSlice.index[0]] == numSlice[numSlice.index[0]]
assert numSlice.index[1] == test_data.series.index[11]
assert tm.equalContents(numSliceEnd, np.array(test_data.series)[-10:])
# Test return view.
sl = test_data.series[10:20]
sl[:] = 0
assert (test_data.series[10:20] == 0).all()
def test_slice_can_reorder_not_uniquely_indexed():
s = Series(1, index=['a', 'a', 'b', 'b', 'c'])
s[::-1] # it works!
def test_ix_setitem(test_data):
inds = test_data.series.index[[3, 4, 7]]
result = test_data.series.copy()
result.loc[inds] = 5
expected = test_data.series.copy()
expected[[3, 4, 7]] = 5
assert_series_equal(result, expected)
result.iloc[5:10] = 10
expected[5:10] = 10
assert_series_equal(result, expected)
# set slice with indices
d1, d2 = test_data.series.index[[5, 15]]
result.loc[d1:d2] = 6
expected[5:16] = 6 # because it's inclusive
assert_series_equal(result, expected)
# set index value
test_data.series.loc[d1] = 4
test_data.series.loc[d2] = 6
assert test_data.series[d1] == 4
assert test_data.series[d2] == 6
def test_setitem_na():
# these induce dtype changes
expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan])
s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10])
s[::2] = np.nan
assert_series_equal(s, expected)
# gets coerced to float, right?
expected = Series([np.nan, 1, np.nan, 0])
s = Series([True, True, False, False])
s[::2] = np.nan
assert_series_equal(s, expected)
expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8,
9])
s = Series(np.arange(10))
s[:5] = np.nan
assert_series_equal(s, expected)
def test_timedelta_assignment():
# GH 8209
s = Series([])
s.loc['B'] = timedelta(1)
tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B']))
s = s.reindex(s.index.insert(0, 'A'))
tm.assert_series_equal(s, Series(
[np.nan, Timedelta('1 days')], index=['A', 'B']))
result = s.fillna(timedelta(1))
expected = Series(Timedelta('1 days'), index=['A', 'B'])
tm.assert_series_equal(result, expected)
s.loc['A'] = timedelta(1)
tm.assert_series_equal(s, expected)
# GH 14155
s = Series(10 * [np.timedelta64(10, 'm')])
s.loc[[1, 2, 3]] = np.timedelta64(20, 'm')
expected = pd.Series(10 * [np.timedelta64(10, 'm')])
expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm'))
tm.assert_series_equal(s, expected)
def test_underlying_data_conversion():
# GH 4080
df = DataFrame({c: [1, 2, 3] for c in ['a', 'b', 'c']})
df.set_index(['a', 'b', 'c'], inplace=True)
s = Series([1], index=[(2, 2, 2)])
df['val'] = 0
df
df['val'].update(s)
expected = DataFrame(
dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0]))
expected.set_index(['a', 'b', 'c'], inplace=True)
tm.assert_frame_equal(df, expected)
# GH 3970
# these are chained assignments as well
pd.set_option('chained_assignment', None)
df = DataFrame({"aa": range(5), "bb": [2.2] * 5})
df["cc"] = 0.0
ck = [True] * len(df)
df["bb"].iloc[0] = .13
# TODO: unused
df_tmp = df.iloc[ck] # noqa
df["bb"].iloc[0] = .15
assert df['bb'].iloc[0] == 0.15
pd.set_option('chained_assignment', 'raise')
# GH 3217
df = DataFrame(dict(a=[1, 3], b=[np.nan, 2]))
df['c'] = np.nan
df['c'].update(pd.Series(['foo'], index=[0]))
expected = DataFrame(dict(a=[1, 3], b=[np.nan, 2], c=['foo', np.nan]))
tm.assert_frame_equal(df, expected)
def test_preserve_refs(test_data):
seq = test_data.ts[[5, 10, 15]]
seq[1] = np.NaN
assert not np.isnan(test_data.ts[10])
def test_cast_on_putmask():
# GH 2746
# need to upcast
s = Series([1, 2], index=[1, 2], dtype='int64')
s[[True, False]] = Series([0], index=[1], dtype='int64')
expected = Series([0, 2], index=[1, 2], dtype='int64')
assert_series_equal(s, expected)
def test_type_promote_putmask():
# GH8387: test that changing types does not break alignment
ts = Series(np.random.randn(100), index=np.arange(100, 0, -1)).round(5)
left, mask = ts.copy(), ts > 0
right = ts[mask].copy().map(str)
left[mask] = right
assert_series_equal(left, ts.map(lambda t: str(t) if t > 0 else t))
s = Series([0, 1, 2, 0])
mask = s > 0
s2 = s[mask].map(str)
s[mask] = s2
assert_series_equal(s, Series([0, '1', '2', 0]))
s = Series([0, 'foo', 'bar', 0])
mask = Series([False, True, True, False])
s2 = s[mask]
s[mask] = s2
assert_series_equal(s, Series([0, 'foo', 'bar', 0]))
def test_multilevel_preserve_name():
index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two',
'three']],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['first', 'second'])
s = Series(np.random.randn(len(index)), index=index, name='sth')
result = s['foo']
result2 = s.loc['foo']
assert result.name == s.name
assert result2.name == s.name
def test_setitem_scalar_into_readonly_backing_data():
# GH14359: test that you cannot mutate a read only buffer
array = np.zeros(5)
array.flags.writeable = False # make the array immutable
series = Series(array)
for n in range(len(series)):
with pytest.raises(ValueError):
series[n] = 1
assert array[n] == 0
def test_setitem_slice_into_readonly_backing_data():
# GH14359: test that you cannot mutate a read only buffer
array = np.zeros(5)
array.flags.writeable = False # make the array immutable
series = Series(array)
with pytest.raises(ValueError):
series[1:3] = 1
assert not array.any()
"""
miscellaneous methods
"""
def test_select(test_data):
# deprecated: gh-12410
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
n = len(test_data.ts)
result = test_data.ts.select(lambda x: x >= test_data.ts.index[n // 2])
expected = test_data.ts.reindex(test_data.ts.index[n // 2:])
assert_series_equal(result, expected)
result = test_data.ts.select(lambda x: x.weekday() == 2)
expected = test_data.ts[test_data.ts.index.weekday == 2]
assert_series_equal(result, expected)
def test_pop():
# GH 6600
df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, })
k = df.iloc[4]
result = k.pop('B')
assert result == 4
expected = Series([0, 0], index=['A', 'C'], name=4)
assert_series_equal(k, expected)
def test_take():
s = Series([-1, 5, 6, 2, 4])
actual = s.take([1, 3, 4])
expected = Series([5, 2, 4], index=[1, 3, 4])
tm.assert_series_equal(actual, expected)
actual = s.take([-1, 3, 4])
expected = Series([4, 2, 4], index=[4, 3, 4])
tm.assert_series_equal(actual, expected)
pytest.raises(IndexError, s.take, [1, 10])
pytest.raises(IndexError, s.take, [2, 5])
with tm.assert_produces_warning(FutureWarning):
s.take([-1, 3, 4], convert=False)
def test_take_categorical():
# https://github.com/pandas-dev/pandas/issues/20664
s = Series(pd.Categorical(['a', 'b', 'c']))
result = s.take([-2, -2, 0])
expected = Series(pd.Categorical(['b', 'b', 'a'],
categories=['a', 'b', 'c']),
index=[1, 1, 0])
assert_series_equal(result, expected)
def test_head_tail(test_data):
assert_series_equal(test_data.series.head(), test_data.series[:5])
assert_series_equal(test_data.series.head(0), test_data.series[0:0])
assert_series_equal(test_data.series.tail(), test_data.series[-5:])
assert_series_equal(test_data.series.tail(0), test_data.series[0:0])